1
|
Nakashima A, Takeuchi H. Roles of odorant receptors during olfactory glomerular map formation. Genesis 2024; 62:e23610. [PMID: 38874301 DOI: 10.1002/dvg.23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
The organization of the olfactory glomerular map involves the convergence of olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) into glomeruli in the olfactory bulb (OB). A remarkable feature of the olfactory glomerular map formation is that the identity of OR instructs the topography of the bulb, resulting in thousands of discrete glomeruli in mice. Several lines of evidence indicate that ORs control the expression levels of various kinds of transmembrane proteins to form glomeruli at appropriate regions of the OB. In this review, we will discuss how the OR identity is decoded by OSNs into gene expression through intracellular regulatory mechanisms.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruki Takeuchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Nomdedeu-Sancho G, Alsina B. Wiring the senses: Factors that regulate peripheral axon pathfinding in sensory systems. Dev Dyn 2023; 252:81-103. [PMID: 35972036 PMCID: PMC10087148 DOI: 10.1002/dvdy.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.
Collapse
Affiliation(s)
- Gemma Nomdedeu-Sancho
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Dang P, Barnes DT, Cheng RP, Xu A, Moon YJ, Kodukula SS, Raper JA. Netrins and Netrin Receptors are Essential for Normal Targeting of Sensory Axons in the Zebrafish Olfactory Bulb. Neuroscience 2023; 508:19-29. [PMID: 35940453 PMCID: PMC9839495 DOI: 10.1016/j.neuroscience.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
Olfactory sensory neurons that express related odorant receptors specifically target large identifiable neuropils called protoglomeruli when they first reach the olfactory bulb in the zebrafish. This crude odorant receptor-related mapping is further refined as odorant receptor-specific glomeruli segregate from protoglomeruli later in development. Netrins are a prominent class of axon guidance molecules whose contribution to olfactory circuit formation is poorly studied. Morpholino knock down experiments have suggested that Netrin/Dcc signaling is involved in normal protoglomerular targeting. Here we extend these findings with more detailed characterization and modeling of netrin expression, and by examining protoglomerular targeting in mutant lines fornetrin1a (ntn1a), netrin1b (ntn1b), and their receptorsunc5b,dcc, andneo1a. We confirm thatntn1a,ntn1b, anddccare required for normal protoglomerular guidance of a subset of olfactory sensory neurons that are labeled with the Tg(or111-7:IRES:Gal4) transgene. We also observe errors in the targeting of these axons inunc5bmutants, but not inneo1a mutants. Our findings are consistent with ntn1a andntn1bacting primarily as attractants for olfactory sensory neurons targeting the central zone protoglomerulus.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel T Barnes
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alison Xu
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Yoon Ji Moon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Sai Sripad Kodukula
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Zhu KW, Burton SD, Nagai MH, Silverman JD, de March CA, Wachowiak M, Matsunami H. Decoding the olfactory map through targeted transcriptomics links murine olfactory receptors to glomeruli. Nat Commun 2022; 13:5137. [PMID: 36050313 PMCID: PMC9437035 DOI: 10.1038/s41467-022-32267-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sensory processing in olfactory systems is organized across olfactory bulb glomeruli, wherein axons of peripheral sensory neurons expressing the same olfactory receptor co-terminate to transmit receptor-specific activity to central neurons. Understanding how receptors map to glomeruli is therefore critical to understanding olfaction. High-throughput spatial transcriptomics is a rapidly advancing field, but low-abundance olfactory receptor expression within glomeruli has previously precluded high-throughput mapping of receptors to glomeruli in the mouse. Here we combined sequential sectioning along the anteroposterior, dorsoventral, and mediolateral axes with target capture enrichment sequencing to overcome low-abundance target expression. This strategy allowed us to spatially map 86% of olfactory receptors across the olfactory bulb and uncover a relationship between OR sequence and glomerular position.
