1
|
Bu T, Wang L, Wu X, Gao S, Yun D, Mao B, Li L, Sun F, Cheng CY. Interacting Fat1 and Dchs Planar Cell Polarity Proteins Supported by Fjx1 Serve as Heterodimeric Intercellular Bridges Crucial to Support Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:355-374. [PMID: 40301264 DOI: 10.1007/978-3-031-82990-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Studies of the planar cell polarity (PCP) protein complexes Fat1/Fjx1 and Dchs/Fjx1 that form heterotypic interacting bridges of Fat1-Dchs between adjacent cells to confer PCP, as noted in Drosophila, are also found in mammalian cells and tissues as orthologs, such as in Sertoli cells and condensed spermatids in the seminiferous epithelium of the testis. Recent studies have shown that these two interacting PCP protein complexes are also crucial regulators of microtubule and actin dynamics, modulating the polymerization of both microtubules and actin filaments in the testis. In this review, we provide a brief update and thought-provoking concept on the PCP core proteins and the associated downstream signaling pathways utilized by PCP proteins to confer PCP and regulation of the microtubule and actin cytoskeletons in the testis. However, we focus on recent data in the field on the Fat1/Fjx1 and Dchs/Fjx1 protein complexes, which are also heterotypic interacting protein complexes, and their functional role in modulating the microtubule and actin cytoskeletal organization. Based on these recent findings, we formulate a hypothetic model depicting the role of these two PCP protein complexes in modulating the timely "opening" and "closing" of the blood-testis barrier (BTB) formed by adjacent Sertoli cells near the base of the seminiferous epithelium. Additionally, these two PCP protein complexes also modulate cytoskeletal dynamics between Sertoli cells and condensed spermatids to support haploid spermatid transport across the seminiferous epithelium during their structural transformation through spermiogenesis, and their eventual release at spermiation during the epithelial cycle of spermatogenesis. This hypothetical model will provide a useful framework for designing functional experiments to understand the role of PCP proteins in supporting spermatogenesis.
Collapse
Affiliation(s)
- Tiao Bu
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong, China
| | - Lingling Wang
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Damin Yun
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Feng X, Ye Y, Zhang J, Zhang Y, Zhao S, Mak JCW, Otomo N, Zhao Z, Niu Y, Yonezawa Y, Li G, Lin M, Li X, Cheung PWH, Xu K, Takeda K, Wang S, Xie J, Kotani T, Choi VNT, Song YQ, Yang Y, Luk KDK, Lee KS, Li Z, Li PS, Leung CYH, Lin X, Wang X, Qiu G, Watanabe K, Wu Z, Posey JE, Ikegawa S, Lupski JR, Cheung JPY, Zhang TJ, Gao B, Wu N. Core planar cell polarity genes VANGL1 and VANGL2 in predisposition to congenital vertebral malformations. Proc Natl Acad Sci U S A 2024; 121:e2310283121. [PMID: 38669183 PMCID: PMC11067467 DOI: 10.1073/pnas.2310283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou510080, China
| | - Jianan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan250012, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Judith C. W. Mak
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nao Otomo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yoshiro Yonezawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Guozhuang Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Kazuki Takeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Junjie Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Vanessa N. T. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin Shing Lee
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ziquan Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Pik Shan Li
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Connie Y. H. Leung
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | | | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | | | - Zhihong Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston77030, TX
- Texas Children’s Hospital, Houston77030, TX
- Department of Pediatrics, Baylor College of Medicine, Houston77030, TX
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
- Centre for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| |
Collapse
|
3
