1
|
McKowen JK, Dassanayake M, Hart CM. The Tofu mutation restores female fertility to Drosophila with a null BEAF mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580197. [PMID: 38405992 PMCID: PMC10888741 DOI: 10.1101/2024.02.13.580197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Compensatory mutations offer clues to deciphering the role of a particular protein in cellular processes. Here we investigate an unknown compensatory mutation, present in the BEAFNP6377 fly line, that provides sufficient rescue of the defective ovary phenotype caused by null BEAF alleles to allow maintenance of fly stocks lacking the chromatin domain insulator proteins Boundary Element-Associated Factors BEAF-32A and BEAF-32B. We call this mutation Tofu. We employ both classical genetics and genomic sequencing to attempt to identify the mutation. We find evidence that points to a mutation in a predicted Polycomb response element upstream of the ribbon gene, which may lead to aberrant rib expression.
Collapse
Affiliation(s)
- J. Keller McKowen
- Louisiana State University Department of Biological Sciences, Baton Rouge, Louisiana, 70803
| | - Maheshi Dassanayake
- Louisiana State University Department of Biological Sciences, Baton Rouge, Louisiana, 70803
| | - Craig M. Hart
- Louisiana State University Department of Biological Sciences, Baton Rouge, Louisiana, 70803
| |
Collapse
|
2
|
Baumgartner S. Revisiting bicoid function: complete inactivation reveals an additional fundamental role in Drosophila egg geometry specification. Hereditas 2024; 161:1. [PMID: 38167241 PMCID: PMC10759373 DOI: 10.1186/s41065-023-00305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION The bicoid (bcd) gene in Drosophila has served as a paradigm for a morphogen in textbooks for decades. Discovered in 1986 as a mutation affecting anterior development in the embryo, its expression pattern as a protein gradient later confirmed the prediction from transplantation experiments. These experiments suggested that the protein fulfills the criteria of a true morphogen, with the existence of a homeodomain crucial for activation of genes along the anterior-posterior axis, based on the concentration of the morphogen. The bcd gene undergoes alternative splicing, resulting in, among other isoforms, a small and often neglected isoform with low abundance, which lacks the homeodomain, termed small bicoid (smbcd). Most importantly, all known classical strong bcd alleles used in the past to determine bcd function apparently do not affect the function of this isoform. RESULTS To overcome the uncertainty regarding which isoform regulates what, I removed the bcd locus entirely using CRISPR technology. bcdCRISPR eggs exhibited a short and round appearance. The phenotype could be ascribed to smbcd because all bcd alleles affecting the function of the major transcript, termed large bicoid (lgbcd) showed normally sized eggs. Several patterning genes for the embryo showed expression in the oocyte, and their expression patterns were altered in bcdCRISPR oocytes. In bcdCRISPR embryos, all downstream segmentation genes showed altered expression patterns, consistent with the expression patterns in "classical" alleles; however, due to the altered egg geometry resulting in fewer blastoderm nuclei, additional constraints came into play, further affecting their expression patterns. CONCLUSIONS This study unveils a novel and fundamental role of bcd in shaping the egg's geometry. This discovery demands a comprehensive revision of our understanding of this important patterning gene and prompts a reevaluation of past experiments conducted under the assumption that bcd mutants were bcdnull-mutants.
Collapse
Affiliation(s)
- Stefan Baumgartner
- Dept. of Experimental Medical Sciences, Lund University, Lund, S-22184, Sweden.
| |
Collapse
|
3
|
Knudsen C, Woo Seuk Koh, Izumikawa T, Nakato E, Akiyama T, Kinoshita-Toyoda A, Haugstad G, Yu G, Toyoda H, Nakato H. Chondroitin sulfate is required for follicle epithelial integrity and organ shape maintenance in Drosophila. Development 2023; 150:dev201717. [PMID: 37694610 PMCID: PMC10508698 DOI: 10.1242/dev.201717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) are evolutionarily conserved glycosaminoglycans that are found in most animal species, including the genetically tractable model organism Drosophila. In contrast to extensive in vivo studies elucidating co-receptor functions of Drosophila HS proteoglycans (PGs), only a limited number of studies have been conducted for those of CSPGs. To investigate the global function of CS in development, we generated mutants for Chondroitin sulfate synthase (Chsy), which encodes the Drosophila homolog of mammalian chondroitin synthase 1, a crucial CS biosynthetic enzyme. Our characterizations of the Chsy mutants indicated that a fraction survive to adult stage, which allowed us to analyze the morphology of the adult organs. In the ovary, Chsy mutants exhibited altered stiffness of the basement membrane and muscle dysfunction, leading to a gradual degradation of the gross organ structure as mutant animals aged. Our observations show that normal CS function is required for the maintenance of the structural integrity of the ECM and gross organ architecture.