Collapse
Affiliation(s)
- Kevin W Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shawn D Burton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Maira H Nagai
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin D Silverman
- College of Information Science and Technology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
- Institute for Computational and Data Science, Pennsylvania State University, University Park, PA, 16802, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
6
|
Cheng RP, Dang P, Taku AA, Moon YJ, Pham V, Sun X, Zhao E, Raper JA. Loss of Neuropilin2a/b or Sema3fa alters olfactory sensory axon dynamics and protoglomerular targeting. Neural Dev 2022; 17:1. [PMID: 34980234 PMCID: PMC8725463 DOI: 10.1186/s13064-021-00157-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Olfactory Sensory Neuron (OSN) axons project from the zebrafish olfactory epithelium to reproducible intermediate target locations in the olfactory bulb called protoglomeruli at early stages in development. Two classes of OSNs expressing either OMP or TRPC2 exclusively target distinct, complementary protoglomeruli. Using RNAseq, we identified axon guidance receptors nrp2a and nrp2b, and their ligand sema3fa, as potential guidance factors that are differentially expressed between these two classes of OSNs. METHODS To investigate their role in OSN axon guidance, we assessed the protoglomerular targeting fidelity of OSNs labeled by OMP:RFP and TRPC2:Venus transgenes in nrp2a, nrp2b, or sema3fa mutants. We used double mutant and genetic interaction experiments to interrogate the relationship between the three genes. We used live time-lapse imaging to compare the dynamic behaviors of OSN growth cones during protoglomerular targeting in heterozygous and mutant larvae. RESULTS The fidelity of protoglomerular targeting of TRPC2-class OSNs is degraded in nrp2a, nrp2b, or sema3fa mutants, as axons misproject into OMP-specific protoglomeruli and other ectopic locations in the bulb. These misprojections are further enhanced in nrp2a;nrp2b double mutants suggesting that nrp2s work at least partially in parallel in the same guidance process. Results from genetic interaction experiments are consistent with sema3fa acting in the same biological pathway as both nrp2a and nrp2b. Live time-lapse imaging was used to examine the dynamic behavior of TRPC2-class growth cones in nrp2a mutants compared to heterozygous siblings. Some TRPC2-class growth cones ectopically enter the dorsal-medial region of the bulb in both groups, but in fully mutant embryos, they are less likely to correct the error through retraction. The same result was observed when TRPC2-class growth cone behavior was compared between sema3fa heterozygous and sema3fa mutant larvae. CONCLUSIONS Our results suggest that nrp2a and nrp2b expressed in TRPC2-class OSNs help prevent their mixing with axon projections in OMP-specific protoglomeruli, and further, that sema3fa helps to exclude TRPC2-class axons by repulsion from the dorsal-medial bulb.
Collapse
Affiliation(s)
- Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Puneet Dang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Yoon Ji Moon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Vi Pham
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Xiaohe Sun
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Ethan Zhao
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
8
|
Carulli D, de Winter F, Verhaagen J. Semaphorins in Adult Nervous System Plasticity and Disease. Front Synaptic Neurosci 2021; 13:672891. [PMID: 34045951 PMCID: PMC8148045 DOI: 10.3389/fnsyn.2021.672891] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
9
|
Lodovichi C. Topographic organization in the olfactory bulb. Cell Tissue Res 2021; 383:457-472. [PMID: 33404841 PMCID: PMC7873094 DOI: 10.1007/s00441-020-03348-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
10
|
Axonal Odorant Receptors Mediate Axon Targeting. Cell Rep 2020; 29:4334-4348.e7. [PMID: 31875544 PMCID: PMC6941231 DOI: 10.1016/j.celrep.2019.11.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 12/05/2022] Open
Abstract
In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting. Axonal odorant receptors respond to cues elaborated in the olfactory bulb PEBP1, expressed in the olfactory bulb, is a putative ligand of axonal receptors Genetic ablation of PEBP1 results in disrupted olfactory map in vivo Axonal odorant receptors modulate axon targeting in the sensory map formation
Collapse
|
11
|
Lodovichi C. Role of Axonal Odorant Receptors in Olfactory Topography. Neurosci Insights 2020; 15:2633105520923411. [PMID: 32529185 PMCID: PMC7262975 DOI: 10.1177/2633105520923411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 11/17/2022] Open
Abstract