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Bressan C, Snapyan M, Snapyan M, Klaus J, di Matteo F, Robertson SP, Treutlein B, Parent M, Cappello S, Saghatelyan A. Metformin rescues migratory deficits of cells derived from patients with periventricular heterotopia. EMBO Mol Med 2023; 15:e16908. [PMID: 37609821 PMCID: PMC10565636 DOI: 10.15252/emmm.202216908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Periventricular neuronal heterotopia (PH) is one of the most common forms of cortical malformation in the human cortex. We show that human neuronal progenitor cells (hNPCs) derived from PH patients with a DCHS1 or FAT4 mutation as well as isogenic lines had altered migratory dynamics when grafted in the mouse brain. The affected migration was linked to altered autophagy as observed in vivo with an electron microscopic analysis of grafted hNPCs, a Western blot analysis of cortical organoids, and time-lapse imaging of hNPCs in the presence of bafilomycin A1. We further show that deficits in autophagy resulted in the accumulation of paxillin, a focal adhesion protein involved in cell migration. Strikingly, a single-cell RNA-seq analysis of hNPCs revealed similar expression levels of autophagy-related genes. Bolstering AMPK-dependent autophagy by metformin, an FDA-approved drug, promoted migration of PH patients-derived hNPCs. Our data indicate that transcription-independent homeostatic modifications in autophagy contributed to the defective migratory behavior of hNPCs in vivo and suggest that modulating autophagy in hNPCs might rescue neuronal migration deficits in some forms of PH.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Marta Snapyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Marina Snapyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
- University of OttawaOttawaONCanada
| | | | - Francesco di Matteo
- Max Planck Institute of PsychiatryMunichGermany
- Biomedical Center (BMC)Ludwig Maximilian University of MunichMunichGermany
| | | | - Barbara Treutlein
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Martin Parent
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Silvia Cappello
- Max Planck Institute of PsychiatryMunichGermany
- Biomedical Center (BMC)Ludwig Maximilian University of MunichMunichGermany
| | - Armen Saghatelyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
- University of OttawaOttawaONCanada
| |
Collapse
|
5
|
Wang J, Chen H, Hou W, Han Q, Wang Z. Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. Dev Neurosci 2023; 45:276-289. [PMID: 37080186 DOI: 10.1159/000530621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wulei Hou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingjian Han
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Miyasaka Y, Kobayashi T, Gotoh N, Kuga M, Kobayashi M, Horio F, Hashimoto K, Kawabe T, Ohno T. Neonatal lethality of mouse A/J-7 SM consomic strain is caused by an insertion mutation in the Dchs1 gene. Mamm Genome 2023; 34:32-43. [PMID: 36434174 DOI: 10.1007/s00335-022-09966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
Homosomic mice of the A/J-7SM consomic mouse strain that introduced the entire chromosome 7 (Chr 7) of SM/J into the A/J strain exhibited neonatal lethality. We tentatively maintained segregating inbred strains (A/J-7ASM and A/J-7DSM) in which the central portion of Chr 7 was heterozygous for the A/J and SM/J strains, and the centromeric and telomeric sides of Chr 7 were homozygous for the SM/J strain, instead of the A/J-7SM strain. Based on the chromosomal constitution of Chr 7 in A/J-7ASM and A/J-7DSM mice, the causative gene for neonatal lethality in homosomic mice was suggested to be located within an approximately 1.620 Mb region between D7Mit125 (104.879 Mb) and D7Mit355 (106.499 Mb) on Chr 7. RT-PCR analysis revealed that homosomic mice lacked dachsous cadherin-related 1 (Dchs1), which is located within the D7Mit125 to D7Mit355 region and functions in the regulation of planar cell polarity. Screening for mutations in Dchs1 indicated that homosomic mice possessed an early transposable (ETn)-like sequence in intron 1 of Dchs1. Moreover, an allelism test between Dchs1 ETn-like-insertion alleles detected in homosomic mice and CRISPR/Cas9-induced Dchs1 deletion alleles revealed that Dchs1 is a causative gene for neonatal lethality in homosomic mice. Based on these results, we concluded that in the A/J-7SM strain, ETn-like elements were inserted into intron 1 of SM/J-derived Dchs1 during strain development, which dramatically reduced Dchs1 expression, thus resulting in neonatal lethality in homosomic mice. Additionally, it was suggested that the timing of lethality in Dchs1 mutant mice is influenced by the genetic background.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| | - Takeshi Kobayashi
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Naoya Gotoh
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Misato Kobayashi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan
| | - Fumihiko Horio
- Department of Life Studies and Environmental Science, Nagoya Women's University, 3-40 Shioji-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan
| | - Katsunori Hashimoto
- Faculty of Medical Sciences, Shubun University, 6 Nikko-Cho, Ichinomiya, Aichi, 491-0938, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Dikou-Minami, Higashi-Ku, Nagoya, Aichi, 461-8673, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
