1
|
Rossen JL, Williams AL, Bohnsack BL. Zebrafish as a model for crystallin-associated congenital cataracts in humans. Front Cell Dev Biol 2025; 13:1552988. [PMID: 40206405 PMCID: PMC11979377 DOI: 10.3389/fcell.2025.1552988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Congenital cataracts are a leading cause of vision loss in children and can be an isolated finding or associated with systemic abnormalities. Isolated congenital cataracts are most commonly associated with pathogenic variants in one of the Crystallin genes. The α-Crystallins are small heat shock proteins that act as chaperones in the lens and other organs throughout the body to prevent protein aggregation and maintain tissue function. In contrast, the ß- and γ-Crystallins are structural proteins that are predominantly expressed in the mature lens and regulate its refractive index. However, the role of the Crystallins during lens development such that pathogenic variants result in inherited cataracts is less well-defined. As zebrafish allow real-time visualization of lens development, genetic manipulation of both the endogenous Crystallin genes as well as the use of transgenic overexpression of identified pathogenic variants yields important insight into the pathogenesis of congenital cataracts. Herein, we review the similarities and differences between human and zebrafish Crystallin genes. Further, we discuss the use of zebrafish as a model for congenital cataracts and explore the mechanisms that underlie the role of Crystallins in lens development. A better understanding of the genetic causes of congenital cataracts will lead to breakthroughs in preventing blindness from congenital cataracts and associated complications.
Collapse
Affiliation(s)
- Jennifer L. Rossen
- Division of Ophthalmology, Ann and Robert H. Lurie Children’s Hospital of Chicago , Chicago, IL, United States
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Antionette L. Williams
- Division of Ophthalmology, Ann and Robert H. Lurie Children’s Hospital of Chicago , Chicago, IL, United States
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann and Robert H. Lurie Children’s Hospital of Chicago , Chicago, IL, United States
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
2
|
Hu D, Masai I. Dscamb regulates cone mosaic formation in zebrafish via filopodium-mediated homotypic recognition. Nat Commun 2025; 16:2501. [PMID: 40133281 PMCID: PMC11937385 DOI: 10.1038/s41467-025-57506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Cone photoreceptors assemble to form a regular mosaic pattern in vertebrate retinas. In zebrafish, four distinct spectral cone types (red, green, blue, and ultraviolet), form a lattice-like pattern. However, the mechanism of cone mosaic formation has been unknown. Here we show that Down Syndrome Cell Adhesion Molecule b (Dscamb) regulates the cone mosaic pattern in zebrafish, especially via red-cone spacing. During photoreceptor differentiation, newly formed cones extend filopodium-like processes laterally to apical surfaces of neighboring cones. Interestingly, red cones extend filopodia, but promptly retract them when they meet their own cone type, suggesting filopodium-mediated, homotypic recognition and self-avoidance. This self-avoidance is compromised in zebrafish dscamb mutants, leading to abnormal clustering of red cones and subsequent disruption of regular cone spacing. Thus, apical filopodium-mediated spacing of the same cone type depends on Dscamb and is essential for cone mosaic formation in zebrafish.
Collapse
Affiliation(s)
- Dongpeng Hu
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| |
Collapse
|
3
|
Hu Y, Luo Z, Wang M, Wu Z, Liu Y, Cheng Z, Sun Y, Xiong JW, Tong X, Zhu Z, Zhang B. Prox1a promotes liver growth and differentiation by repressing cdx1b expression and intestinal fate transition in zebrafish. J Genet Genomics 2025; 52:66-77. [PMID: 39343095 DOI: 10.1016/j.jgg.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The liver is a key endoderm-derived multifunctional organ within the digestive system. Prospero homeobox 1 (Prox1) is an essential transcription factor for liver development, but its specific function is not well understood. Here, we show that hepatic development, including the formation of intrahepatic biliary and vascular networks, is severely disrupted in prox1a mutant zebrafish. We find that Prox1a is essential for liver growth and proper differentiation but not required for early hepatic cell fate specification. Intriguingly, prox1a depletion leads to ectopic initiation of a Cdx1b-mediated intestinal program and the formation of intestinal lumen-like structures within the liver. Morpholino knockdown of cdx1b alleviates liver defects in the prox1a mutant zebrafish. Finally, chromatin immunoprecipitation analysis reveals that Prox1a binds directly to the promoter region of cdx1b, thereby repressing its expression. Overall, our findings indicate that Prox1a is required to promote and protect hepatic development by repression of Cdx1b-mediated intestinal cell fate in zebrafish.
