1
|
Wang X, Yin G, Yang Y, Tian X. Ciliary and Non-Ciliary Roles of IFT88 in Development and Diseases. Int J Mol Sci 2025; 26:2110. [PMID: 40076734 PMCID: PMC11901018 DOI: 10.3390/ijms26052110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/04/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cilia are highly specialized cellular projections emanating from the cell surface, whose defects contribute to a spectrum of diseases collectively known as ciliopathies. Intraflagellar transport protein 88 (IFT88) is a crucial component of the intraflagellar transport-B (IFT-B) subcomplex, a protein complex integral to ciliary transport. The absence of IFT88 disrupts the formation of ciliary structures; thus, animal models with IFT88 mutations, including the oak ridge polycystic kidney (ORPK) mouse model and IFT88 conditional allelic mouse model, are frequently employed in molecular and clinical studies of ciliary functions and ciliopathies. IFT88 plays a pivotal role in a variety of cilium-related processes, including organ fibrosis and cyst formation, metabolic regulation, chondrocyte development, and neurological functions. Moreover, IFT88 also exhibits cilium-independent functions, such as spindle orientation, planar cell polarity establishment, and actin organization. A deeper understanding of the biological events and molecular mechanisms mediated by IFT88 is anticipated to advance the development of diagnostic and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
| | | | | | - Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (X.W.); (G.Y.); (Y.Y.)
| |
Collapse
|
2
|
Havrylov S, Chrystal P, van Baarle S, French CR, MacDonald IM, Avasarala J, Rogers RC, Berry FB, Kume T, Waskiewicz AJ, Lehmann OJ. Pleiotropy in FOXC1-attributable phenotypes involves altered ciliation and cilia-dependent signaling. Sci Rep 2024; 14:20278. [PMID: 39217245 PMCID: PMC11365983 DOI: 10.1038/s41598-024-71159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Alterations to cilia are responsible for a wide range of severe disease; however, understanding of the transcriptional control of ciliogenesis remains incomplete. In this study we investigated whether altered cilia-mediated signaling contributes to the pleiotropic phenotypes caused by the Forkhead transcription factor FOXC1. Here, we show that patients with FOXC1-attributable Axenfeld-Rieger Syndrome (ARS) have a prevalence of ciliopathy-associated phenotypes comparable to syndromic ciliopathies. We demonstrate that altering the level of Foxc1 protein, via shRNA mediated inhibition, CRISPR/Cas9 mutagenesis and overexpression, modifies cilia length in vitro. These structural changes were associated with substantially perturbed cilia-dependent signaling [Hedgehog (Hh) and PDGFRα], and altered ciliary compartmentalization of the Hh pathway transcription factor, Gli2. Consistent with these data, in primary cultures of murine embryonic meninges, cilia length was significantly reduced in heterozygous and homozygous Foxc1 mutants compared to controls. Meningeal expression of the core Hh signaling components Gli1, Gli3 and Sufu was dysregulated, with comparable dysregulation of Pdgfrα signaling evident from significantly altered Pdgfrα and phosphorylated Pdgfrα expression. On the basis of these clinical and experimental findings, we propose a model that altered cilia-mediated signaling contributes to some FOXC1-induced phenotypes.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Paul Chrystal
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Suey van Baarle
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Curtis R French
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jagannadha Avasarala
- Department of Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| | | | - Fred B Berry
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, 3002D Li Ka Shing Centre, University of Alberta, Edmonton, AB, Canada
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ordan J Lehmann
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
3
|
Power KM, Barr MM. osm-5p- driven fluorophores are differentially expressed in ccpp-1Δ and nekl-4Δ mutant ciliated neurons. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001245. [PMID: 39135985 PMCID: PMC11318990 DOI: 10.17912/micropub.biology.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Intraflagellar transport (IFT) involves the coordinated transport of molecular motors and other proteins and is required for ciliogenesis and ciliary maintenance. The C. elegans IFT protein OSM-5 /IFT88 is expressed in a majority of the ciliated neurons in the animal, and osm-5 mutants exhibit structurally defective cilia. The osm-5 promoter is commonly used to express genetic constructs in the ciliated neurons. In this study, we show that brightness of osm-5p- driven constructs is altered in mutants of the tubulin deglutamylase ccpp-1 and the NIMA-related kinase nekl-4 . This raises the possibility that osm-5 expression levels may be regulated by ccpp-1 and nekl-4 .
Collapse
Affiliation(s)
- Kaiden M Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
| |
Collapse
|
4
|
Loukil A, Ebright E, Uezu A, Gao Y, Soderling SH, Goetz SC. Identification of new ciliary signaling pathways in the brain and insights into neurological disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572700. [PMID: 38187761 PMCID: PMC10769350 DOI: 10.1101/2023.12.20.572700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Primary cilia are conserved sensory hubs essential for signaling transduction and embryonic development. Ciliary dysfunction causes a variety of developmental syndromes with neurological features and cognitive impairment, whose basis mostly remains unknown. Despite connections to neural function, the primary cilium remains an overlooked organelle in the brain. Most neurons have a primary cilium; however, it is still unclear how this organelle modulates brain architecture and function, given the lack of any systemic dissection of neuronal ciliary signaling. Here, we present the first in vivo glance at the molecular composition of cilia in the mouse brain. We have adapted in vivo BioID (iBioID), targeting the biotin ligase BioID2 to primary cilia in neurons. We identified tissue-specific signaling networks enriched in neuronal cilia, including Eph/Ephrin and GABA receptor signaling pathways. Our iBioID ciliary network presents a wealth of neural ciliary hits that provides new insights into neurological disorders. Our findings are a promising first step in defining the fundamentals of ciliary signaling and their roles in shaping neural circuits and behavior. This work can be extended to pathological conditions of the brain, aiming to identify the molecular pathways disrupted in the brain cilium. Hence, finding novel therapeutic strategies will help uncover and leverage the therapeutic potential of the neuronal cilium.
Collapse
Affiliation(s)
- Abdelhalim Loukil
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emma Ebright
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Yudong Gao
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Sarah C. Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Lee KH. Primary cilia: a novel research approach to overcome anticancer drug resistance. Front Mol Biosci 2023; 10:1270639. [PMID: 37900915 PMCID: PMC10602908 DOI: 10.3389/fmolb.2023.1270639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Primary cilia are cellular organelles that consist of a microtubule skeleton surrounded by a membrane filled with cell signaling receptors. Many studies have shown that primary cilia are cellular antennas, which serve as signaling hubs and their assembly and disassembly are dynamically regulated throughout the cell cycle, playing an important role in regulating cellular homeostasis. Aberrant control of primary cilia dynamics causes a number of genetic disorders known as ciliopathies and is closely associated with tumorigenesis. Anticancer drug resistance is a primary cause of chemotherapy failure, although there is no apparent remedy. The recent identification of a relationship between anticancer drug resistance and primary ciliary dynamics has made primary cilia an important target subcellular organelle for overcoming anticancer drug resistance. Therefore, the research on primary ciliary dynamics may provide new strategies to overcome anticancer drug resistance, which is urgently needed. This review aims to summarize research on the relevance of primary cilia and anticancer drug resistance, as well as future possibilities for research on overcoming anticancer drug resistance utilizing primary cilia dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
6
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
7
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
8
|
Brocal-Ruiz R, Esteve-Serrano A, Mora-Martínez C, Franco-Rivadeneira ML, Swoboda P, Tena JJ, Vilar M, Flames N. Forkhead transcription factor FKH-8 cooperates with RFX in the direct regulation of sensory cilia in Caenorhabditis elegans. eLife 2023; 12:e89702. [PMID: 37449480 PMCID: PMC10393296 DOI: 10.7554/elife.89702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Cilia, either motile or non-motile (a.k.a primary or sensory), are complex evolutionarily conserved eukaryotic structures composed of hundreds of proteins required for their assembly, structure and function that are collectively known as the ciliome. Ciliome gene mutations underlie a group of pleiotropic genetic diseases known as ciliopathies. Proper cilium function requires the tight coregulation of ciliome gene transcription, which is only fragmentarily understood. RFX transcription factors (TF) have an evolutionarily conserved role in the direct activation of ciliome genes both in motile and non-motile cilia cell-types. In vertebrates, FoxJ1 and FoxN4 Forkhead (FKH) TFs work with RFX in the direct activation of ciliome genes, exclusively in motile cilia cell-types. No additional TFs have been described to act together with RFX in primary cilia cell-types in any organism. Here we describe FKH-8, a FKH TF, as a direct regulator of the sensory ciliome genes in Caenorhabditis elegans. FKH-8 is expressed in all ciliated neurons in C. elegans, binds the regulatory regions of ciliome genes, regulates ciliome gene expression, cilium morphology and a wide range of behaviors mediated by sensory ciliated neurons. FKH-8 and DAF-19 (C. elegans RFX) physically interact and synergistically regulate ciliome gene expression. C. elegans FKH-8 function can be replaced by mouse FOXJ1 and FOXN4 but not by other members of other mouse FKH subfamilies. In conclusion, RFX and FKH TF families act jointly as direct regulators of ciliome genes also in sensory ciliated cell types suggesting that this regulatory logic could be an ancient trait predating functional cilia sub-specialization.