Collapse
Affiliation(s)
- Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Woo Seuk Koh
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Greg Haugstad
- Characterization Facility, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Guichuan Yu
- Characterization Facility, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Grmai L, Michaca M, Lackner E, Nampoothiri V P N, Vasudevan D. Integrated Stress Response signaling acts as a metabolic sensor in fat tissues to regulate oocyte maturation and ovulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530289. [PMID: 36909541 PMCID: PMC10002630 DOI: 10.1101/2023.02.27.530289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Reproduction is an energy-intensive process requiring systemic coordination. However, the inter-organ signaling mechanisms that relay nutrient status to modulate reproductive output are poorly understood. Here, we use Drosophila melanogaster as a model to establish the Integrated Stress response (ISR) transcription factor, Atf4, as a fat tissue metabolic sensor which instructs oogenesis. We demonstrate that Atf4 regulates the lipase Brummer to mediate yolk lipoprotein synthesis in the fat body. Depletion of Atf4 in the fat body also blunts oogenesis recovery after amino acid deprivation and re-feeding, suggestive of a nutrient sensing role for Atf4. We also discovered that Atf4 promotes secretion of a fat body-derived neuropeptide, CNMamide, which modulates neural circuits that promote egg-laying behavior (ovulation). Thus, we posit that ISR signaling in fat tissue acts as a "metabolic sensor" that instructs female reproduction: directly, by impacting yolk lipoprotein production and follicle maturation, and systemically, by regulating ovulation.
Collapse
|
5
|
Banzai K, Nishimura T. Isolation of a novel missense mutation in insulin receptor as a spontaneous revertant in ImpL2 mutants in Drosophila. Development 2023; 150:285910. [PMID: 36504086 DOI: 10.1242/dev.201248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Evolutionarily conserved insulin/insulin-like growth factor (IGF) signaling (IIS) correlates nutrient levels to metabolism and growth, thereby playing crucial roles in development and adult fitness. In the fruit fly Drosophila, ImpL2, an ortholog of IGFBP7, binds to and inhibits the function of Drosophila insulin-like peptides. In this study, we isolated a temperature-sensitive mutation in the insulin receptor (InR) gene as a spontaneous revertant in ImpL2 null mutants. The p.Y902C missense mutation is located at the functionally conserved amino acid residue of the first fibronectin type III domain of InR. The hypomorphic InR mutant animals showed a temperature-dependent reduction in IIS and body size. The mutant animals also exhibited metabolic defects, such as increased triglyceride and carbohydrate levels. Metabolomic analysis further revealed that defects in InR caused dysregulation of amino acid and ribonucleotide metabolism. We also observed that InR mutant females produced tiny irregular-shaped embryos with reduced fecundity. In summary, this novel allele of InR is a valuable tool for the Drosophila genetic model of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Kota Banzai
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
6
|
Töpfer U, Guerra Santillán KY, Fischer-Friedrich E, Dahmann C. Distinct contributions of ECM proteins to basement membrane mechanical properties in Drosophila. Development 2022; 149:275413. [DOI: 10.1242/dev.200456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
ABSTRACT
The basement membrane is a specialized extracellular matrix (ECM) that is crucial for the development of epithelial tissues and organs. In Drosophila, the mechanical properties of the basement membrane play an important role in the proper elongation of the developing egg chamber; however, the molecular mechanisms contributing to basement membrane mechanical properties are not fully understood. Here, we systematically analyze the contributions of individual ECM components towards the molecular composition and mechanical properties of the basement membrane underlying the follicle epithelium of Drosophila egg chambers. We find that the Laminin and Collagen IV networks largely persist in the absence of the other components. Moreover, we show that Perlecan and Collagen IV, but not Laminin or Nidogen, contribute greatly towards egg chamber elongation. Similarly, Perlecan and Collagen, but not Laminin or Nidogen, contribute towards the resistance of egg chambers against osmotic stress. Finally, using atomic force microscopy we show that basement membrane stiffness mainly depends on Collagen IV. Our analysis reveals how single ECM components contribute to the mechanical properties of the basement membrane controlling tissue and organ shape.