Collapse
Affiliation(s)
- Yingying Hu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhou Luo
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Meiwen Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zekai Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yunxing Liu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Shenzhen, Guangdong 518055, China
| | - Zhenchao Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuhan Sun
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Li M, Xing X, Yuan J, Zeng Z. Research progress on the regulatory role of cell membrane surface tension in cell behavior. Heliyon 2024; 10:e29923. [PMID: 38720730 PMCID: PMC11076917 DOI: 10.1016/j.heliyon.2024.e29923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Cell membrane surface tension has emerged as a pivotal biophysical factor governing cell behavior and fate. This review systematically delineates recent advances in techniques for cell membrane surface tension quantification, mechanosensing mechanisms, and regulatory roles of cell membrane surface tension in modulating major cellular processes. Micropipette aspiration, tether pulling, and newly developed fluorescent probes enable the measurement of cell membrane surface tension with spatiotemporal precision. Cells perceive cell membrane surface tension via conduits including mechanosensitive ion channels, curvature-sensing proteins (e.g. BAR domain proteins), and cortex-membrane attachment proteins (e.g. ERM proteins). Through membrane receptors like integrins, cells convert mechanical cues into biochemical signals. This conversion triggers cytoskeletal remodeling and extracellular matrix interactions in response to environmental changes. Elevated cell membrane surface tension suppresses cell spreading, migration, and endocytosis while facilitating exocytosis. Moreover, reduced cell membrane surface tension promotes embryonic stem cell differentiation and cancer cell invasion, underscoring cell membrane surface tension as a regulator of cell plasticity. Outstanding questions remain regarding cell membrane surface tension regulatory mechanisms and roles in tissue development/disease in vivo. Emerging tools to manipulate cell membrane surface tension with high spatiotemporal control in combination with omics approaches will facilitate the elucidation of cell membrane surface tension-mediated effects on signaling networks across various cell types/states. This will accelerate the development of cell membrane surface tension-based biomarkers and therapeutics for regenerative medicine and cancer. Overall, this review provides critical insights into cell membrane surface tension as a potent orchestrator of cell function, with broader impacts across mechanobiology.
Collapse
Affiliation(s)
- Manqing Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Zhuoying Zeng
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, 518035, China
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| |
Collapse
|
5
|
Babu S, Takeuchi Y, Masai I. Banp regulates DNA damage response and chromosome segregation during the cell cycle in zebrafish retina. eLife 2022; 11:74611. [PMID: 35942692 PMCID: PMC9363121 DOI: 10.7554/elife.74611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Btg3-associated nuclear protein (Banp) was originally identified as a nuclear matrix-associated region (MAR)-binding protein and it functions as a tumor suppressor. At the molecular level, Banp regulates transcription of metabolic genes via a CGCG-containing motif called the Banp motif. However, its physiological roles in embryonic development are unknown. Here, we report that Banp is indispensable for the DNA damage response and chromosome segregation during mitosis. Zebrafish banp mutants show mitotic cell accumulation and apoptosis in developing retina. We found that DNA replication stress and tp53-dependent DNA damage responses were activated to induce apoptosis in banp mutants, suggesting that Banp is required for regulation of DNA replication and DNA damage repair. Furthermore, consistent with mitotic cell accumulation, chromosome segregation was not smoothly processed from prometaphase to anaphase in banp morphants, leading to a prolonged M-phase. Our RNA- and ATAC-sequencing identified 31 candidates for direct Banp target genes that carry the Banp motif. Interestingly, a DNA replication fork regulator, wrnip1, and two chromosome segregation regulators, cenpt and ncapg, are included in this list. Thus, Banp directly regulates transcription of wrnip1 for recovery from DNA replication stress, and cenpt and ncapg for chromosome segregation during mitosis. Our findings provide the first in vivo evidence that Banp is required for cell-cycle progression and cell survival by regulating DNA damage responses and chromosome segregation during mitosis. In order for a cell to divide, it must progress