Collapse
Affiliation(s)
- Rebeca Brocal-Ruiz
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | - Ainara Esteve-Serrano
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | - Carlos Mora-Martínez
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | | | - Peter Swoboda
- Department of Biosciences and Nutrition. Karolinska Institute. Campus FlemingsbergStockholmSweden
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de OlavideSevilleSpain
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| |
Collapse
|
9
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Reed R, Park K, Waddell B, Timbers TA, Li C, Baxi K, Giacomin RM, Leroux MR, Carvalho CE. The Caenorhabditis elegans Shugoshin regulates TAC-1 in cilia. Sci Rep 2023; 13:9410. [PMID: 37296204 PMCID: PMC10256747 DOI: 10.1038/s41598-023-36430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The conserved Shugoshin (SGO) protein family is essential for mediating proper chromosome segregation from yeast to humans but has also been implicated in diverse roles outside of the nucleus. SGO's roles include inhibiting incorrect spindle attachment in the kinetochore, regulating the spindle assembly checkpoint (SAC), and ensuring centriole cohesion in the centrosome, all functions that involve different microtubule scaffolding structures in the cell. In Caenorhabditis elegans, a species with holocentric chromosomes, SGO-1 is not required for cohesin protection or spindle attachment but appears important for licensing meiotic recombination. Here we provide the first functional evidence that in C. elegans, Shugoshin functions in another extranuclear, microtubule-based structure, the primary cilium. We identify the centrosomal and microtubule-regulating transforming acidic coiled-coil protein, TACC/TAC-1, which also localizes to the basal body, as an SGO-1 binding protein. Genetic analyses indicate that TAC-1 activity must be maintained below a threshold at the ciliary base for correct cilia function, and that SGO-1 likely participates in constraining TAC-1 to the basal body by influencing the function of the transition zone 'ciliary gate'. This research expands our understanding of cellular functions of Shugoshin proteins and contributes to the growing examples of overlap between kinetochore, centrosome and cilia proteomes.
Collapse
Affiliation(s)
- R Reed
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - K Park
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - B Waddell
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - T A Timbers
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - C Li
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - K Baxi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - R M Giacomin
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - M R Leroux
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - C E Carvalho
- Department of Biology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
11
|
Chaubey AH, Sojka SE, Onukwufor JO, Ezak MJ, Vandermeulen MD, Bowitch A, Vodičková A, Wojtovich AP, Ferkey DM. The Caenorhabditis elegans innexin INX-20 regulates nociceptive behavioral sensitivity. Genetics 2023; 223:iyad017. [PMID: 36753530 PMCID: PMC10319955 DOI: 10.1093/genetics/iyad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/03/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Organisms rely on chemical cues in their environment to indicate the presence or absence of food, reproductive partners, predators, or other harmful stimuli. In the nematode Caenorhabditis elegans, the bilaterally symmetric pair of ASH sensory neurons serves as the primary nociceptors. ASH activation by aversive stimuli leads to backward locomotion and stimulus avoidance. We previously reported a role for guanylyl cyclases in dampening nociceptive sensitivity that requires an innexin-based gap junction network to pass cGMP between neurons. Here, we report that animals lacking function of the gap junction component INX-20 are hypersensitive in their behavioral response to both soluble and volatile chemical stimuli that signal through G protein-coupled receptor pathways in ASH. We find that expressing inx-20 in the ADL and AFD sensory neurons is sufficient to dampen ASH sensitivity, which is supported by new expression analysis of endogenous INX-20 tagged with mCherry via the CRISPR-Cas9 system. Although ADL does not form gap junctions directly with ASH, it does so via gap junctions with the interneuron RMG and the sensory neuron ASK. Ablating either ADL or RMG and ASK also resulted in nociceptive hypersensitivity, suggesting an important role for RMG/ASK downstream of ADL in the ASH modulatory circuit. This work adds to our growing understanding of the repertoire of ways by which ASH activity is regulated via its connectivity to other neurons and identifies a previously unknown role for ADL and RMG in the modulation of aversive behavior.
Collapse
Affiliation(s)
- Aditi H Chaubey
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Savannah E Sojka
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - John O Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Meredith J Ezak
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Matthew D Vandermeulen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrew P Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
12
|
Barmaver SN, Muthaiyan Shanmugam M, Chang Y, Bayansan O, Bhan P, Wu GH, Wagner OI. Loss of intermediate filament IFB-1 reduces mobility, density and physiological function of mitochondria in C. elegans sensory neurons. Traffic 2022; 23:270-286. [PMID: 35261124 DOI: 10.1111/tra.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In C. elegans, among the 11 cytoplasmic IF family proteins, IFB-1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB-1 leads to mild dye-filling and significant chemotaxis defects as well as reduced life span. Sensory neuron development is affected and mitochondria transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB-1 mutants likely independent of the fission and fusion machinery. Oxygen consumption and mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb-1 gene. Membrane potential also seems to play a role in transport such as FCCP treatment led to increased directional switching of mitochondria. Mitochondria colocalize with IFB-1 in worm neurons and appear in a complex with IFB-1 in pull-down assays. In summary, we propose a model in which neuronal intermediate filaments may serve as critical (transient) anchor points for mitochondria during their long-range transport in neurons for steady and balanced transport. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Syed Nooruzuha Barmaver
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Muniesh Muthaiyan Shanmugam
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Yen Chang
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Odvogmed Bayansan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Prerana Bhan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.).,Research Center for Healthy Aging, China Medical University, Taichung, Taiwan (R.O.C.)
| | - Gong-Her Wu
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Oliver I Wagner
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| |
Collapse
|
13
|
Yang W, Wu T, Tu S, Qin Y, Shen C, Li J, Choi MK, Duan F, Zhang Y. Redundant neural circuits regulate olfactory integration. PLoS Genet 2022; 18:e1010029. [PMID: 35100258 PMCID: PMC8830790 DOI: 10.1371/journal.pgen.1010029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 02/10/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
Olfactory integration is important for survival in a natural habitat. However, how the nervous system processes signals of two odorants present simultaneously to generate a coherent behavioral response is poorly understood. Here, we characterize circuit basis for a form of olfactory integration in Caenorhabditis elegans. We find that the presence of a repulsive odorant, 2-nonanone, that signals threat strongly blocks the attraction of other odorants, such as isoamyl alcohol (IAA) or benzaldehyde, that signal food. Using a forward genetic screen, we found that genes known to regulate the structure and function of sensory neurons, osm-5 and osm-1, played a critical role in the integration process. Loss of these genes mildly reduces the response to the repellent 2-nonanone and disrupts the integration effect. Restoring the function of OSM-5 in either AWB or ASH, two sensory neurons known to mediate 2-nonanone-evoked avoidance, is sufficient to rescue. Sensory neurons AWB and downstream interneurons AVA, AIB, RIM that play critical roles in olfactory sensorimotor response are able to process signals generated by 2-nonanone or IAA or the mixture of the two odorants and contribute to the integration. Thus, our results identify redundant neural circuits that regulate the robust effect of a repulsive odorant to block responses to attractive odorants and uncover the neuronal and cellular basis for this complex olfactory task. In their natural environment, animals, including humans, encounter complex olfactory stimuli. Thus, how the brain processes multiple sensory cues to generate a coherent behavioral output is critical for the survival of the animal. In the present study, we combined molecular cellular genetics, optical physiology and behavioral analysis to study a common olfactory phenomenon in which the presence of one odorant blocks the response to another. Our results show that the integrated response is regulated by redundant neuronal circuits that engage several interneurons essential for olfactory sensorimotor responses, a mechanism that likely ensures a robust behavioral response to sensory cues representing information critical for survival.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (WY); (YZ)
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Shasha Tu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuang Qin
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Chengchen Shen
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiangyun Li
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Fengyun Duan
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (WY); (YZ)
| |
Collapse
|
14
|
Kawata K, Narita K, Washio A, Kitamura C, Nishihara T, Kubota S, Takeda S. Odontoblast differentiation is regulated by an interplay between primary cilia and the canonical Wnt pathway. Bone 2021; 150:116001. [PMID: 33975031 DOI: 10.1016/j.bone.2021.116001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/29/2023]
Abstract
Primary cilium is a protruding cellular organelle that has various physiological functions, especially in sensory reception. While an avalanche of reports on primary cilia have been published, the function of primary cilia in dental cells remains to be investigated. In this study, we focused on the function of primary cilia in dentin-producing odontoblasts. Odontoblasts, like most other cell types, possess primary cilia, which disappear upon the knockdown of intraflagellar transport protein 88. In cilia-depleted cells, the expression of dentin sialoprotein, an odontoblastic marker, was elevated, while the deposition of minerals was slowed. This was recapitulated by the activation of canonical Wnt pathway, also decreased the ratio of ciliated cells. In dental pulp cells, as they differentiated into odontoblasts, the ratio of ciliated cells was increased, whereas the canonical Wnt signaling activity was repressed. Our results collectively underscore the roles of primary cilia in regulating odontoblastic differentiation through canonical Wnt signaling. This study implies the existence of a feedback loop between primary cilia and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kazumi Kawata
- Department of Anatomy and Cell Biology, University of Yamanashi Faculty of Medicine, 1110, Shimo-Kateau, Chuo, Yamanashi 4093898, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 7008525, Japan.