7
|
Fan S, Smith MS, Keeney J, O’Leary MN, Nusrat A, Parkos CA. JAM-A signals through the Hippo pathway to regulate intestinal epithelial proliferation. iScience 2022; 25:104316. [PMID: 35602956 PMCID: PMC9114518 DOI: 10.1016/j.isci.2022.104316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
JAM-A is a tight-junction-associated protein that contributes to regulation of intestinal homeostasis. We report that JAM-A interacts with NF2 and LATS1, functioning as an initiator of the Hippo signaling pathway, well-known for regulation of proliferation. Consistent with these findings, we observed increased YAP activity in JAM-A-deficient intestinal epithelial cells (IEC). Furthermore, overexpression of a dimerization-deficient mutant, JAM-A-DL1, failed to initiate Hippo signaling, phenocopying JAM-A-deficient IEC, whereas overexpression of JAM-A-WT activated Hippo signaling and suppressed proliferation. Lastly, we identify EVI1, a transcription factor reported to promote cellular proliferation, as a contributor to the pro-proliferative phenotype in JAM-A-DL1 overexpressing IEC downstream of YAP. Collectively, our findings establish a new role for JAM-A as a cell-cell contact sensor, raising implications for understanding the contribution(s) of JAM-A to IEC proliferation in the mammalian epithelium.
Collapse
Affiliation(s)
- Shuling Fan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle Sydney Smith
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin Keeney
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Monique N. O’Leary
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Gridnev A, Misra JR. Emerging Mechanisms of Growth and Patterning Regulation by Dachsous and Fat Protocadherins. Front Cell Dev Biol 2022; 10:842593. [PMID: 35372364 PMCID: PMC8967653 DOI: 10.3389/fcell.2022.842593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a critical role in development of multiple organ systems, where they coordinate tissue growth and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from studies in Drosophila, where they initiate a signaling pathway that regulate growth by influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In this review, we discuss recent advances in our understanding of the mechanisms by which Ds-Fat signaling pathway regulates these critical developmental processes. Further, we discuss the progress in our understanding about how they function in mammals.
Collapse
|
9
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
10
|
Abstract
The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.
Collapse
Affiliation(s)
- Boksik Cha
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sungjin Moon
- Department of Biological Science, Kangwon National University, Chuncheon 24341, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
11
|
Rojas CV, Olivares JI, Tutor PM, García AM, Sánchez MB. Sternal human variability and population affinity: Frequency of discrete traits and their relationship with sex and age. Anat Rec (Hoboken) 2021; 305:284-296. [PMID: 33943019 DOI: 10.1002/ar.24647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 11/09/2022]
Abstract
Sternal morphological variations differ among populations and are influenced by the interaction between inheritance, development, and environment. There are currently no studies that include all variability from a morphogenesis approach following a homogeneous definition. The aims of this study were (a) to develop a standardized method for the anatomical study of the sternum; (b) to analyze the prevalence of the morphological variations and their relationship between sex and age; (c) to compare the results with other populations. The sterna of 155 skeletons from a Spanish population were studied. The age at the time of death was 17 to 97 years. We analyzed two metric and 22 sternal morphological variations described in the literature and designed an illustrated atlas. The atlas was validated using the intraclass correlation coefficient (ICC). A descriptive statistical analysis was conducted to measure the prevalence and relationship between sex and age. To analyze the interpopulation variability, we compared our results with those from other authors. The atlas with definitions and reference images improves the observation and detection of all morphological variations of the sternum (ICC = 0.90). The dependence between the morphological traits and sex was significant for the variations in the sternal angle, the number of esternebra, and the development of the xiphoid process. No significant differences were found between age group and morphological traits. The expression of the sternal morphological variation and sex are population-specific. The results will help standardize future studies and provide valuable information on the variability of the sternal morphological variation.