through a series of carefully controlled steps known as the cell cycle. First, the cell replicates its DNA and both copies get segregated to opposite ends. The cell then splits into two and each new cell receives a copy of the duplicated genetic material. If any of the stages in the cell cycle become disrupted or mis-regulated this can lead to uncontrolled divisions that may result in cancer. Researchers have often used a structure within the eye known as the retina to study the cell cycle in zebrafish and other animals as cells in the retina rapidly divide in a highly controlled manner. A protein called Banp is known to help stop tumors from growing in humans and mice, but its normal role in the body, particularly the cell cycle, has remained unclear. To investigate, Babu et al. studied the retina of mutant zebrafish that were unable to make the Banp protein. The experiments revealed that two stress responses indicating DNA damage or defects in copying DNA were active in the retinal cells of the mutant zebrafish. This suggested that Banp allows cell to progress through the cell cycle by repairing any DNA damage that may arise during replication. Banp does this by activating the gene for another protein called Wrnip1. Babu et al. also found that Banp helps segregate the two copies of DNA during cell division by promoting the activation of two other proteins called Cenpt and Ncapg. Further experiments identified 31 genes that were directly regulated by Banp. These findings demonstrate that Banp is required for zebrafish cells to be able to accurately copy their DNA and divide in to two new cells. In the future, the work of Babu et al. will provide a useful resource to investigate how tumors grow and spread around the body, and may contribute to the development of new treatments for cancer.
Collapse
Affiliation(s)
- Swathy Babu
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yuki Takeuchi
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
6
|
Ranawat N, Masai I. Mechanisms underlying microglial colonization of developing neural retina in zebrafish. eLife 2021; 10:70550. [PMID: 34872632 PMCID: PMC8651297 DOI: 10.7554/elife.70550] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are brain-resident macrophages that function as the first line of defense in brain. Embryonic microglial precursors originate in peripheral mesoderm and migrate into the brain during development. However, the mechanism by which they colonize the brain is incompletely understood. The retina is one of the first brain regions to accommodate microglia. In zebrafish, embryonic microglial precursors use intraocular hyaloid blood vessels as a pathway to migrate into the optic cup via the choroid fissure. Once retinal progenitor cells exit the cell cycle, microglial precursors associated with hyaloid blood vessels start to infiltrate the retina preferentially through neurogenic regions, suggesting that colonization of retinal tissue depends upon the neurogenic state. Along with blood vessels and retinal neurogenesis, IL34 also participates in microglial precursor colonization of the retina. Altogether, CSF receptor signaling, blood vessels, and neuronal differentiation function as cues to create an essential path for microglial migration into developing retina. The immune system is comprised of many different cells which protect our bodies from infection and other illnesses. The brain contains its own population of immune cells called microglia. Unlike neurons, these cells form outside the brain during development. They then travel to the brain and colonize specific regions like the retina, the light-sensing part of the eye in vertebrates. It is poorly understood how newly formed microglia migrate to the retina and whether their entry depends on the developmental state of nerve cells (also known as neurons) in this region. To help answer these questions, Ranawat and Masai attached fluorescent labels that can be seen under a microscope to microglia in the embryos of zebrafish. Developing zebrafish are transparent, making it easy to trace the fluorescent microglia as they travel to the retina and insert themselves among its neurons. Ranawat and Masai found that blood vessels around the retina act as a pathway that microglia move along. Once they reach the retina, the microglia remain attached and only enter the retina at sites where brain cells are starting to mature in to adult neurons. Further experiments showed that microglia fail to infiltrate and colonize the retina when blood vessels are damaged or neuron maturation is blocked. These findings reveal some of the key elements that guide microglia to the retina during development. However, further work is needed to establish the molecular and biochemical processes that allow microglia to attach to blood vessels and detect when cells in the retina are starting to mature.