| | - Keishi Narita
- Department of Anatomy and Cell Biology, University of Yamanashi Faculty of Medicine, 1110, Shimo-Kateau, Chuo, Yamanashi 4093898, Japan
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokura-kita, Kitakyushu, Fukuoka 8038580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokura-kita, Kitakyushu, Fukuoka 8038580, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokura-kita, Kitakyushu, Fukuoka 8038580, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 7008525, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, University of Yamanashi Faculty of Medicine, 1110, Shimo-Kateau, Chuo, Yamanashi 4093898, Japan.
| |
Collapse
|
15
|
Alhassen W, Chen S, Vawter M, Robbins BK, Nguyen H, Myint TN, Saito Y, Schulmann A, Nauli SM, Civelli O, Baldi P, Alachkar A. Patterns of cilia gene dysregulations in major psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110255. [PMID: 33508383 PMCID: PMC9121176 DOI: 10.1016/j.pnpbp.2021.110255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
Primary cilia function as cells' antennas to detect and transduce external stimuli and play crucial roles in cell signaling and communication. The vast majority of cilia genes that are causally linked with ciliopathies are also associated with neurological deficits, such as cognitive impairments. Yet, the roles of cilia dysfunctions in the pathogenesis of psychiatric disorders have not been studied. Our aim is to identify patterns of cilia gene dysregulation in the four major psychiatric disorders: schizophrenia (SCZ), autism spectrum disorder (ASD), bipolar disorder (BP), and major depressive disorder (MDD). For this purpose, we acquired differentially expressed genes (DEGs) from the largest and most recent publicly available databases. We found that 42%, 24%, 17%, and 15% of brain-expressed cilia genes were significantly differentially expressed in SCZ, ASD, BP, and MDD, respectively. Several genes exhibited cross-disorder overlap, suggesting that typical cilia signaling pathways' dysfunctions determine susceptibility to more than one psychiatric disorder or may partially underlie their pathophysiology. Our study revealed that genes encoding proteins of almost all sub-cilia structural and functional compartments were dysregulated in the four psychiatric disorders. Strikingly, the genes of 75% of cilia GPCRs and 50% of the transition zone proteins were differentially expressed in SCZ. The present study is the first to draw associations between cilia and major psychiatric disorders, and is the first step toward understanding the role that cilia components play in their pathophysiological processes, which may lead to novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Wedad Alhassen
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697, USA,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, CA 92697, USA
| | - Marquis Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, USA
| | - Brianna Kay Robbins
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Henry Nguyen
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Thant Nyi Myint
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences for Life, Hiroshima University, Japan
| | - Anton Schulmann
- Human Genetics Branch, National Institute of Mental Health, BETHESDA MD 20814, USA
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Health Science Campus, Chapman University, Irvine, California 92618, USA
| | - Olivier Civelli
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA,Department of Developmental and Cell Biology, School of Biological Sciences, University of California-Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697, USA,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, CA 92697, USA
| | - Amal Alachkar
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-, Irvine, CA 92697, USA; Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Hwang HY, Wang J. Fast genetic mapping using insertion-deletion polymorphisms in Caenorhabditis elegans. Sci Rep 2021; 11:11017. [PMID: 34040027 PMCID: PMC8155061 DOI: 10.1038/s41598-021-90190-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
Genetic mapping is used in forward genetics to narrow the list of candidate mutations and genes corresponding to the mutant phenotype of interest. Even with modern advances in biology such as efficient identification of candidate mutations by whole-genome sequencing, mapping remains critical in pinpointing the responsible mutation. Here we describe a simple, fast, and affordable mapping toolkit that is particularly suitable for mapping in Caenorhabditis elegans. This mapping method uses insertion-deletion polymorphisms or indels that could be easily detected instead of single nucleotide polymorphisms in commonly used Hawaiian CB4856 mapping strain. The materials and methods were optimized so that mapping could be performed using tiny amount of genetic material without growing many large populations of mutants for DNA purification. We performed mapping of previously known and unknown mutations to show strengths and weaknesses of this method and to present examples of completed mapping. For situations where Hawaiian CB4856 is unsuitable, we provide an annotated list of indels as a basis for fast and easy mapping using other wild isolates. Finally, we provide rationale for using this mapping method over other alternatives as a part of a comprehensive strategy also involving whole-genome sequencing and other methods.
Collapse
Affiliation(s)
- Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Department of Neuroscience, Johns Hopkins University, 615 N. Wolfe Street, E8410, Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Department of Neuroscience, Johns Hopkins University, 615 N. Wolfe Street, E8410, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
18
|
Coveney CR, Collins I, Mc Fie M, Chanalaris A, Yamamoto K, Wann AKT. Cilia protein IFT88 regulates extracellular protease activity by optimizing LRP-1-mediated endocytosis. FASEB J 2018; 32:fj201800334. [PMID: 29920219 PMCID: PMC6219823 DOI: 10.1096/fj.201800334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/04/2018] [Indexed: 01/15/2023]
Abstract
Matrix protease activity is fundamental to developmental tissue patterning and remains influential in adult homeostasis. In cartilage, the principal matrix proteoglycan is aggrecan, the protease-mediated catabolism of which defines arthritis; however, the pathophysiologic mechanisms that drive aberrant aggrecanolytic activity remain unclear. Human ciliopathies exhibit altered matrix, which has been proposed to be the result of dysregulated hedgehog signaling that is tuned within the primary cilium. Here, we report that disruption of intraflagellar transport protein 88 (IFT88), a core ciliary trafficking protein, increases chondrocyte aggrecanase activity in vitro. We find that the receptor for protease endocytosis in chondrocytes, LDL receptor-related protein 1 (LRP-1), is unevenly distributed over the cell membrane, often concentrated at the site of cilia assembly. Hypomorphic mutation of IFT88 disturbs this apparent hot spot for protease uptake, increases receptor shedding, and results in a reduced rate of protease clearance from the extracellular space. We propose that IFT88 and/or the cilium regulates the extracellular remodeling of matrix-independently of Hedgehog regulation-by enabling rapid LRP-1-mediated endocytosis of proteases, potentially by supporting the creation of a ciliary pocket. This result highlights new roles for the cilium's machinery in matrix turnover and LRP-1 function, with potential relevance in a range of diseases.-Coveney, C. R., Collins, I., Mc Fie, M., Chanalaris, A., Yamamoto, K., Wann, A. K. T. Cilia protein IFT88 regulates extracellular protease activity by optimizing LRP-1-mediated endocytosis.