Collapse
Affiliation(s)
- Uwe Töpfer
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Karla Yanín Guerra Santillán
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
7
|
Villagomez FR, Diaz-Valencia JD, Ovalle-García E, Antillón A, Ortega-Blake I, Romero-Ramírez H, Cerna-Cortes JF, Rosales-Reyes R, Santos-Argumedo L, Patiño-López G. TBC1D10C is a cytoskeletal functional linker that modulates cell spreading and phagocytosis in macrophages. Sci Rep 2021; 11:20946. [PMID: 34686741 PMCID: PMC8536695 DOI: 10.1038/s41598-021-00450-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cell spreading and phagocytosis are notably regulated by small GTPases and GAP proteins. TBC1D10C is a dual inhibitory protein with GAP activity. In immune cells, TBC1D10C is one of the elements regulating lymphocyte activation. However, its specific role in macrophages remains unknown. Here, we show that TBC1D10C engages in functions dependent on the cytoskeleton and plasma membrane reorganization. Using ex vivo and in vitro assays, we found that elimination and overexpression of TBC1D10C modified the cytoskeletal architecture of macrophages by decreasing and increasing the spreading ability of these cells, respectively. In addition, TBC1D10C overexpression contributed to higher phagocytic activity against Burkholderia cenocepacia and to increased cell membrane tension. Furthermore, by performing in vitro and in silico analyses, we identified 27 TBC1D10C-interacting proteins, some of which were functionally classified as protein complexes involved in cytoskeletal dynamics. Interestingly, we identified one unreported TBC1D10C-intrinsically disordered region (IDR) with biological potential at the cytoskeleton level. Our results demonstrate that TBC1D10C shapes macrophage activity by inducing reorganization of the cytoskeleton-plasma membrane in cell spreading and phagocytosis. We anticipate our results will be the basis for further studies focused on TBC1D10C. For example, the specific molecular mechanism in Burkholderia cenocepacia phagocytosis and functional analysis of TBC1D10C-IDR are needed to further understand its role in health and disease.
Collapse
Affiliation(s)
- Fabian R Villagomez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico.,Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juan D Diaz-Valencia
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad De México, Mexico
| | - Jorge F Cerna-Cortes
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Rosales-Reyes
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental de la Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad De México, Mexico
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Luo W, Liu S, Zhang W, Yang L, Huang J, Zhou S, Feng Q, Palli SR, Wang J, Roth S, Li S. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc Natl Acad Sci U S A 2021; 118:e2104461118. [PMID: 34544864 PMCID: PMC8488625 DOI: 10.1073/pnas.2104461118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
It is well documented that the juvenile hormone (JH) can function as a gonadotropic hormone that stimulates vitellogenesis by activating the production and uptake of vitellogenin in insects. Here, we describe a phenotype associated with mutations in the Drosophila JH receptor genes, Met and Gce: the accumulation of mature eggs with reduced egg length in the ovary. JH signaling is mainly activated in ovarian muscle cells and induces laminin gene expression in these cells. Meanwhile, JH signaling induces collagen IV gene expression in the adult fat body, from which collagen IV is secreted and deposited onto the ovarian muscles. Laminin locally and collagen IV remotely contribute to the assembly of ovarian muscle extracellular matrix (ECM); moreover, the ECM components are indispensable for ovarian muscle contraction. Furthermore, ovarian muscle contraction externally generates a mechanical force to promote ovulation and maintain egg shape. This work reveals an important mechanism for JH-regulated insect reproduction.