Collapse
Affiliation(s)
- Nishtha Ranawat
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
7
|
Hong Y, Luo Y. Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery. Pharmaceuticals (Basel) 2021; 14:ph14080716. [PMID: 34451814 PMCID: PMC8400593 DOI: 10.3390/ph14080716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Visual impairment and blindness are common and seriously affect people’s work and quality of life in the world. Therefore, the effective therapies for eye diseases are of high priority. Zebrafish (Danio rerio) is an alternative vertebrate model as a useful tool for the mechanism elucidation and drug discovery of various eye disorders, such as cataracts, glaucoma, diabetic retinopathy, age-related macular degeneration, photoreceptor degeneration, etc. The genetic and embryonic accessibility of zebrafish in combination with a behavioral assessment of visual function has made it a very popular model in ophthalmology. Zebrafish has also been widely used in ocular drug discovery, such as the screening of new anti-angiogenic compounds or neuroprotective drugs, and the oculotoxicity test. In this review, we summarized the applications of zebrafish as the models of eye disorders to study disease mechanism and investigate novel drug treatments.
Collapse
Affiliation(s)
| | - Yan Luo
- Correspondence: ; Tel.: +86-020-87335931
| |
Collapse
|
8
|
Rbm24 controls poly(A) tail length and translation efficiency of crystallin mRNAs in the lens via cytoplasmic polyadenylation. Proc Natl Acad Sci U S A 2020; 117:7245-7254. [PMID: 32170011 PMCID: PMC7132282 DOI: 10.1073/pnas.1917922117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lens transparency critically requires the abundant accumulation of crystallin proteins, and deregulation of this process causes congenital cataracts in humans. Rbm24 is an RNA-binding protein with highly conserved expression in differentiating lens fiber cells among all vertebrates. We use a zebrafish model to demonstrate that loss of Rbm24 function specifically impedes lens fiber cell differentiation, resulting in cataract formation and blindness. Molecular analyses reveal that Rbm24 interacts with cytoplasmic polyadenylation complex and binds to a large number of lens-expressed messenger RNAs to maintain their stability and protect their poly(A) tail length, thereby crucially contributing to their efficient translation into functional proteins. This work identifies an important mechanism by which Rbm24 posttranscriptionally controls lens gene expression to establish transparency and refraction power. Lens transparency is established by abundant accumulation of crystallin proteins and loss of organelles in the fiber cells. It requires an efficient translation of lens messenger RNAs (mRNAs) to overcome the progressively reduced transcriptional activity that results from denucleation. Inappropriate regulation of this process impairs lens differentiation and causes cataract formation. However, the regulatory mechanism promoting protein synthesis from lens-expressed mRNAs remains unclear. Here we show that in zebrafish, the RNA-binding protein Rbm24 is critically required for the accumulation of crystallin proteins and terminal differentiation of lens fiber cells. In the developing lens, Rbm24 binds to a wide spectrum of lens-specific mRNAs through the RNA recognition motif and interacts with cytoplasmic polyadenylation element-binding protein (Cpeb1b) and cytoplasmic poly(A)-binding protein (Pabpc1l) through the C-terminal region. Loss of Rbm24 reduces the stability of a subset of lens mRNAs encoding heat shock proteins and shortens the poly(A) tail length of crystallin mRNAs encoding lens structural components, thereby preventing their translation into functional proteins. This severely impairs lens transparency and results in blindness. Consistent with its highly conserved expression in differentiating lens fiber cells, the findings suggest that vertebrate Rbm24 represents a key regulator of cytoplasmic polyadenylation and plays an essential role in the posttranscriptional control of lens development.