Collapse
Affiliation(s)
- Clarissa R. Coveney
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Isabella Collins
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Megan Mc Fie
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anastasios Chanalaris
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kazuhiro Yamamoto
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Angus K. T. Wann
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Loss-of-function of IFT88 determines metabolic phenotypes in thyroid cancer. Oncogene 2018; 37:4455-4474. [DOI: 10.1038/s41388-018-0211-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/18/2023]
|
20
|
Muthaiyan Shanmugam M, Bhan P, Huang HY, Hsieh J, Hua TE, Wu GH, Punjabi H, Lee Aplícano VD, Chen CW, Wagner OI. Cilium Length and Intraflagellar Transport Regulation by Kinases PKG-1 and GCK-2 in Caenorhabditis elegans Sensory Neurons. Mol Cell Biol 2018; 38:e00612-17. [PMID: 29378827 PMCID: PMC5854826 DOI: 10.1128/mcb.00612-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/31/2022] Open
Abstract
To understand how ciliopathies such as polycystic kidney disease or Bardet-Biedl syndrome develop, we need to understand the basic molecular mechanisms underlying cilium development. Cilium growth depends on the presence of functional intraflagellar transport (IFT) machinery, and we hypothesized that various kinases and phosphatases might be involved in this regulatory process. A candidate screen revealed two kinases, PKG-1 (a cGMP-dependent protein kinase) and GCK-2 (a mitogen-activated protein kinase kinase kinase kinase 3 [MAP4K3] kinase involved in mTOR signaling), significantly affecting dye filling, chemotaxis, cilium morphology, and IFT component distribution. PKG-1 and GCK-2 show similar expression patterns in Caenorhabditis elegans cilia and colocalize with investigated IFT machinery components. In pkg-1 mutants, a high level of accumulation of kinesin-2 OSM-3 in distal segments was observed in conjunction with an overall reduction of anterograde and retrograde IFT particle A transport, likely as a function of reduced tubulin acetylation. In contrast, in gck-2 mutants, both kinesin-2 motility and IFT particle A motility were significantly elevated in the middle segments, in conjunction with increased tubulin acetylation, possibly the cause of longer cilium growth. Observed effects in mutants can be also seen in manipulating upstream and downstream effectors of the respective cGMP and mTOR pathways. Importantly, transmission electron microscopy (TEM) analysis revealed no structural changes in cilia of pkg-1 and gck-2 mutants.
Collapse
Affiliation(s)
- Muniesh Muthaiyan Shanmugam
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Prerana Bhan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Hsin-Yi Huang
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Jung Hsieh
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Tzu-En Hua
- Electron Microscopy Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Gong-Her Wu
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Helly Punjabi
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Víctor Daniel Lee Aplícano
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Chih-Wei Chen
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Oliver Ingvar Wagner
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
21
|
Adachi T, Nagahama K, Izumi S. The C. elegans mRNA decapping enzyme shapes morphology of cilia. Biochem Biophys Res Commun 2017; 493:382-387. [PMID: 28887031 DOI: 10.1016/j.bbrc.2017.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Cilia and flagella are evolutionarily conserved organelles that protrude from cell surfaces. Most cilia and flagella are single rod-shaped but some cilia show a variety of shapes. For example, human airway epithelial cells are multiciliated, flagella of crayfish spermatozoon are star-like shaped, and fruit fly spermatozoon extends long flagella. In Caenorhabditis elegans, cilia display morphological diversity of shapes (single, dual rod-type and wing-like and highly-branched shapes). Here we show that DCAP-1 and DCAP-2, which are the homologues of mammalian DCP1 and DCP2 mRNA decapping enzymes, respectively, are involved in formation of dual rod-type and wing-like shaped cilia in C. elegans. mRNA decapping enzyme catalyzes hydrolysis of 5' cap structure of mRNA, which leads to degradation of mRNA. Rescue experiments showed that DCAP-2 acts not in glial cells surrounding cilia but in neurons. This is the first evidence to demonstrate that mRNA decapping is involved in ciliary shape formation.
Collapse
Affiliation(s)
- Takeshi Adachi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan.
| | - Keigo Nagahama
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan
| | - Susumu Izumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan
| |
Collapse
|
22
|
Ganner A, Neumann-Haefelin E. Genetic kidney diseases: Caenorhabditis elegans as model system. Cell Tissue Res 2017; 369:105-118. [PMID: 28484847 DOI: 10.1007/s00441-017-2622-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Despite its apparent simplicity, the nematode Caenorhabditis elegans has a high rating as a model in molecular and developmental biology and biomedical research. C. elegans has no excretory system comparable with the mammalian kidney but many of the genes and molecular pathways involved in human kidney diseases are conserved in C. elegans. The plethora of genetic, molecular and imaging tools available in C. elegans has enabled major discoveries in renal research and advanced our understanding of the pathogenesis of genetic kidney diseases. In particular, studies in C. elegans have pioneered the fundamental role of cilia for cystic kidney diseases. In addition, proteins of the glomerular filtration barrier and podocytes are critical for cell recognition, assembly of functional neuronal circuits, mechanosensation and signal transduction in C. elegans. C. elegans has also proved tremendously valuable for aging research and the Von Hippel-Lindau tumor suppressor gene has been shown to modulate lifespan in the nematode. Further, studies of the excretory canal, membrane transport and ion channel function in C. elegans have provided insights into mechanisms of tubulogenesis and cellular homeostasis. This review recounts the way that C. elegans can be used to investigate various aspects of genetic and molecular nephrology. This model system opens up an exciting and new area of study of renal development and diseases.
Collapse
Affiliation(s)
- Athina Ganner
- Department of Nephrology, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Elke Neumann-Haefelin
- Department of Nephrology, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.
| |
Collapse
|
23
|
Fort C, Bonnefoy S, Kohl L, Bastin P. Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length. J Cell Sci 2016; 129:3026-41. [PMID: 27343245 DOI: 10.1242/jcs.188227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 01/10/2023] Open
Abstract
Intraflagellar transport (IFT) is required for construction of most cilia and flagella. Here, we used electron microscopy, immunofluorescence and live video microscopy to show that IFT is absent or arrested in the mature flagellum of Trypanosoma brucei upon RNA interference (RNAi)-mediated knockdown of IFT88 and IFT140, respectively. Flagella assembled prior to RNAi did not shorten, showing that IFT is not essential for the maintenance of flagella length. Although the ultrastructure of the axoneme was not visibly affected, flagellar beating was strongly reduced and the distribution of several flagellar components was drastically modified. The R subunit of the protein kinase A was no longer concentrated in the flagellum but was largely found in the cell body whereas the kinesin 9B motor was accumulating at the distal tip of the flagellum. In contrast, the distal tip protein FLAM8 was dispersed along the flagellum. This reveals that IFT also functions in maintaining the distribution of some flagellar proteins after construction of the organelle is completed.
Collapse
Affiliation(s)
- Cécile Fort
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France Université Pierre et Marie Curie Paris 6, Cellule Pasteur-UPMC, 25 rue du docteur Roux, Paris 75015, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| | - Linda Kohl
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS; CP52, 61 rue Buffon, Paris 75005, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| |
Collapse
|
24
|
Ong ACM, Harris PC. A polycystin-centric view of cyst formation and disease: the polycystins revisited. Kidney Int 2015; 88:699-710. [PMID: 26200945 PMCID: PMC4589452 DOI: 10.1038/ki.2015.207] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
It is 20 years since the identification of PKD1, the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), followed closely by the cloning of PKD2. These major breakthroughs have led in turn to a period of intense investigation into the function of the two proteins encoded, polycystin-1 and polycystin-2, and how defects in either protein lead to cyst formation and nonrenal phenotypes. In this review, we summarize the major findings in this area and present a current model of how the polycystin proteins function in health and disease.
Collapse
Affiliation(s)
- Albert CM Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, UK
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 2015; 11:451-64. [PMID: 25870007 PMCID: PMC4539141 DOI: 10.1038/nrneph.2015.39] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is responsible for 5-10% of cases of end-stage renal disease worldwide. ADPKD is characterized by the relentless development and growth of cysts, which cause progressive kidney enlargement associated with hypertension, pain, reduced quality of life and eventual kidney failure. Mutations in the PKD1 or PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively, cause ADPKD. However, neither the functions of these proteins nor the molecular mechanisms of ADPKD pathogenesis are well understood. Here, we review the literature that examines how reduced levels of functional PC1 or PC2 at the primary cilia and/or the endoplasmic reticulum directly disrupts intracellular calcium signalling and indirectly disrupts calcium-regulated cAMP and purinergic signalling. We propose a hypothetical model in which dysregulated metabolism of cAMP and purinergic signalling increases the sensitivity of principal cells in collecting ducts and of tubular epithelial cells in the distal nephron to the constant tonic action of vasopressin. The resulting magnified response to vasopressin further enhances the disruption of calcium signalling that is initiated by mutations in PC1 or PC2, and activates downstream signalling pathways that cause impaired tubulogenesis, increased cell proliferation, increased fluid secretion and interstitial inflammation.