A unique feature in the organization of the olfactory system is the dual role of the odorant receptors: they detect odors in the nasal epithelium and they play an instructive role in the convergence of olfactory sensory neuron axons in specific loci, ie, glomeruli, in the olfactory bulb. The dual role is corroborated by the expression of the odorant receptors in 2 specific locations of the olfactory sensory neurons: the cilia that protrude in the nostril, where the odorant receptors interact with odors, and the axon terminal, a suitable location for a potential axon guidance molecule. The mechanism of activation and function of the odorant receptors expressed at the axon terminal remained unknown for almost 20 years. A recent study identified the first putative ligand of the axonal odorant receptors, phosphatidylethanolamine-binding protein1, a molecule expressed in the olfactory bulb. The distinctive mechanisms of activation of the odorant receptors expressed at the opposite locations in sensory neurons, by odors, at the cilia, and by molecules expressed in the olfactory bulb, at the axon terminal, explain the dual role of the odorant receptors and link the specificity of odor perception with its internal representation, in the topographic map.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Padova, Italy.,PNC, Padova Neuroscience Center, Padova, Italy.,VIMM, Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
12
|
Agonist-independent GPCR activity and receptor-instructed axonal projection in the mouse olfactory system. Future Med Chem 2019; 11:3091-3096. [PMID: 31838900 DOI: 10.4155/fmc-2019-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Vaddadi N, Iversen K, Raja R, Phen A, Brignall A, Dumontier E, Cloutier JF. Kirrel2 is differentially required in populations of olfactory sensory neurons for the targeting of axons in the olfactory bulb. Development 2019; 146:dev.173310. [PMID: 31142543 DOI: 10.1242/dev.173310] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/15/2019] [Indexed: 01/25/2023]
Abstract
The formation of olfactory maps in the olfactory bulb (OB) is crucial for the control of innate and learned mouse behaviors. Olfactory sensory neurons (OSNs) expressing a specific odorant receptor project axons into spatially conserved glomeruli within the OB and synapse onto mitral cell dendrites. Combinatorial expression of members of the Kirrel family of cell adhesion molecules has been proposed to regulate OSN axonal coalescence; however, loss-of-function experiments have yet to establish their requirement in this process. We examined projections of several OSN populations in mice that lacked either Kirrel2 alone, or both Kirrel2 and Kirrel3. Our results show that Kirrel2 and Kirrel3 are dispensable for the coalescence of MOR1-3-expressing OSN axons to the most dorsal region (DI) of the OB. In contrast, loss of Kirrel2 caused MOR174-9- and M72-expressing OSN axons, projecting to the DII region, to target ectopic glomeruli. Our loss-of-function approach demonstrates that Kirrel2 is required for axonal coalescence in subsets of OSNs that project axons to the DII region and reveals that Kirrel2/3-independent mechanisms also control OSN axonal coalescence in certain regions of the OB.
Collapse
Affiliation(s)
- Neelima Vaddadi
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Katrine Iversen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Reesha Raja
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Alina Phen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Alexandra Brignall
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Emilie Dumontier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada .,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|
14
|
Semaphorin 3A as an inhibitive factor for migration of olfactory ensheathing cells through cofilin activation is involved in formation of olfactory nerve layer. Mol Cell Neurosci 2018; 92:27-39. [PMID: 29940213 DOI: 10.1016/j.mcn.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/23/2018] [Accepted: 06/19/2018] [Indexed: 01/27/2023] Open
Abstract
Olfactory ensheathing cells (OECs) migrate from olfactory epithelium towards olfactory bulb (OB), contributing to formation of the presumptive olfactory nerve layer during development. However, it remains unclear that molecular mechanism of regulation of OEC migration in OB. In the present study, we found that OECs highly expressed the receptors of semaphorin 3A (Sema3A) in vitro and in vivo, whereas Sema3A displayed a gradient expression pattern with higher in inner layer of OB and lower in outer layer of OB. Furthermore, the collapse assays, Boyden chamber migration assays and single-cell migration assays showed that Sema3A induced the collapse of leading front of OECs and inhibited OEC migration. Thirdly, the leading front of OECs exhibited adaptation in a protein synthesis-independent manner, and endocytosis-dependent manner during Sema3A-induced OEC migration. Finally, Sema3A-induced collapse of leading front was required the decrease of focal adhesion and a retrograde F-actin flow in a cofilin activation-dependent manner. Taken together, these results demonstrate that Sema3A as an inhibitive migratory factor for OEC migration through cofilin activation is involved in the formation of olfactory nerve layer.