Collapse
Affiliation(s)
- Catherine Villoria Rojas
- Departamento de Medicina Legal, Psiquiatría y Anatomía Patológica, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Irurita Olivares
- Departamento de Medicina Legal, Toxicología y Antropología Física, Universidad de Granada, Granada, Spain
| | - Pilar Mata Tutor
- Departamento de Medicina Legal, Psiquiatría y Anatomía Patológica, Universidad Complutense de Madrid, Madrid, Spain
| | - Alexandra Muñoz García
- Departamento de Medicina Legal, Psiquiatría y Anatomía Patológica, Universidad Complutense de Madrid, Madrid, Spain
| | - María Benito Sánchez
- Departamento de Medicina Legal, Psiquiatría y Anatomía Patológica, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Wang D, He J, Dong J, Meyer TF, Xu T. The HIPPO pathway in gynecological malignancies. Am J Cancer Res 2020; 10:610-629. [PMID: 32195031 PMCID: PMC7061741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023] Open
Abstract
The Hippo pathway has been initially discovered by screening genes that regulate organ size in Drosophila. Recent studies have highlighted the role of the Hippo pathway in controlling organ size, tissue homeostasis and regeneration, and signaling dysregulation, especially the overactivation of the transcriptional coactivator YAP/TAZ, which leads to uncontrolled cell growth and malignant transformation. The core components of the Hippo pathway may initiate tumorigenesis by inducing tumor stem cells and proliferation, ultimately leading to metastasis and drug resistance, which occurs extensively in gynecological malignancies, including cervical cancer, ovarian cancer, and endometrial cancer. In this review, we attempt to systematically summarize recent progress in our understanding of the mechanism of Hippo pathway regulation in tumorigenesis and the mechanisms that underlie alterations during gynecological malignancies, as well as new therapeutic strategies.
Collapse
Affiliation(s)
- Dongying Wang
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| | - Junxue Dong
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
- Department of Molecular Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| |
Collapse
|
13
|
Shea CA, Rolfe RA, McNeill H, Murphy P. Localization of YAP activity in developing skeletal rudiments is responsive to mechanical stimulation. Dev Dyn 2019; 249:523-542. [PMID: 31747096 DOI: 10.1002/dvdy.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton. RESULTS We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction. CONCLUSIONS These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.
Collapse
Affiliation(s)
- Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Crespo-Enriquez I, Hodgson T, Zakaria S, Cadoni E, Shah M, Allen S, Al-Khishali A, Mao Y, Yiu A, Petzold J, Villagomez-Olea G, Pitsillides AA, Irvine KD, Francis-West P. Dchs1-Fat4 regulation of osteogenic differentiation in mouse. Development 2019; 146:146/14/dev176776. [PMID: 31358536 DOI: 10.1242/dev.176776] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
In human, mutations of the protocadherins FAT4 and DCHS1 result in Van Maldergem syndrome, which is characterised, in part, by craniofacial abnormalities. Here, we analyse the role of Dchs1-Fat4 signalling during osteoblast differentiation in mouse. We show that Fat4 and Dchs1 mutants mimic the craniofacial phenotype of the human syndrome and that Dchs1-Fat4 signalling is essential for osteoblast differentiation. In Dchs1/Fat4 mutants, proliferation of osteoprogenitors is increased and osteoblast differentiation is delayed. We show that loss of Dchs1-Fat4 signalling is linked to increased Yap-Tead activity and that Yap is expressed and required for proliferation in osteoprogenitors. In contrast, Taz is expressed in more-committed Runx2-expressing osteoblasts, Taz does not regulate osteoblast proliferation and Taz-Tead activity is unaffected in Dchs1/Fat4 mutants. Finally, we show that Yap and Taz differentially regulate the transcriptional activity of Runx2, and that the activity of Yap-Runx2 and Taz-Runx2 complexes is altered in Dchs1/Fat4 mutant osteoblasts. In conclusion, these data identify Dchs1-Fat4 as a signalling pathway in osteoblast differentiation, reveal its crucial role within the early Runx2 progenitors, and identify distinct requirements for Yap and Taz during osteoblast differentiation.