Collapse
Affiliation(s)
- Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Wenqiang Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Siegfried Roth
- Institute for Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
9
|
Díaz-Torres A, Rosales-Nieves AE, Pearson JR, Santa-Cruz Mateos C, Marín-Menguiano M, Marshall OJ, Brand AH, González-Reyes A. Stem cell niche organization in the Drosophila ovary requires the ECM component Perlecan. Curr Biol 2021; 31:1744-1753.e5. [PMID: 33621481 PMCID: PMC8405445 DOI: 10.1016/j.cub.2021.01.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
Stem cells reside in specialized microenvironments or niches that balance stem cell proliferation and differentiation.1,2 The extracellular matrix (ECM) is an essential component of most niches, because it controls niche homeostasis, provides physical support, and conveys extracellular signals.3, 4, 5, 6, 7, 8, 9, 10, 11 Basement membranes (BMs) are thin ECM sheets that are constituted mainly by Laminins, Perlecan, Collagen IV, and Entactin/Nidogen and surround epithelia and other tissues.12 Perlecans are secreted proteoglycans that interact with ECM proteins, ligands, receptors, and growth factors such as FGF, PDGF, VEGF, Hedgehog, and Wingless.13, 14, 15, 16, 17, 18 Thus, Perlecans have structural and signaling functions through the binding, storage, or sequestering of specific ligands. We have used the Drosophila ovary to assess the importance of Perlecan in the functioning of a stem cell niche. Ovarioles in the adult ovary are enveloped by an ECM sheath and possess a tapered structure at their anterior apex termed the germarium. The anterior tip of the germarium hosts the germline niche, where two to four germline stem cells (GSCs) reside together with a few somatic cells: terminal filament cells (TFCs), cap cells (CpCs), and escort cells (ECs).19 We report that niche architecture in the developing gonad requires trol, that niche cells secrete an isoform-specific Perlecan-rich interstitial matrix, and that DE-cadherin-dependent stem cell-niche adhesion necessitates trol. Hence, we provide evidence to support a structural role for Perlecan in germline niche establishment during larval stages and in the maintenance of a normal pool of stem cells in the adult niche. The Drosophila ovarian niche contains a Perlecan-rich interstitial matrix Niche cells express and secrete specific Perlecan isoforms Absence of trol results in aberrant niches containing fewer niche and stem cells trol regulates DE-cadherin levels in larval and adult niche cells
Collapse
Affiliation(s)
- Alfonsa Díaz-Torres
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Alicia E Rosales-Nieves
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - John R Pearson
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Carmen Santa-Cruz Mateos
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Miriam Marín-Menguiano
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Owen J Marshall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 1QN, UK; Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000, Australia
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 1QN, UK
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| |
Collapse
|
10
|
Shiwarski DJ, Tashman JW, Tsamis A, Bliley JM, Blundon MA, Aranda-Michel E, Jallerat Q, Szymanski JM, McCartney BM, Feinberg AW. Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. Nat Commun 2020; 11:5883. [PMID: 33208732 PMCID: PMC7675982 DOI: 10.1038/s41467-020-19659-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrates 2D and 3D surface strain tracking during mechanical deformation of known materials and is validated with finite element modeling. Analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles highlights the NMBS's ability to dynamically track microscopic tensile and compressive strains across diverse biological systems where forces guide structure and function.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alkiviadis Tsamis
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jaci M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Malachi A Blundon
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Edgar Aranda-Michel
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Brooke M McCartney
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Abstract
A new study explores the mechanical basis of germline encapsulation in Drosophila gametogenesis, reporting that it is not driven solely by somatic tissue, as previously assumed, but instead relies on actomyosin-generated force in the germline cells.
Collapse
Affiliation(s)
- Tara M Finegan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Dan T Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA; Department of Biomedical Genetics at the University of Rochester Medical Center, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
12
|
Luo W, Veeran S, Wang J, Li S, Li K, Liu SN. Dual roles of juvenile hormone signaling during early oogenesis in Drosophila. INSECT SCIENCE 2020; 27:665-674. [PMID: 31207060 DOI: 10.1111/1744-7917.12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Juvenile hormone (JH) signaling plays crucial roles in insect metamorphosis and reproduction. Function of JH signaling in germline stem cells (GSCs) remains largely unknown. Here, we found that the number of GSCs significantly declined in the ovaries of Met, Gce and JHAMT mutants. Then we inhibited JH signaling in selected cell types of ovaries by expressing Met and Gce or Kr-h1 double-stranded RNAs (dsRNAs) using different Gal4 drivers. Blocking of JH signaling in muscle cells has no effect on GSC numbers. Blocking of JH signaling in cap cells reduced GSCs cells. Inductive expression of Met and Gce dsRNA but not Kr-h1 by Nos-Gal4 increased GSC cells. These results indicate that JH signaling plays an important role in GSC maintenance.