Collapse
Affiliation(s)
- Fouad T Chebib
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Caroline R Sussman
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| |
Collapse
|
26
|
Benmerah A, Durand B, Giles RH, Harris T, Kohl L, Laclef C, Meilhac SM, Mitchison HM, Pedersen LB, Roepman R, Swoboda P, Ueffing M, Bastin P. The more we know, the more we have to discover: an exciting future for understanding cilia and ciliopathies. Cilia 2015; 4:5. [PMID: 25974046 PMCID: PMC4378380 DOI: 10.1186/s13630-015-0014-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/23/2015] [Indexed: 11/10/2022] Open
Abstract
The Cilia 2014 conference was organised by four European networks: the Ciliopathy Alliance, the Groupement de Recherche CIL, the Nordic Cilia and Centrosome Network and the EU FP7 programme SYSCILIA. More than 400 delegates from 27 countries gathered at the Institut Pasteur conference centre in Paris, including 30 patients and patient representatives. The meeting offered a unique opportunity for exchange between different scientific and medical communities. Major highlights included new discoveries about the roles of motile and immotile cilia during development and homeostasis, the mechanism of cilium construction, as well as progress in diagnosis and possible treatment of ciliopathies. The contributions to the cilia field of flagellated infectious eukaryotes and of systems biology were also presented.
Collapse
Affiliation(s)
- Alexandre Benmerah
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, 24 boulevard du Montparnasse, 75015 Paris, France ; Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 24 boulevard du Montparnasse, 75015 Paris, France
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, 16 rue Dubois, Villeurbanne, Lyon, F69622 France
| | - Rachel H Giles
- Department of Nephrology, University Medical Centre Utrecht, 100 Heidelberglaan, Utrecht, 3584CX The Netherlands
| | - Tess Harris
- The Ciliopathy Alliance, 91 Royal College St, NW1 0SE, London
| | - Linda Kohl
- UMR7245 CNRS/MNHN, Muséum National d'Histoire Naturelle, 57 rue Cuvier, 75005 Paris, France
| | - Christine Laclef
- Developmental Biology Laboratory UMR7622, UPMC Univ Paris 06, Sorbonne Université, 9 Quai Saint Bernard, F-75005 Paris, France ; Developmental Biology Laboratory UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS), 9 Quai Saint Bernard, F-75005 Paris, France ; INSERM, ERL1156, 9 Quai Saint Bernard, F-75005 Paris, France
| | - Sigolène M Meilhac
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du docteur Roux, 75015 Paris, France ; CNRS URA2578, 25 rue du docteur Roux, 75015 Paris, France
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, OE Denmark
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein 25, P.O. Box 9101, 6525 Nijmegen, GA The Netherlands
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, S-141 83 Huddinge, Sweden
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tübingen, PO 2669, D-72016 Tübingen, Germany ; Research Unit of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85758 Neuherberg, Germany
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
27
|
Jiang L, Wei Y, Ronquillo CC, Marc RE, Yoder BK, Frederick JM, Baehr W. Heterotrimeric kinesin-2 (KIF3) mediates transition zone and axoneme formation of mouse photoreceptors. J Biol Chem 2015; 290:12765-78. [PMID: 25825494 DOI: 10.1074/jbc.m115.638437] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 11/06/2022] Open
Abstract
Anterograde intraflagellar transport (IFT) employing kinesin-2 molecular motors has been implicated in trafficking of photoreceptor outer segment proteins. We generated embryonic retina-specific (prefix "emb") and adult tamoxifen-induced (prefix "tam") deletions of KIF3a and IFT88 in adult mice to study photoreceptor ciliogenesis and protein trafficking. In (emb)Kif3a(-/-) and in (emb)Ift88(-/-) mice, basal bodies failed to extend transition zones (connecting cilia) with outer segments, and visual pigments mistrafficked. In contrast, (tam)Kif3a(-/-) and (tam)Ift88(-/-) photoreceptor axonemes disintegrated slowly post-induction, starting distally, but rhodopsin and cone pigments trafficked normally for more than 2 weeks, a time interval during which the outer segment is completely renewed. The results demonstrate that visual pigments transport to the retinal outer segment despite removal of KIF3 and IFT88, and KIF3-mediated anterograde IFT is responsible for photoreceptor transition zone and axoneme formation.
Collapse
Affiliation(s)
- Li Jiang
- From the Departments of Ophthalmology and Visual Sciences and
| | - Yuxiao Wei
- From the Departments of Ophthalmology and Visual Sciences and
| | | | - Robert E Marc
- From the Departments of Ophthalmology and Visual Sciences and
| | - Bradley K Yoder
- the Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | | | - Wolfgang Baehr
- From the Departments of Ophthalmology and Visual Sciences and the Department of Biology, University of Utah, Salt Lake City, Utah 84112 Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, Utah 84132,
| |
Collapse
|
28
|
Pennekamp P, Menchen T, Dworniczak B, Hamada H. Situs inversus and ciliary abnormalities: 20 years later, what is the connection? Cilia 2015; 4:1. [PMID: 25589952 PMCID: PMC4292827 DOI: 10.1186/s13630-014-0010-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Heterotaxy (also known as situs ambiguous) and situs inversus totalis describe disorders of laterality in which internal organs do not display their typical pattern of asymmetry. First described around 1600 by Girolamo Fabrizio, numerous case reports about laterality disorders in humans were published without any idea about the underlying cause. Then, in 1976, immotile cilia were described as the cause of a human syndrome that was previously clinically described, both in 1904 by AK Siewert and in 1933 by Manes Kartagener, as an association of situs inversus with chronic sinusitis and bronchiectasis, now commonly known as Kartagener’s syndrome. Despite intense research, the underlying defect of laterality disorders remained unclear. Nearly 20 years later in 1995, Björn Afzelius discussed five hypotheses to explain the connection between ciliary defects and loss of laterality control in a paper published in the International Journal of Developmental Biology asking: ‘Situs inversus and ciliary abnormalities: What is the connection?’. Here, nearly 20 research years later, we revisit some of the key findings that led to the current knowledge about the connection between situs inversus and ciliary abnormalities.
Collapse
Affiliation(s)
- Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Bernd Dworniczak
- Department of Human Genetics, University Hospital Muenster, 48149 Muenster, Germany
| | - Hiroshi Hamada
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
29
|
Gainullin VG, Hopp K, Ward CJ, Hommerding CJ, Harris PC. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J Clin Invest 2015; 125:607-20. [PMID: 25574838 DOI: 10.1172/jci76972] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited nephropathy responsible for 4%-10% of end-stage renal disease cases. Mutations in the genes encoding polycystin-1 (PC1, PKD1) or polycystin-2 (PC2, PKD2) cause ADPKD, and PKD1 mutations are associated with more severe renal disease. PC1 has been shown to form a complex with PC2, and the severity of PKD1-mediated disease is associated with the level of the mature PC1 glycoform. Here, we demonstrated that PC1 and PC2 first interact in the ER before PC1 cleavage at the GPS/GAIN site and determined that PC2 acts as an essential chaperone for PC1 maturation and surface localization. The chaperone function of PC2 was dependent on the presence of the distal coiled-coil domain and was disrupted by pathogenic missense mutations. In Pkd2-/- mice, complete loss of PC2 prevented PC1 maturation. In Pkd2 heterozygotes, the 50% PC2 reduction resulted in a nonequimolar reduction (20%-25%) of the mature PC1 glycoform. Interbreeding between various Pkd1 and Pkd2 models revealed that animals with reduced levels of functional PC1 and PC2 in the kidney exhibited severe, rapidly progressive disease, illustrating the importance of complexing of these proteins for function. Our results indicate that PC2 regulates PC1 maturation; therefore, mature PC1 levels are a determinant of disease severity in PKD2 as well as PKD1.
Collapse
|
30
|
Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease. Kidney Res Clin Pract 2014; 33:73-8. [PMID: 26877954 PMCID: PMC4714135 DOI: 10.1016/j.krcp.2014.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022] Open
Abstract
The primary cilium of renal epithelia acts as a transducer of extracellular stimuli. Polycystin (PC)1 is the protein encoded by the PKD1 gene that is responsible for the most common and severe form of autosomal dominant polycystic kidney disease (ADPKD). PC1 forms a complex with PC2 via their respective carboxy-terminal tails. Both proteins are expressed in the primary cilia. Mutations in either gene affect the normal architecture of renal tubules, giving rise to ADPKD. PC1 has been proposed as a receptor that modulates calcium signals via the PC2 channel protein. The effect of PC1 dosage has been described as the rate-limiting modulator of cystic disease. Reduced levels of PC1 or disruption of the balance in PC1/PC2 level can lead to the clinical features of ADPKD, without complete inactivation. Recent data show that ADPKD resulting from inactivation of polycystins can be markedly slowed if structurally intact cilia are also disrupted at the same time. Despite the fact that no single model or mechanism from these has been able to describe exclusively the pathogenesis of cystic kidney disease, these findings suggest the existence of a novel cilia-dependent, cyst-promoting pathway that is normally repressed by polycystin function. The results enable us to rethink our current understanding of genetics and cilia signaling pathways of ADPKD.