Collapse
Affiliation(s)
- Ivan Crespo-Enriquez
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Tina Hodgson
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Sana Zakaria
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Erika Cadoni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Mittal Shah
- Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Stephen Allen
- Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Ayman Al-Khishali
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Yaopan Mao
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Angela Yiu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Guillermo Villagomez-Olea
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Andrew A Pitsillides
- Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
15
|
Colás-Algora N, Millán J. How many cadherins do human endothelial cells express? Cell Mol Life Sci 2019; 76:1299-1317. [PMID: 30552441 PMCID: PMC11105309 DOI: 10.1007/s00018-018-2991-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The vasculature is the paradigm of a compartment generated by parallel cellular barriers that aims to transport oxygen, nutrients and immune cells in complex organisms. Vascular barrier dysfunction leads to fatal acute and chronic inflammatory diseases. The endothelial barrier lines the inner side of vessels and is the main regulator of vascular permeability. Cadherins comprise a superfamily of 114 calcium-dependent adhesion proteins that contain conserved cadherin motifs and form cell-cell junctions in metazoans. In mature human endothelial cells, only VE (vascular endothelial)-cadherin and N (neural)-cadherin have been investigated in detail. Although both cadherins are essential for regulating endothelial permeability, no comprehensive expression studies to identify which other family members could play a relevant role in endothelial cells has so far been performed. Here, we have reviewed gene and protein expression databases to analyze cadherin expression in mature human endothelium and found that at least 24 cadherin superfamily members are significantly expressed. Based on data obtained from other cell types, organisms and experimental models, we discuss their potential functions, many of them unrelated to the formation of endothelial cell-cell junctions. The expression of this new set of endothelial cadherins highlights the important but still poorly defined roles of planar cell polarity, the Hippo pathway and mitochondria metabolism in human vascular homeostasis.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
16
|
Abstract
Development of the axial skeleton is a complex, stepwise process that relies on intricate signaling and coordinated cellular differentiation. Disruptions to this process can result in a myriad of skeletal malformations that range in severity. The notochord and the sclerotome are embryonic tissues that give rise to the major components of the intervertebral discs and the vertebral bodies of the spinal column. Through a number of mouse models and characterization of congenital abnormalities in human patients, various growth factors, transcription factors, and other signaling proteins have been demonstrated to have critical roles in the development of the axial skeleton. Balance between opposing growth factors as well as other environmental cues allows for cell fate specification and divergence of tissue types during development. Furthermore, characterization of progenitor cells for specific cell lineages has furthered the understanding of specific spatiotemporal cues that cells need in order to initiate and complete development of distinct tissues. Identifying specific marker genes that can distinguish between the various embryonic and mature cell types is also of importance. Clinically, understanding developmental clues can aid in the generation of therapeutics for musculoskeletal disease through the process of developmental engineering. Studies into potential stem cell therapies are based on knowledge of the normal processes that occur in the embryo, which can then be applied to stepwise tissue engineering strategies.