Collapse
Affiliation(s)
- Wei Luo
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sethuraman Veeran
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Su-Ning Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Dent LG, Manning SA, Kroeger B, Williams AM, Saiful Hilmi AJ, Crea L, Kondo S, Horne-Badovinac S, Harvey KF. The dPix-Git complex is essential to coordinate epithelial morphogenesis and regulate myosin during Drosophila egg chamber development. PLoS Genet 2019; 15:e1008083. [PMID: 31116733 PMCID: PMC6555532 DOI: 10.1371/journal.pgen.1008083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/07/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
How biochemical and mechanical information are integrated during tissue development is a central question in morphogenesis. In many biological systems, the PIX-GIT complex localises to focal adhesions and integrates both physical and chemical information. We used Drosophila melanogaster egg chamber formation to study the function of PIX and GIT orthologues (dPix and Git, respectively), and discovered a central role for this complex in controlling myosin activity and epithelial monolayering. We found that Git's focal adhesion targeting domain mediates basal localisation of this complex to filament structures and the leading edge of migrating cells. In the absence of dpix and git, tissue disruption is driven by contractile forces, as reduction of myosin activators restores egg production and morphology. Further, dpix and git mutant eggs closely phenocopy defects previously reported in pak mutant epithelia. Together, these results indicate that the dPix-Git complex controls egg chamber morphogenesis by controlling myosin contractility and Pak kinase downstream of focal adhesions.
Collapse
Affiliation(s)
- Lucas G. Dent
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (LGD); (KFH)
| | - Samuel A. Manning
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Audrey M. Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States of America
| | | | - Luke Crea
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States of America
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
- * E-mail: (LGD); (KFH)
| |
Collapse
|
14
|
Reilein A, Cimetta E, Tandon NM, Kalderon D, Vunjak-Novakovic G. Live imaging of stem cells in the germarium of the Drosophila ovary using a reusable gas-permeable imaging chamber. Nat Protoc 2019; 13:2601-2614. [PMID: 30349048 DOI: 10.1038/s41596-018-0054-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Live imaging of stem cells and their support cells can be used to visualize cellular dynamics and fluctuations of intracellular signals, proteins, and organelles in order to better understand stem cell behavior in the niche. We describe a simple protocol for imaging stem cells in the Drosophila ovary that improves on alternative protocols in that flies of any age can be used, dissection is simplified because the epithelial sheath that surrounds each ovariole need not be removed, and ovarioles are imaged in a closed chamber with a large volume of medium that buffers oxygen, pH, and temperature. We also describe how to construct the imaging chamber, which can be easily modified and used to image other tissues and non-adherent cells. Imaging is limited by follicle cells moving out of the germarium in culture around the time of egg chamber budding; however, the epithelial sheath delays this abnormal cell migration. This protocol requires an hour to prepare the ovarioles, followed by half an hour on the confocal microscope to locate germaria and set z limits. Successful imaging time depends on germarial morphology at the time of dissection, but we suggest 10-11 h to encompass all specimens.
Collapse
Affiliation(s)
- Amy Reilein
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), Padova University, Padua, Italy. .,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti, Padua, Italy.
| | - Nina M Tandon
- EpiBone, Inc., Brooklyn, NY, USA.,Department of Electrical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
15
|
Howard AM, LaFever KS, Fenix AM, Scurrah CR, Lau KS, Burnette DT, Bhave G, Ferrell N, Page-McCaw A. DSS-induced damage to basement membranes is repaired by matrix replacement and crosslinking. J Cell Sci 2019; 132:jcs.226860. [PMID: 30837285 DOI: 10.1242/jcs.226860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Basement membranes are an ancient form of animal extracellular matrix. As important structural and functional components of tissues, basement membranes are subject to environmental damage and must be repaired while maintaining functions. Little is known about how basement membranes get repaired. This paucity stems from a lack of suitable in vivo models for analyzing such repair. Here, we show that dextran sodium sulfate (DSS) directly damages the gut basement membrane when fed to adult Drosophila DSS becomes incorporated into the basement membrane, promoting its expansion while decreasing its stiffness, which causes morphological changes to the underlying muscles. Remarkably, two days after withdrawal of DSS, the basement membrane is repaired by all measures of analysis. We used this new damage model to determine that repair requires collagen crosslinking and replacement of damaged components. Genetic and biochemical evidence indicates that crosslinking is required to stabilize the newly incorporated repaired Collagen IV rather than to stabilize the damaged Collagen IV. These results suggest that basement membranes are surprisingly dynamic.
