1
|
Grzymkowski J, Wyatt B, Nascone-Yoder N. The twists and turns of left-right asymmetric gut morphogenesis. Development 2020; 147:147/19/dev187583. [PMID: 33046455 DOI: 10.1242/dev.187583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organs develop left-right asymmetric shapes and positions that are crucial for normal function. Indeed, anomalous laterality is associated with multiple severe birth defects. Although the events that initially orient the left-right body axis are beginning to be understood, the mechanisms that shape the asymmetries of individual organs remain less clear. Here, we summarize new evidence challenging century-old ideas about the development of stomach and intestine laterality. We compare classical and contemporary models of asymmetric gut morphogenesis and highlight key unanswered questions for future investigation.
Collapse
Affiliation(s)
- Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
2
|
Desgrange A, Lokmer J, Marchiol C, Houyel L, Meilhac SM. Standardised imaging pipeline for phenotyping mouse laterality defects and associated heart malformations, at multiple scales and multiple stages. Dis Model Mech 2019; 12:dmm.038356. [PMID: 31208960 PMCID: PMC6679386 DOI: 10.1242/dmm.038356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Laterality defects are developmental disorders resulting from aberrant left/right patterning. In the most severe cases, such as in heterotaxy, they are associated with complex malformations of the heart. Advances in understanding the underlying physiopathological mechanisms have been hindered by the lack of a standardised and exhaustive procedure in mouse models for phenotyping left/right asymmetries of all visceral organs. Here, we have developed a multimodality imaging pipeline, which combines non-invasive micro-ultrasound imaging, micro-computed tomography (micro-CT) and high-resolution episcopic microscopy (HREM) to acquire 3D images at multiple stages of development and at multiple scales. On the basis of the position in the uterine horns, we track in a single individual, the progression of organ asymmetry, the situs of all visceral organs in the thoracic or abdominal environment, and the fine anatomical left/right asymmetries of cardiac segments. We provide reference anatomical images and organ reconstructions in the mouse, and discuss differences with humans. This standardised pipeline, which we validated in a mouse model of heterotaxy, offers a fast and easy-to-implement framework. The extensive 3D phenotyping of organ asymmetry in the mouse uses the clinical nomenclature for direct comparison with patient phenotypes. It is compatible with automated and quantitative image analyses, which is essential to compare mutant phenotypes with incomplete penetrance and to gain mechanistic insight into laterality defects. Summary: Laterality defects, which combine anomalies in several visceral organs, are challenging to phenotype. We have developed here a standardised approach for multimodality 3D imaging in mice, generating quantifiable phenotypes.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Johanna Lokmer
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Carmen Marchiol
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France
| | - Lucile Houyel
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,Unité de Cardiologie Pédiatrique et Congénitale, Hôpital Necker Enfants Malades, Centre de référence des Malformations Cardiaques Congénitales Complexes-M3C, APHP, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| |
Collapse
|
3
|
El Sebae GK, Malatos JM, Cone MKE, Rhee S, Angelo JR, Mager J, Tremblay KD. Single-cell murine genetic fate mapping reveals bipotential hepatoblasts and novel multi-organ endoderm progenitors. Development 2018; 145:dev.168658. [PMID: 30232173 DOI: 10.1242/dev.168658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
The definitive endoderm (DE) is the embryonic germ layer that forms the gut tube and associated organs, including thymus, lungs, liver and pancreas. To understand how individual DE cells furnish gut organs, genetic fate mapping was performed using the Rosa26lacZ Cre-reporter paired with a tamoxifen-inducible DE-specific Cre-expressing transgene. We established a low tamoxifen dose that infrequently induced heritable lacZ expression in a single cell of individual E8.5 mouse embryos and identified clonal cell descendants at E16.5. As expected, only a fraction of the E16.5 embryos contained lacZ-positive clonal descendants and a subset of these contained descendants in multiple organs, revealing novel ontogeny. Furthermore, immunohistochemical analysis was used to identify lacZ-positive hepatocytes and biliary epithelial cells, which are the cholangiocyte precursors, in each clonally populated liver. Together, these data not only uncover novel and suspected lineage relationships between DE-derived organs, but also illustrate the bipotential nature of individual hepatoblasts by demonstrating that single hepatoblasts contribute to both the hepatocyte and the cholangiocyte lineage in vivo.