Collapse
Affiliation(s)
| | | | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
17
|
Alkhatib B, Ban GI, Williams S, Serra R. IVD Development: Nucleus pulposus development and sclerotome specification. CURRENT MOLECULAR BIOLOGY REPORTS 2018; 4:132-141. [PMID: 30505649 PMCID: PMC6261384 DOI: 10.1007/s40610-018-0100-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE OF REVIEW Intervertebral discs (IVD) are derived from embryonic notochord and sclerotome. The nucleus pulposus is derived from notochord while other connective tissues of the spine are derived from sclerotome. This manuscript will review the past 5 years of research into IVD development. RECENT FINDINGS Over the past several years, advances in understanding the step-wise process that govern development of the nucleus pulposus and the annulus fibrosus have been made. Generation of tissues from induced or embryonic stem cells into nucleus pulposus and paraxial mesoderm derived tissues has been accomplished in vitro using pathways identified in normal development. A balance between BMP and TGF-β signaling as well as transcription factors including Pax1/Pax9, Mkx and Nkx3.2 appear to be very important for cell fate decisions generating tissues of the IVD. SUMMARY Understanding how the IVD develops will provide the foundation for future repair, regeneration, and tissue engineering strategies for IVD disease.
Collapse
Affiliation(s)
| | - Ga I Ban
- University of Alabama at Birmingham
| | | | | |
Collapse
|
18
|
Elabd C, Ichim TE, Miller K, Anneling A, Grinstein V, Vargas V, Silva FJ. Comparing atmospheric and hypoxic cultured mesenchymal stem cell transcriptome: implication for stem cell therapies targeting intervertebral discs. J Transl Med 2018; 16:222. [PMID: 30097061 PMCID: PMC6086019 DOI: 10.1186/s12967-018-1601-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) represent an attractive avenue for cellular therapies targeting degenerative diseases. MSC in vitro expansion is required in order to obtain therapeutic numbers during the manufacturing process. It is known that culture conditions impact cellular properties and behavior after in vivo transplantation. In this study, we aimed at evaluating the benefit of hypoxic culturing of human bone marrow derived mesenchymal stem cells on cell fitness and whole genome expression and discussed its implication on cellular therapies targeting orthopedic diseases such as chronic lower back pain. Methods Human bone marrow mesenchymal stem cells (hBMMSCs) were isolated from fresh human anticoagulated whole bone marrow and were cultured side by side in atmospheric (20% O2) and hypoxic (5% O2) oxygen partial pressure for up to 3 passages. Stem cell fitness was assessed by clonogenic assay, cell surface marker expression and differentiation potential. Whole genome expression was performed by mRNA sequencing. Data from clonogenic assays, cell surface marker by flow cytometry and gene expression by quantitative PCR were analyzed by two-tailed paired Student’s t-test. Data from mRNA sequencing were aligned to hg19 using Tophat-2.0.13 and analyzed using Cufflinks-2.1.1. Results Hypoxic culturing of hBMMSCs had positive effects on cell fitness, as evidenced by an increased clonogenicity and improved differentiation potential towards adipocyte and chondrocyte lineages. No difference in osteoblast differentiation or in cell surface markers were observed. Only a small subset of genes (34) were identified by mRNA sequencing to be significantly dysregulated by hypoxia. When clustered by biological function, these genes were associated with chondrogenesis and cartilage metabolism, inflammation and immunomodulation, cellular survival, migration and proliferation, vasculogenesis and angiogenesis. Conclusions Hypoxic culturing positively impacted hBMMSCs fitness and transcriptome, potentially improving inherent properties of these cells that are critical for the development of successful cellular therapies. Hypoxic culturing should be considered for the in vitro expansion of hBMMSCs during manufacturing of cellular therapies targeting orthopedic disorders such as lower back pain.