Collapse
|
31
|
Harris PC, Torres VE. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 2014; 124:2315-24. [PMID: 24892705 DOI: 10.1172/jci72272] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent advances in defining the genetic mechanisms of disease causation and modification in autosomal dominant polycystic kidney disease (ADPKD) have helped to explain some extreme disease manifestations and other phenotypic variability. Studies of the ADPKD proteins, polycystin-1 and -2, and the development and characterization of animal models that better mimic the human disease, have also helped us to understand pathogenesis and facilitated treatment evaluation. In addition, an improved understanding of aberrant downstream pathways in ADPKD, such as proliferation/secretion-related signaling, energy metabolism, and activated macrophages, in which cAMP and calcium changes may play a role, is leading to the identification of therapeutic targets. Finally, results from recent and ongoing preclinical and clinical trials are greatly improving the prospects for available, effective ADPKD treatments.
Collapse
|
32
|
Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014; 141:1427-41. [DOI: 10.1242/dev.074666] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
Collapse
Affiliation(s)
- Semil P. Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
33
|
Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci Rep 2013; 3:3545. [PMID: 24346024 PMCID: PMC3866595 DOI: 10.1038/srep03545] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/03/2013] [Indexed: 12/22/2022] Open
Abstract
The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation.
Collapse
|
34
|
Wann AKT, Thompson CL, Chapple JP, Knight MM. Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium. Cilia 2013; 2:17. [PMID: 24330727 PMCID: PMC3886195 DOI: 10.1186/2046-2530-2-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation.
Collapse
Affiliation(s)
- Angus KT Wann
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Clare L Thompson
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Martin M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| |
Collapse
|
35
|
Ma M, Tian X, Igarashi P, Pazour GJ, Somlo S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 2013; 45:1004-12. [PMID: 23892607 PMCID: PMC3758452 DOI: 10.1038/ng.2715] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 07/02/2013] [Indexed: 12/14/2022]
Abstract
Kidney cysts occur following inactivation of polycystins in otherwise intact cilia or following complete removal of cilia by inactivation of intraflagellar transport-related proteins. We investigated the mechanisms of cyst formation in these two distinct processes by combining conditional inactivation of polycystins with concomitant ablation of cilia in developing and adult kidney and liver. We found that loss of intact cilia suppresses cyst growth following inactivation of polycystins and that the severity of cystic disease was directly related to the length of time between the initial loss of the polycystin proteins and the subsequent involution of cilia. This cilia-dependent cyst growth was not explained by activation of the MAPK/ERK, mTOR or cAMP pathways and is likely to be distinct from the mechanism of cyst growth following complete loss of cilia. The data establish the existence of a novel pathway defined by polycystin-dependent inhibition and cilia-dependent activation that promotes rapid cyst growth.
Collapse
Affiliation(s)
- Ming Ma
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
36
|
Sassa T, Murayama T, Maruyama IN. Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans. Neurosci Lett 2013; 555:248-52. [PMID: 23769685 DOI: 10.1016/j.neulet.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022]
Abstract
High pH is a noxious stimulus to animals, and their ability to avoid dangerously alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. The nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. In contrast, C. elegans mutants with structurally, developmentally, and/or functionally abnormal sensory cilia fail to avoid high pH, suggesting that sensory neurons in the cilia participate in sensing. Genetic rescue of the mutants indicates that ASH polymodal sensory neurons play a vital role in the process. Consistently, specific laser ablation of ASH neurons made animals insensitive to high pH. Furthermore, avoidance assays of other mutants also indicated that transient receptor potential vanilloid type (TRPV) ion channels encoded by osm-9 and ocr-2 are involved in sensing. Indeed, genetic rescue of osm-9 mutants by specifically expressing OSM-9 in ASH showed that TRPV channels play an essential role in sensing of high pH. Ca(2+) imaging in vivo also revealed that ASH neurons were activated by high pH stimulation, but ASH of osm-9 or ocr-2 mutants were not. These results demonstrate that in C. elegans, high pH is sensed by ASH nociceptors through opening of OSM-9/OCR-2 TRPV channels.
Collapse
Affiliation(s)
- Toshihiro Sassa
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | | | | |
Collapse
|
37
|
Berezniuk I, Sironi JJ, Wardman J, Pasek RC, Berbari NF, Yoder BK, Fricker LD. Quantitative peptidomics of Purkinje cell degeneration mice. PLoS One 2013; 8:e60981. [PMID: 23593366 PMCID: PMC3620535 DOI: 10.1371/journal.pone.0060981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Cytosolic carboxypeptidase 1 (CCP1) is a metallopeptidase that removes C-terminal and side-chain glutamates from tubulin. The Purkinje cell degeneration (pcd) mouse lacks CCP1 due to a mutation. Previously, elevated levels of peptides derived from cytosolic and mitochondrial proteins were found in adult pcd mouse brain, raising the possibility that CCP1 functions in the degradation of intracellular peptides. To test this hypothesis, we used a quantitative peptidomics technique to compare peptide levels in wild-type and pcd mice, examining adult heart, spleen, and brain, and presymptomatic 3 week-old amygdala and cerebellum. Contrary to adult mouse brain, young pcd brain and adult heart and spleen did not show a large increase in levels of intracellular peptides. Unexpectedly, levels of peptides derived from secretory pathway proteins were altered in adult pcd mouse brain. The pattern of changes for the intracellular and secretory pathway peptides in pcd mice was generally similar to the pattern observed in mice lacking primary cilia. Collectively, these results suggest that intracellular peptide accumulation in adult pcd mouse brain is a secondary effect and is not due to a role of CCP1 in peptide turnover.
Collapse
Affiliation(s)
- Iryna Berezniuk
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan J. Sironi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan Wardman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raymond C. Pasek
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Nicolas F. Berbari
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Bradley K. Yoder
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Lloyd D. Fricker
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Salam S, Ansari A, Amon S, Rezai P, Selvaganapathy PR, Mishra RK, Gupta BP. A microfluidic phenotype analysis system reveals function of sensory and dopaminergic neuron signaling in C. elegans electrotactic swimming behavior. WORM 2013; 2:e24558. [PMID: 24058875 PMCID: PMC3704449 DOI: 10.4161/worm.24558] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 12/21/2022]
Abstract
The nematode (worm) C. elegans is a leading multicellular animal model to study neuronal-basis of behavior. Worms respond to a wide range of stimuli and exhibit characteristic movement patterns. Here we describe the use of a microfluidics setup to probe neuronal activity that relies on the innate response of C. elegans to swim toward the cathode in the presence of a DC electric field (termed "electrotaxis"). Using this setup, we examined mutants affecting sensory and dopaminergic neurons and found that their electrotactic responses were defective. Such animals moved with reduced speed (35-80% slower than controls) with intermittent pauses, abnormal turning and slower body bends. A similar phenotype was observed in worms treated with neurotoxins 6-OHDA (6- hydroxy dopamine), MPTP (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine) and rotenone (20-60% slower). We also found that neurotoxin effects could be suppressed by pre-exposing worms to a known neuroprotective compound acetaminophen. Collectively, these results show that microfluidic electrotaxis can identify alterations in dopamine and amphid neuronal signaling based on swimming responses of C. elegans. Further characterization has revealed that the electrotactic swimming response is highly sensitive and reliable in detecting neuronal abnormalities. Thus, our microfluidics setup could be used to dissect neuronal function and toxin-induced neurodegeneration. Among other applications, the setup promises to facilitate genetic and chemical screenings to identify factors that mediate neuronal signaling and neuroprotection.