Collapse
Affiliation(s)
- Angela M Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kimberly S LaFever
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Cherie' R Scurrah
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Gautam Bhave
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA .,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Balaji R, Weichselberger V, Classen AK. Response of epithelial cell and tissue shape to external forces in vivo. Development 2019; 146:dev.171256. [DOI: 10.1242/dev.171256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
How actomyosin generates forces at epithelial adherens junctions has been extensively studied. However, less is known about how a balance between internal and external forces establishes epithelial cell, tissue and organ shape. We use the Drosophila egg chamber to investigate how contractility at adherens junction in the follicle epithelium is modulated to accommodate and resist forces arising from the growing germline. We find that between stages 6 and 9 adherens junction tension in the post-mitotic epithelium decreases, suggesting that the junctional network relaxes to accommodate germline growth. At that time, a prominent medial Myosin II network coupled to corrugating adherens junctions develops. Local enrichment of medial Myosin II in main body follicle cells resists germline-derived forces, thus constraining apical areas and consequently cuboidal cell shapes at stage 9. At the tissue and organ level, local reinforcement of medial-junctional architecture ensures the timely contact of main body cells with the expanding oocyte and imposes circumferential constraints on the germline guiding egg elongation. Our study provides insight into how adherens junction tension promotes cell and tissue shape transitions while integrating growth and shape of an internally enclosed structure in vivo.
Collapse
Affiliation(s)
- Ramya Balaji
- Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Vanessa Weichselberger
- Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany
| | - Anne-Kathrin Classen
- Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Molinar-Inglis O, Oliver SL, Rudich P, Kunttas E, McCartney BM. APC2 associates with the actin cortex through a multipart mechanism to regulate cortical actin organization and dynamics in the Drosophila ovary. Cytoskeleton (Hoboken) 2018; 75:323-335. [PMID: 30019417 DOI: 10.1002/cm.21471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
The actin cortex that lines the plasma membrane of most eukaryotic cells resists external mechanical forces and plays critical roles in a variety of cellular processes including morphogenesis, cytokinesis, and cell migration. Despite its ubiquity and significance, we understand relatively little about the composition, dynamics, and structure of the actin cortex. Adenomatous polyposis coli (APC) proteins regulate the actin and microtubule cytoskeletons through a variety of mechanisms, and in some contexts, APC proteins are cortically enriched. Here we show that APC2 regulates cortical actin dynamics in the follicular epithelium and the nurse cells of the Drosophila ovary and in addition affects the distribution of cortical actin at the apical side of the follicular epithelium. To understand how APC2 influences these properties of the actin cortex, we investigated the mechanisms controlling the cortical localization of APC2 in S2 cultured cells. We previously showed that the N-terminal half of APC2 containing the Armadillo repeats and the C-terminal 30 amino acids (C30) are together necessary and sufficient for APC2's cortical localization. Our work presented here supports a model that cortical localization of APC2 is governed in part by self-association through the N-terminal APC Self-Association Domain (ASAD) and a highly conserved coiled-coil within the C30 domain.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Stacie L Oliver
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Paige Rudich
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Ezgi Kunttas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Valer FB, Machado MCR, Silva-Junior RMP, Ramos RGP. Expression of Hbs, Kirre, and Rst during Drosophila ovarian development. Genesis 2018; 56:e23242. [PMID: 30114331 DOI: 10.1002/dvg.23242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
The Irre cell-recognition module (IRM) is a group of evolutionarily conserved and structurally related transmembrane glycoproteins of the immunoglobulin superfamily. In Drosophila melanogaster, it comprises the products of the genes roughest (rst; also known as irreC-rst), kin-of-irre (kirre; also known as duf), sticks-and-stones (sns), and hibris (hbs). In this model organism, the behavior of this group of proteins as a partly redundant functional unit mediating selective cell recognition was demonstrated in a variety of developmental contexts, but their possible involvement in ovarian development and oogenesis has not been investigated, notwithstanding the fact that some rst mutant alleles are also female sterile. Here, we show that IRM genes are dynamically and, to some extent, coordinately transcribed in both pupal and adult ovaries. Additionally, the spatial distribution of Hbs, Kirre, and Rst proteins indicates that they perform cooperative, although largely nonredundant, functions. Finally, phenotypical characterization of three different female sterile rst alleles uncovered two temporally separated and functionally distinct requirements for this locus in ovarian development: one in pupa, essential for the organization of peritoneal and epithelial sheaths that maintain the structural integrity of the adult organ and another, in mature ovarioles, needed for the progression of oogenesis beyond stage 10.