Collapse
Affiliation(s)
- Gabriel K El Sebae
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Joseph M Malatos
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary-Kate E Cone
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Siyeon Rhee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse R Angelo
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Womble M, Amin NM, Nascone-Yoder N. The left-right asymmetry of liver lobation is generated by Pitx2c-mediated asymmetries in the hepatic diverticulum. Dev Biol 2018; 439:80-91. [PMID: 29709601 PMCID: PMC5988353 DOI: 10.1016/j.ydbio.2018.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
Internal organs exhibit left-right asymmetric sizes, shapes and anatomical positions, but how these different lateralities develop is poorly understood. Here we use the experimentally tractable Xenopus model to uncover the morphogenetic events that drive the left-right asymmetrical lobation of the liver. On the right side of the early hepatic diverticulum, endoderm cells become columnar and apically constricted, forming an expanded epithelial surface and, ultimately, an enlarged right liver lobe. In contrast, the cells on the left side become rounder, and rearrange into a compact, stratified architecture that produces a smaller left lobe. Side-specific gain- and loss-of-function studies reveal that asymmetric expression of the left-right determinant Pitx2c elicits distinct epithelial morphogenesis events in the left side of the diverticulum. Surprisingly, the cellular events induced by Pitx2c during liver development are opposite those induced in other digestive organs, suggesting divergent cellular mechanisms underlie the formation of different lateralities.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Nirav M Amin
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA.
| |
Collapse
|
5
|
Taniguchi H, Fujimoto A, Kono H, Furuta M, Fujita M, Nakagawa H. Loss-of-function mutations in Zn-finger DNA-binding domain of HNF4A cause aberrant transcriptional regulation in liver cancer. Oncotarget 2018; 9:26144-26156. [PMID: 29899848 PMCID: PMC5995239 DOI: 10.18632/oncotarget.25456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/02/2018] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte nuclear factors (HNF) are transcription factors that crucially regulate cell-specific gene expression in many tissues, including the liver. Of these factors, HNF4A acts both as a master regulator of liver organogenesis and a tumor suppressor in the liver. In our whole genome sequencing analysis, we found seven somatic mutations (three Zn-finger mutations, three deletion mutants, and one intron mutation) of HNF4A in liver cancers. Interestingly, three out of seven mutations were clustered in its Zn-finger DNA-binding domain; G79 and F83 are positioned in the DNA recognition helix and the sidechain of M125 is sticking into the core of domain. These mutations are likely to affect DNA interaction from a structural point of view. We then generated these mutants and performed in-vitro promoter assays as well as DNA binding assays. These three mutations reduced HNF4 transcriptional activity at promoter sites of HNF4A-target genes. Expectedly, this decrease in transcriptional activity was associated with a change in DNA binding. RNA-Seq analysis observed a strong correlation between HNF4A expression and expression of its target genes, ApoB and HNF1A, in liver cancers. Since knockdown of HNF4A caused a reduction in ApoB and HNF1A expression, possibly loss of HNF4 reduces the expression of these genes and subsequently tumor growth is triggered. Therefore, we propose that HNF4A mutations G79C, F83C, and M125I are functional mutations found in liver cancers and that loss of HNF4A function, through its mutation, leads to a reduction in HNF1A and ApoB gene expression with a concomitant increased risk of liver tumorigenesis.
Collapse
Affiliation(s)
- Hiroaki Taniguchi
- Laboratory for Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan.,Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec 05-552, Poland
| | - Akihiro Fujimoto
- Laboratory for Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Hidetoshi Kono
- Molecular Modeling and Simulation Group, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Mayuko Furuta
- Laboratory for Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Masashi Fujita
- Laboratory for Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Hidewaki Nakagawa
- Laboratory for Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| |
Collapse
|