Collapse
Affiliation(s)
- Sangeena Salam
- Department of Biology; McMaster University; Hamilton, ON Canada
| | - Ata Ansari
- Department of Biology; McMaster University; Hamilton, ON Canada
- Department of Psychiatry and Behavioral Neuroscience; McMaster University; Hamilton, ON Canada
| | - Siavash Amon
- Department of Biology; McMaster University; Hamilton, ON Canada
| | - Pouya Rezai
- Department of Mechanical Engineering; McMaster University; Hamilton, ON Canada
| | | | - Ram K. Mishra
- Department of Psychiatry and Behavioral Neuroscience; McMaster University; Hamilton, ON Canada
| | | |
Collapse
|
39
|
Sharma N, Malarkey EB, Berbari NF, O'Connor AK, Vanden Heuvel GB, Mrug M, Yoder BK. Proximal tubule proliferation is insufficient to induce rapid cyst formation after cilia disruption. J Am Soc Nephrol 2013; 24:456-64. [PMID: 23411784 DOI: 10.1681/asn.2012020154] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Disrupting the function of cilia in mouse kidneys results in rapid or slow progression of cystic disease depending on whether the animals are juveniles or adults, respectively. Renal injury can also markedly accelerate the renal cyst formation that occurs after disruption of cilia in adult mice. Rates of cell proliferation are markedly higher in juvenile than adult kidneys and increase after renal injury, suggesting that cell proliferation may enhance the development of cysts. Here, we induced cilia loss in the kidneys of adult mice in the presence or absence of a Cux-1 transgene, which maintains cell proliferation. By using this model, we were able to avoid additional factors such as inflammation and dedifferentiation, which associate with renal injury and may also influence the rate of cystogenesis. After induction of cilia loss, cystic disease was not more pronounced in adult mice with the Cux-1 transgene compared with those without the transgene. In conclusion, these data suggest that proliferation is unlikely to be the sole mechanism underlying the rapid cystogenesis observed after injury in mice that lose cilia function in adulthood.
Collapse
Affiliation(s)
- Neeraj Sharma
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Gaglia MM, Jeong DE, Ryu EA, Lee D, Kenyon C, Lee SJ. Genes that act downstream of sensory neurons to influence longevity, dauer formation, and pathogen responses in Caenorhabditis elegans. PLoS Genet 2012; 8:e1003133. [PMID: 23284299 PMCID: PMC3527274 DOI: 10.1371/journal.pgen.1003133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
The sensory systems of multicellular organisms are designed to provide information about the environment and thus elicit appropriate changes in physiology and behavior. In the nematode Caenorhabditis elegans, sensory neurons affect the decision to arrest during development in a diapause state, the dauer larva, and modulate the lifespan of the animals in adulthood. However, the mechanisms underlying these effects are incompletely understood. Using whole-genome microarray analysis, we identified transcripts whose levels are altered by mutations in the intraflagellar transport protein daf-10, which result in impaired development and function of many sensory neurons in C. elegans. In agreement with existing genetic data, the expression of genes regulated by the transcription factor DAF-16/FOXO was affected by daf-10 mutations. In addition, we found altered expression of transcriptional targets of the DAF-12/nuclear hormone receptor in the daf-10 mutants and showed that this pathway influences specifically the dauer formation phenotype of these animals. Unexpectedly, pathogen-responsive genes were repressed in daf-10 mutant animals, and these sensory mutants exhibited altered susceptibility to and behavioral avoidance of bacterial pathogens. Moreover, we found that a solute transporter gene mct-1/2, which was induced by daf-10 mutations, was necessary and sufficient for longevity. Thus, sensory input seems to influence an extensive transcriptional network that modulates basic biological processes in C. elegans. This situation is reminiscent of the complex regulation of physiology by the mammalian hypothalamus, which also receives innervations from sensory systems, most notably the visual and olfactory systems. The senses provide animals with information about their environment, which affects not only their behavior but also their internal state and physiological outputs. How this information is processed is still unclear. In this study, we used mutant C. elegans roundworms that had defective sensory neurons to investigate how changes in sensation alter the expression of genes and regulate physiology, specifically the worms' choice to hibernate during growth and their longevity as fully-grown adults. We showed that defects in sensory neurons change the pattern of gene expression and regulate these outputs through known hormonal pathways, including insulin/IGF-1 and steroid pathways. We also identified a new regulator of longevity, MCT-1, that is predicted to transport small metabolites and hormones in the body. Unexpectedly, we found that sensory impairment altered yet another physiological output, the response to infectious agents. It prevented the worms from avoiding infectious bacteria and reduced the expression of potentially protective factors, but also increased the worms' resistance to infection, suggesting a complex network of responses to environmental stimuli. Understanding how sensory information is relayed in this relatively simple organism may inform our understanding of sensory processing in higher organisms like mammals.
Collapse
Affiliation(s)
- Marta M Gaglia
- Neuroscience Graduate Program and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
41
|
Jerber J, Thomas J, Durand B. [Transcriptional control of ciliogenesis in animal development]. Biol Aujourdhui 2012; 206:205-18. [PMID: 23171843 DOI: 10.1051/jbio/2012023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Indexed: 12/20/2022]
Abstract
Cilia and flagella are eukaryotic organelles with a conserved structure and function from unicellular organisms to human. In animals, different types of cilia can be found and cilia assembly during development is a highly dynamic process. Ciliary defects in human lead to a wide spectrum of diseases called ciliopathies. Understanding the molecular mechanisms that govern dynamic cilia assembly during development and in different tissues in metazoans is an important biological challenge. The FOXJ1 (Forkhead Box J1) and RFX (Regulatory Factor X) family of transcription factors have been shown to be important factors in ciliogenesis control. FOXJ1 proteins are required for motile ciliogenesis in vertebrates. By contrast, RFX proteins are essential to assemble both primary and motile cilia through the regulation of specific sets of genes such as those encoding intraflagellar transport components. Recently, new actors with more specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation, allowing for the dynamic and specific regulation of ciliogenesis in metazoans.
Collapse
Affiliation(s)
- Julie Jerber
- Centre de Genetique et de Physiologie Moleculare et Cellulaire, Universite Lyon, Villeurbanne, Lyon, France
| | | | | |
Collapse
|
42
|
Yang TT, Hampilos PJ, Nathwani B, Miller CH, Sutaria ND, Liao JC. Superresolution STED microscopy reveals differential localization in primary cilia. Cytoskeleton (Hoboken) 2012; 70:54-65. [PMID: 23125024 DOI: 10.1002/cm.21090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 10/04/2012] [Accepted: 10/18/2012] [Indexed: 12/16/2022]
Abstract
The primary cilium is an organelle that serves as a signaling center of the cell and is involved in the cAMP, Wnt, and hedgehog signaling pathways. Adenylyl cyclase type III (ACIII) is enriched in primary cilia and acts as a marker that is involved in cAMP signaling, while also playing an important role in regulating ciliogenesis and sensory functions. Ciliary function relies on the transportation of molecules between the primary cilium and the cell, which is facilitated by intraflagellar transport (IFT). The detailed localization and interactions of these important proteins remain unclear due to the limited resolution of conventional microscopy. We conducted superresolution imaging of immunostained ACIII and IFT88 in human fibroblasts using stimulated emission depletion (STED) microscopy. Instead of a homogeneous distribution along a primary cilium, our STED images revealed that ACIII formed a periodic punctate pattern with a roughly equal spacing between groups of puncta. Superresolution imaging of IFT88, an important protein of the IFT complexes, demonstrated two novel distinct distribution patterns at the basal end: a triangle of three puncta with similar fluorescence intensities, and a Y-shaped configuration of a bright punctum connected to two branches. We also performed STED imaging of IFT88 in mouse inner medullary collecting duct cells and mouse embryonic fibroblasts. The similar three-puncta and Y-shape patterns were observed in these cells, suggesting that these distribution patterns are common among primary cilia of different cell types. Our results demonstrate the ability of superresolution STED microscopy to reveal novel structural characteristics in primary cilia.
Collapse
Affiliation(s)
- T Tony Yang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
43
|
Behal RH, Miller MS, Qin H, Lucker BF, Jones A, Cole DG. Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex A proteins. J Biol Chem 2011; 287:11689-703. [PMID: 22170070 DOI: 10.1074/jbc.m111.287102] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlamydomonas reinhardtii intraflagellar transport (IFT) particles can be biochemically resolved into two smaller assemblies, complexes A and B, that contain up to six and 15 protein subunits, respectively. We provide here the proteomic and immunological analyses that verify the identity of all six Chlamydomonas A proteins. Using sucrose density gradient centrifugation and antibody pulldowns, we show that all six A subunits are associated in a 16 S complex in both the cell bodies and flagella. A significant fraction of the cell body IFT43, however, exhibits a much slower sedimentation of ∼2 S and is not associated with the IFT A complex. To identify interactions between the six A proteins, we combined exhaustive yeast-based two-hybrid analysis, heterologous recombinant protein expression in Escherichia coli, and analysis of the newly identified complex A mutants, ift121 and ift122. We show that IFT121 and IFT43 interact directly and provide evidence for additional interactions between IFT121 and IFT139, IFT121 and IFT122, IFT140 and IFT122, and IFT140 and IFT144. The mutant analysis further allows us to propose that a subset of complex A proteins, IFT144/140/122, can form a stable 12 S subcomplex that we refer to as the IFT A core. Based on these results, we propose a model for the spatial arrangement of the six IFT A components.