Collapse
|
15
|
Dang P, Fisher SA, Stefanik DJ, Kim J, Raper JA. Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genet 2018; 14:e1007164. [PMID: 29385124 PMCID: PMC5809090 DOI: 10.1371/journal.pgen.1007164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/12/2018] [Accepted: 12/25/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory sensory neurons choose to express a single odorant receptor (OR) from a large gene repertoire and extend axons to reproducible, OR-specific locations within the olfactory bulb. This developmental process produces a topographically organized map of odorant experience in the brain. The axon guidance mechanisms that generate this pattern of connectivity, as well as those that coordinate OR choice and axonal guidance receptor expression, are incompletely understood. We applied the powerful approach of single-cell RNA-seq on newly born olfactory sensory neurons (OSNs) in young zebrafish larvae to address these issues. Expression profiles were generated for 56 individual Olfactory Marker Protein (OMP) positive sensory neurons by single-cell (SC) RNA-seq. We show that just as in mouse OSNs, mature zebrafish OSNs typically express a single predominant OR transcript. Our previous work suggests that OSN targeting is related to the OR clade from which a sensory neuron chooses to express its odorant receptor. We categorized each of the mature cells based on the clade of their predominantly expressed OR. Transcripts expressed at higher levels in each of three clade-related categories were identified using Penalized Linear Discriminant Analysis (PLDA). A genome-wide approach was used to identify membrane-associated proteins that are most likely to have guidance-related activity. We found that OSNs that choose to express an OR from a particular clade also express specific subsets of potential axon guidance genes and transcription factors. We validated our identification of candidate axon guidance genes for one clade of OSNs using bulk RNA-seq from a subset of transgene-labeled neurons that project to a single protoglomerulus. The differential expression patterns of selected candidate guidance genes were confirmed using fluorescent in situ hybridization. Most importantly, we observed axonal mistargeting in knockouts of three candidate axonal guidance genes identified in this analysis: nrp1a, nrp1b, and robo2. In each case, targeting errors were detected in the subset of axons that normally express these transcripts at high levels, and not in the axons that express them at low levels. Our findings demonstrate that specific, functional, axonal guidance related genes are expressed in subsets of OSNs that that can be categorized by their patterns of OR expression.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
| | - Stephen A. Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Derek J. Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jonathan A. Raper
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Šmít D, Fouquet C, Pincet F, Zapotocky M, Trembleau A. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering. eLife 2017; 6:19907. [PMID: 28422009 PMCID: PMC5478281 DOI: 10.7554/elife.19907] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023] Open
Abstract
While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation.
Collapse
Affiliation(s)
- Daniel Šmít
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Coralie Fouquet
- Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, Paris, France
| | - Martin Zapotocky
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alain Trembleau
- Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| |
Collapse
|
17
|
Dibattista M, Pifferi S, Boccaccio A, Menini A, Reisert J. The long tale of the calcium activated Cl - channels in olfactory transduction. Channels (Austin) 2017; 11:399-414. [PMID: 28301269 DOI: 10.1080/19336950.2017.1307489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ca2+-activated Cl- currents have been implicated in many cellular processes in different cells, but for many years, their molecular identity remained unknown. Particularly intriguing are Ca2+-activated Cl- currents in olfactory transduction, first described in the early 90s. Well characterized electrophysiologically, they carry most of the odorant-induced receptor current in the cilia of olfactory sensory neurons (OSNs). After many attempts to determine their molecular identity, TMEM16B was found to be abundantly expressed in the cilia of OSNs in 2009 and having biophysical properties like those of the native olfactory channel. A TMEM16B knockout mouse confirmed that TMEM16B was indeed the olfactory Cl- channel but also suggested a limited role in olfactory physiology and behavior. The question then arises of what the precise role of TMEM16b in olfaction is. Here we review the long story of this channel and its possible roles.
Collapse
Affiliation(s)
- Michele Dibattista
- a Department of Basic Medical Sciences, Neuroscience and Sensory Organs , University of Bari A. Moro , Bari , Italy
| | - Simone Pifferi
- b Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati , Trieste , Italy
| | | | - Anna Menini
- b Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati , Trieste , Italy
| | | |
Collapse
|