Collapse
|
9
|
Russo G, Theisen U, Fahr W, Helmsing S, Hust M, Köster RW, Dübel S. Sequence defined antibodies improve the detection of cadherin 2 (N-cadherin) during zebrafish development. N Biotechnol 2018; 45:98-112. [DOI: 10.1016/j.nbt.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/18/2022]
|
10
|
Sun W, Liu J, Li J, Wu D, Wang J, Wang MW, Zhang JS, Zhao JY. Human lens epithelial cell apoptosis and epithelial to mesenchymal transition in femtosecond laser-assisted cataract surgery. Int J Ophthalmol 2018; 11:401-407. [PMID: 29600173 PMCID: PMC5861229 DOI: 10.18240/ijo.2018.03.09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/15/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate human lens epithelium cell apoptosis and epithelial to mesenchymal transition (EMT) induced by femtosecond laser in femtosecond laser assisted cataract surgery (FLACS). METHODS Sixty cataract patients with N2 to N3 stage according to the LOCS III were enrolled in this study and divided into three groups randomly: FLACS1 group (cataract surgery by FLACS with LenSx), FLACS2 group (cataract surgery by FLACS with LensAR) and manual group (cataract surgery by phacoemulsification). Patients in two FLACS groups performed anterior capsulotomy by LenSx or LensAR laser system. Patients in the manual group were performed continuous curvilinear capsulorrhexis (CCC) manually. The anterior capsules were fixed right after moved out of eye. Hematoxylin-eosine staining, immunofluorescence staining and real-time PCR were performed in order to observe human lens epithelium cells changes after cataract surgery. RESULTS The capsule cutting edge was shown irregularity and roughness in two FLACS groups and smooth edge in manual capsulotomy by pathologic staining. Irregularities of the cell configuration with partly swollen and destroyed nuclei were observed in two FLACS groups. Femtosecond laser could induce a significantly higher cell apoptosis in human lens epithelium cell than manually performed CCC (P<0.05). Lens epithelium cells apoptosis were correlated with femtosecond laser duration according to Pearson correlation analysis. Decreased N-cadherin expression, alpha-SMA and FSP-1 level in two FLACS groups showed the inhibition of cell EMT. CONCLUSION Femtosecond laser may affect the apoptosis and EMT of lens epithelium cells which are under the peeled central lens capsule.
Collapse
Affiliation(s)
- Wei Sun
- Department of Ophthalmology, the 4 Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Provincial Key Laboratory of Lens Research, Shenyang 110005, Liaoning Province, China
| | - Jia Liu
- Department of Ophthalmology, the 4 Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Provincial Key Laboratory of Lens Research, Shenyang 110005, Liaoning Province, China
| | - Jing Li
- Department of Ophthalmology, the 4 Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Provincial Key Laboratory of Lens Research, Shenyang 110005, Liaoning Province, China
| | - Di Wu
- Department of Ophthalmology, the 4 Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Provincial Key Laboratory of Lens Research, Shenyang 110005, Liaoning Province, China
| | - Jing Wang
- Department of Ophthalmology, the 4 Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Provincial Key Laboratory of Lens Research, Shenyang 110005, Liaoning Province, China
| | - Ming-Wu Wang
- Department of Ophthalmology and Vision Science, the University of Arizona College of Medicine, Tucson, AZ 85711-1824, USA
| | - Jin-Song Zhang
- Department of Ophthalmology, the 4 Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Provincial Key Laboratory of Lens Research, Shenyang 110005, Liaoning Province, China
| | - Jiang-Yue Zhao
- Department of Ophthalmology, the 4 Affiliated Hospital of China Medical University; Eye Hospital of China Medical University; Provincial Key Laboratory of Lens Research, Shenyang 110005, Liaoning Province, China
| |
Collapse
|
11
|
Mochizuki T, Luo YJ, Tsai HF, Hagiwara A, Masai I. Cell division and cadherin-mediated adhesion regulate lens epithelial cell movement in zebrafish. J Cell Sci 2017. [DOI: 10.1242/jcs.202515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|