Collapse
Affiliation(s)
- Robert H Behal
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844, USA
| | | | | | | | | | | |
Collapse
|
44
|
Taschner M, Bhogaraju S, Lorentzen E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 2011; 83:S12-22. [PMID: 22118932 DOI: 10.1016/j.diff.2011.11.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 01/25/2023]
Abstract
Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT.
Collapse
Affiliation(s)
- Michael Taschner
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
45
|
Chu JSC, Tarailo-Graovac M, Zhang D, Wang J, Uyar B, Tu D, Trinh J, Baillie DL, Chen N. Fine tuning of RFX/DAF-19-regulated target gene expression through binding to multiple sites in Caenorhabditis elegans. Nucleic Acids Res 2011; 40:53-64. [PMID: 21908398 PMCID: PMC3245922 DOI: 10.1093/nar/gkr690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In humans, mutations of a growing list of regulatory factor X (RFX) target genes have been associated with devastating genetics disease conditions including ciliopathies. However, mechanisms underlying RFX transcription factors (TFs)-mediated gene expression regulation, especially differential gene expression regulation, are largely unknown. In this study, we explore the functional significance of the co-existence of multiple X-box motifs in regulating differential gene expression in Caenorhabditis elegans. We hypothesize that the effect of multiple X-box motifs is not a simple summation of binding effect to individual X-box motifs located within a same gene. To test this hypothesis, we identified eight C. elegans genes that contain two or more X-box motifs using comparative genomics. We examined one of these genes, F25B4.2, which contains two 15-bp X-box motifs. F25B4.2 expression in ciliated neurons is driven by the proximal motif and its expression is repressed by the distal motif. Our data suggest that two X-box motifs cooperate together to regulate the expression of F25B4.2 in location and intensity. We propose that multiple X-box motifs might be required to tune specific expression level. Our identification of genes with multiple X-box motifs will also improve our understanding of RFX/DAF-19-mediated regulation in C. elegans and in other organisms including humans.
Collapse
Affiliation(s)
- Jeffery S C Chu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vogel P, Read RW, Hansen GM, Payne BJ, Small D, Sands AT, Zambrowicz BP. Congenital Hydrocephalus in Genetically Engineered Mice. Vet Pathol 2011; 49:166-81. [DOI: 10.1177/0300985811415708] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is evidence that genetic factors play a role in the complex multifactorial pathogenesis of hydrocephalus. Identification of the genes involved in the development of this neurologic disorder in animal models may elucidate factors responsible for the excessive accumulation of cerebrospinal fluid in hydrocephalic humans. The authors report here a brief summary of findings from 12 lines of genetically engineered mice that presented with autosomal recessive congenital hydrocephalus. This study illustrates the value of knockout mice in identifying genetic factors involved in the development of congenital hydrocephalus. Findings suggest that dysfunctional motile cilia represent the underlying pathogenetic mechanism in 8 of the 12 lines ( Ulk4, Nme5, Nme7, Kif27, Stk36, Dpcd, Ak7, and Ak8). The likely underlying cause in the remaining 4 lines ( RIKEN 4930444A02, Celsr2, Mboat7, and transgenic FZD3) was not determined, but it is possible that some of these could also have ciliary defects. For example, the cerebellar malformations observed in RIKEN 4930444A02 knockout mice show similarities to a number of developmental disorders, such as Joubert, Meckel-Gruber, and Bardet-Biedl syndromes, which involve mutations in cilia-related genes. Even though the direct relevance of mouse models to hydrocephalus in humans remains uncertain, the high prevalence of familial patterns of inheritance for congenital hydrocephalus in humans suggests that identification of genes responsible for development of hydrocephalus in mice may lead to the identification of homologous modifier genes and susceptibility alleles in humans. Also, characterization of mouse models can enhance understanding of important cell signaling and developmental pathways involved in the pathogenesis of hydrocephalus.
Collapse
Affiliation(s)
- P. Vogel
- Lexicon Pharmaceuticals, Inc, The Woodlands, Texas
| | - R. W. Read
- Lexicon Pharmaceuticals, Inc, The Woodlands, Texas
| | - G. M. Hansen
- Lexicon Pharmaceuticals, Inc, The Woodlands, Texas
| | - B. J. Payne
- Lexicon Pharmaceuticals, Inc, The Woodlands, Texas
| | - D. Small
- Lexicon Pharmaceuticals, Inc, The Woodlands, Texas
| | - A. T. Sands
- Lexicon Pharmaceuticals, Inc, The Woodlands, Texas
| | | |
Collapse
|
47
|
Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Dev Biol 2011; 357:235-47. [PMID: 21740898 DOI: 10.1016/j.ydbio.2011.06.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/19/2011] [Accepted: 06/20/2011] [Indexed: 11/23/2022]
Abstract
Cilia are ubiquitous cell surface projections that mediate various sensory- and motility-based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. To identify new components required for cilium biogenesis and function, we sought to further define and validate the transcriptional targets of DAF-19, the ciliogenic C. elegans RFX transcription factor. Transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using embryos staged to when the cell types developing cilia in the worm, the ciliated sensory neurons (CSNs), still differentiate. Comparisons between the two populations revealed 881 differentially regulated genes with greater than a 1.5-fold increase or decrease in expression. A subset of these was confirmed by quantitative RT-PCR. Transgenic worms expressing transcriptional GFP fusions revealed CSN-specific expression patterns for 11 of 14 candidate genes. We show that two uncharacterized candidate genes, termed dyf-17 and dyf-18 because their corresponding mutants display dye-filling (Dyf) defects, are important for ciliogenesis. DYF-17 localizes at the base of cilia and is specifically required for building the distal segment of sensory cilia. DYF-18 is an evolutionarily conserved CDK7/CCRK/LF2p-related serine/threonine kinase that is necessary for the proper function of intraflagellar transport, a process critical for cilium biogenesis. Together, our microarray study identifies targets of the evolutionarily conserved RFX transcription factor, DAF-19, providing a rich dataset from which to uncover-in addition to DYF-17 and DYF-18-cellular components important for cilium formation and function.
Collapse
|
48
|
The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol 2011; 13:461-8. [PMID: 21441926 PMCID: PMC3073523 DOI: 10.1038/ncb2202] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/04/2011] [Indexed: 11/24/2022]
Abstract
Cilia dysfunction has long been associated with cyst formation and ciliopathies1. More recently, misoriented cell division has been observed in cystic kidneys2, but the molecular mechanism leading to this abnormality remains unclear. Proteins of the intraflagellar transport (IFT) machinery are linked to cystogenesis and required for cilia formation in non-cycling cells3, 4. Several IFT proteins also localize to spindle poles in mitosis5–8 suggesting uncharacterized functions for these proteins in dividing cells. Here, we show that IFT88 depletion induces mitotic defects in human cultured cells, in kidney cells from the IFT88 mouse mutant Tg737orpk and in zebrafish embryos. In mitosis, IFT88 is part of a dynein1-driven complex that transports peripheral microtubule (MT) clusters containing MT-nucleating proteins to spindle poles to ensure proper formation of astral MT arrays and thus, proper spindle orientation. This work identifies a mitotic molecular mechanism for a cilia protein in the orientation of cell division and thus, has important implications for the etiology of ciliopathies.
Collapse
|
49
|
The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans. Biochem Biophys Res Commun 2011; 406:478-82. [DOI: 10.1016/j.bbrc.2011.02.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 01/24/2023]
|
50
|
Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol Cell 2010; 102:499-513. [PMID: 20690903 DOI: 10.1042/bc20100035] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cilia and flagella have essential functions in a wide range of organisms. Cilia assembly is dynamic during development and different types of cilia are found in multicellular organisms. How this dynamic and specific assembly is regulated remains an important question in cilia biology. In metazoans, the regulation of the overall expression level of key components necessary for cilia assembly or function is an important way to achieve ciliogenesis control. The FOXJ1 (forkhead box J1) and RFX (regulatory factor X) family of transcription factors have been shown to be important players in controlling ciliary gene expression. They fulfill a complementary and synergistic function by regulating specific and common target genes. FOXJ1 is essential to allow for the assembly of motile cilia in vertebrates through the regulation of genes specific to motile cilia or necessary for basal body apical transport, whereas RFX proteins are necessary to assemble both primary and motile cilia in metazoans, in particular, by regulating genes involved in intraflagellar transport. Recently, different transcription factors playing specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation to allow for the dynamic and specific regulation of ciliogenesis in metazoans.
Collapse
|