Collapse
Affiliation(s)
- C Elabd
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - T E Ichim
- Immune Advisors, LLC, La Jolla, CA, 92037, USA
| | - K Miller
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - A Anneling
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - V Grinstein
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - V Vargas
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA
| | - F J Silva
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite 1, Melville, NY, 11747, USA.
| |
Collapse
|
19
|
Chen J, Castelvecchi GD, Li-Villarreal N, Raught B, Krezel AM, McNeill H, Solnica-Krezel L. Atypical Cadherin Dachsous1b Interacts with Ttc28 and Aurora B to Control Microtubule Dynamics in Embryonic Cleavages. Dev Cell 2018; 45:376-391.e5. [PMID: 29738714 PMCID: PMC5983389 DOI: 10.1016/j.devcel.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023]
Abstract
Atypical cadherin Dachsous (Dchs) is a conserved regulator of planar cell polarity, morphogenesis, and tissue growth during animal development. Dchs functions in part by regulating microtubules by unknown molecular mechanisms. Here we show that maternal zygotic (MZ) dchs1b zebrafish mutants exhibit cleavage furrow progression defects and impaired midzone microtubule assembly associated with decreased microtubule turnover. Mechanistically, Dchs1b interacts via a conserved motif in its intracellular domain with the tetratricopeptide motifs of Ttc28 and regulates its subcellular distribution. Excess Ttc28 impairs cleavages and decreases microtubule turnover, while ttc28 inactivation increases turnover. Moreover, ttc28 deficiency in dchs1b mutants suppresses the microtubule dynamics and midzone microtubule assembly defects. Dchs1b also binds to Aurora B, a known regulator of cleavages and microtubules. Embryonic cleavages in MZdchs1b mutants exhibit increased, and in MZttc28 mutants decreased, sensitivity to Aurora B inhibition. Thus, Dchs1b regulates microtubule dynamics and embryonic cleavages by interacting with Ttc28 and Aurora B.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gina D Castelvecchi
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nanbing Li-Villarreal
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Abstract
The Hippo signal transduction pathway is an important regulator of organ growth and cell differentiation, and its deregulation contributes to the development of cancer. The activity of the Hippo pathway is strongly dependent on cell junctions, cellular architecture, and the mechanical properties of the microenvironment. In this review, we discuss recent advances in our understanding of how cell junctions transduce signals from the microenvironment and control the activity of the Hippo pathway. We also discuss how these mechanisms may control organ growth during development and regeneration, and how defects in them deregulate Hippo signaling in cancer cells.
Collapse
Affiliation(s)
- Ruchan Karaman
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Abstract
To create an intricately patterned and reproducibly sized and shaped organ, many cellular processes must be tightly regulated. Cell elongation, migration, metabolism, proliferation rates, cell-cell adhesion, planar polarization and junctional contractions all must be coordinated in time and space. Remarkably, a pair of extremely large cell adhesion molecules called Fat (Ft) and Dachsous (Ds), acting largely as a ligand-receptor system, regulate, and likely coordinate, these many diverse processes. Here we describe recent exciting progress on how the Ds-Ft pathway controls these diverse processes, and highlight a few of the many questions remaining as to how these enormous cell adhesion molecules regulate development.
Collapse
Affiliation(s)
- Seth Blair
- Department of Integrative Biology, University of Wisconsin, Madison, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
| |
Collapse
|
22
|
Keira Y, Wada M, Ishikawa HO. Regulation of Drosophila Development by the Golgi Kinase Four-Jointed. Curr Top Dev Biol 2017; 123:143-179. [DOI: 10.1016/bs.ctdb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Zhang Y, Wang X, Matakatsu H, Fehon R, Blair SS. The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs. eLife 2016; 5. [PMID: 27692068 PMCID: PMC5047748 DOI: 10.7554/elife.16624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs. DOI:http://dx.doi.org/10.7554/eLife.16624.001
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Xing Wang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin-Madison, Madison, United States.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Richard Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Seth S Blair
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|