Collapse
Affiliation(s)
- Felipe Berti Valer
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maiaro Cabral Rosa Machado
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
19
|
Ramos-Lewis W, Page-McCaw A. Basement membrane mechanics shape development: Lessons from the fly. Matrix Biol 2018; 75-76:72-81. [PMID: 29656148 DOI: 10.1016/j.matbio.2018.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Basement membrane plays a foundational role in the structure and maintenance of many tissues throughout the animal kingdom. In addition to signaling to cells through cell-surface receptors, basement membrane directly influences the development and maintenance of organ shape via its mechanical properties. The mechanical properties of basement membrane are dictated by its composition, geometry, and crosslinking. Distinguishing between the ways the basement membrane influences morphology in vivo poses a major challenge. Drosophila melanogaster, already established as a powerful model for the analysis of cell signaling, has in recent years emerged as a tractable model for understanding the roles of basement membrane stiffness in vivo, in shaping and maintaining the morphology of tissues and organs. In addition to the plethora of genetic tools available in flies, the major proteins found in vertebrate basement membranes are all present in Drosophila. Furthermore, Drosophila has fewer copies of the genes encoding these proteins, making flies more amenable to genetic manipulation than vertebrate models. Because the development of Drosophila organs has been well-characterized, these different organ systems offer a variety of contexts for analyzing the role of basement membrane in development. The developing egg chamber and central nervous system, for example, have been important models for assessing the role of basement membrane stiffness in influencing organ shape. Studies in the nervous system have also shown how basement membrane stiffness can influence cellular migration in vivo. Finally, work in the imaginal wing disc has illuminated a distinct mechanism by which basement membrane can alter organ shape and size, by sequestering signaling ligands. This mini-review highlights the recent discoveries pertaining to basement membrane mechanics during Drosophila development.
Collapse
Affiliation(s)
- William Ramos-Lewis
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
20
|
Díaz de la Loza MC, Díaz-Torres A, Zurita F, Rosales-Nieves AE, Moeendarbary E, Franze K, Martín-Bermudo MD, González-Reyes A. Laminin Levels Regulate Tissue Migration and Anterior-Posterior Polarity during Egg Morphogenesis in Drosophila. Cell Rep 2018; 20:211-223. [PMID: 28683315 PMCID: PMC5507772 DOI: 10.1016/j.celrep.2017.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 06/10/2017] [Indexed: 10/31/2022] Open
Abstract
Basement membranes (BMs) are specialized extracellular matrices required for tissue organization and organ formation. We study the role of laminin and its integrin receptor in the regulation of tissue migration during Drosophila oogenesis. Egg production in Drosophila involves the collective migration of follicle cells (FCs) over the BM to shape the mature egg. We show that laminin content in the BM increases with time, whereas integrin amounts in FCs do not vary significantly. Manipulation of integrin and laminin levels reveals that a dynamic balance of integrin-laminin amounts determines the onset and speed of FC migration. Thus, the interplay of ligand-receptor levels regulates tissue migration in vivo. Laminin depletion also affects the ultrastructure and biophysical properties of the BM and results in anterior-posterior misorientation of developing follicles. Laminin emerges as a key player in the regulation of collective cell migration, tissue stiffness, and the organization of anterior-posterior polarity in Drosophila.
Collapse
Affiliation(s)
- María C Díaz de la Loza
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Alfonsa Díaz-Torres
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Federico Zurita
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica, 18071 Granada, Spain
| | - Alicia E Rosales-Nieves
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - María D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| |
Collapse
|
21
|
Horváth B, Kalinka AT. The genetics of egg retention and fertilization success in Drosophila: One step closer to understanding the transition from facultative to obligate viviparity. Evolution 2018; 72:318-336. [PMID: 29265369 DOI: 10.1111/evo.13411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/16/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
Oviparous, facultative egg retention enables Drosophila females to withhold fertilized eggs in their reproductive tracts until circumstances favor oviposition. The propensity to retain fertilized eggs varies greatly between species, and is correlated with other reproductive traits, such as egg size and ovariole number. While previous studies have described the phenomenon, no study to date has characterized within-species variation or the genetic basis of the trait. Here, we develop a novel microscope-based method for measuring egg retention in Drosophila females and determine the range of phenotypic variation in mated female egg retention in a subset of 91 Drosophila Genetic Reference Panel (DGRP) lines. We inferred the genetic basis of egg retention using a genome-wide association study (GWAS). Further, the scoring of more than 95,000 stained, staged eggs enabled estimates of fertilization success for each line. We found evidence that ovary- and spermathecae-related genes as well as genes affecting olfactory behavior, male mating behavior, male-female attraction and sperm motility may play a crucial role in post-mating physiology. Based on our findings we also propose potential evolutionary routes toward obligate viviparity. In particular, we propose that the loss of fecundity incurred by viviparity could be offset by benefits arising from enhanced mate discrimination, resource specialization, or modified egg morphology.
Collapse
Affiliation(s)
- Barbara Horváth
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria.,Vienna Graduate School of Population Genetics, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria.,Current Address: Barbara Ellis, Institutionen för ekologi och genetik, Evolutionsbiologiskt Centrum (EBC), Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Alex T Kalinka
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria
| |
Collapse
|
22
|
Manning L, Sheth J, Bridges S, Saadin A, Odinammadu K, Andrew D, Spencer S, Montell D, Starz-Gaiano M. A hormonal cue promotes timely follicle cell migration by modulating transcription profiles. Mech Dev 2017; 148:56-68. [PMID: 28610887 PMCID: PMC5758037 DOI: 10.1016/j.mod.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/30/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Cell migration is essential during animal development. In the Drosophila ovary, the steroid hormone ecdysone coordinates nutrient sensing, growth, and the timing of morphogenesis events including border cell migration. To identify downstream effectors of ecdysone signaling, we profiled gene expression in wild-type follicle cells compared to cells expressing a dominant negative Ecdysone receptor or its coactivator Taiman. Of approximately 400 genes that showed differences in expression, we validated 16 candidate genes for expression in border and centripetal cells, and demonstrated that seven responded to ectopic ecdysone activation by changing their transcriptional levels. We found a requirement for seven putative targets in effective cell migration, including two other nuclear hormone receptors, a calcyphosine-encoding gene, and a prolyl hydroxylase. Thus, we identified multiple new genetic regulators modulated at the level of transcription that allow cells to interpret information from the environment and coordinate cell migration in vivo.
Collapse
Affiliation(s)
- Lathiena Manning
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States; UNC Chapel Hill, NC, United States
| | - Jinal Sheth
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Stacey Bridges
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Afsoon Saadin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Kamsi Odinammadu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Deborah Andrew
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Denise Montell
- University of Santa Barbara, Santa Barbara, CA, United States.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States.
| |
Collapse
|
23
|
Zhang C, Montooth KL, Calvi BR. Incompatibility between mitochondrial and nuclear genomes during oogenesis results in ovarian failure and embryonic lethality. Development 2017; 144:2490-2503. [PMID: 28576772 DOI: 10.1242/dev.151951] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/27/2017] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction can cause female infertility. An important unresolved issue is the extent to which incompatibility between mitochondrial and nuclear genomes contributes to female infertility. It has previously been shown that a mitochondrial haplotype from D. simulans (simw501 ) is incompatible with a nuclear genome from the D. melanogaster strain Oregon-R (OreR), resulting in impaired development, which was enhanced at higher temperature. This mito-nuclear incompatibility is between alleles of the nuclear-encoded mitochondrial tyrosyl-tRNA synthetase (Aatm) and the mitochondrial-encoded tyrosyl-tRNA that it aminoacylates. Here, we show that this mito-nuclear incompatibility causes a severe temperature-sensitive female infertility. The OreR nuclear genome contributed to death of ovarian germline stem cells and reduced egg production, which was further enhanced by the incompatibility with simw501 mitochondria. Mito-nuclear incompatibility also resulted in aberrant egg morphology and a maternal-effect on embryonic chromosome segregation and survival, which was completely dependent on the temperature and mito-nuclear genotype of the mother. Our findings show that maternal mito-nuclear incompatibility during Drosophila oogenesis has severe consequences for egg production and embryonic survival, with important broader relevance to human female infertility and mitochondrial replacement therapy.
Collapse
Affiliation(s)
- Chunyang Zhang
- Department of Biology, Indiana University Bloomington, IN 47401, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Brian R Calvi
- Department of Biology, Indiana University Bloomington, IN 47401, USA
| |
Collapse
|
24
|
Aranjuez G, Burtscher A, Sawant K, Majumder P, McDonald JA. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue. Mol Biol Cell 2016; 27:1898-910. [PMID: 27122602 PMCID: PMC4907723 DOI: 10.1091/mbc.e15-10-0744] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/21/2016] [Indexed: 12/24/2022] Open
Abstract
A challenge for migrating collectives is to respond to physical changes in local environments. Border cells migrate collectively in the Drosophila ovary and require dynamic myosin to maintain their morphology. Border cells elevate active myosin in response to tissue compression. Myosin tension counteracts tissue constraints for collective movement. Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6−10 cells, traversing a network of large germ line–derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues.
Collapse
Affiliation(s)
- George Aranjuez
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Ashley Burtscher
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ketki Sawant
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Pralay Majumder
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jocelyn A McDonald
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 Division of Biology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|