1
|
Yang JH, Hansen AS. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat Rev Mol Cell Biol 2024; 25:574-591. [PMID: 38413840 PMCID: PMC11574175 DOI: 10.1038/s41580-024-00710-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
2
|
Merle M, Friedman L, Chureau C, Shoushtarizadeh A, Gregor T. Precise and scalable self-organization in mammalian pseudo-embryos. Nat Struct Mol Biol 2024; 31:896-902. [PMID: 38491138 DOI: 10.1038/s41594-024-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
Gene expression is inherently noisy, posing a challenge to understanding how precise and reproducible patterns of gene expression emerge in mammals. Here we investigate this phenomenon using gastruloids, a three-dimensional in vitro model for early mammalian development. Our study reveals intrinsic reproducibility in the self-organization of gastruloids, encompassing growth dynamics and gene expression patterns. We observe a remarkable degree of control over gene expression along the main body axis, with pattern boundaries positioned with single-cell precision. Furthermore, as gastruloids grow, both their physical proportions and gene expression patterns scale proportionally with system size. Notably, these properties emerge spontaneously in self-organizing cell aggregates, distinct from many in vivo systems constrained by fixed boundary conditions. Our findings shed light on the intricacies of developmental precision, reproducibility and size scaling within a mammalian system, suggesting that these phenomena might constitute fundamental features of multicellularity.
Collapse
Affiliation(s)
- Mélody Merle
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Leah Friedman
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Corinne Chureau
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Armin Shoushtarizadeh
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Thomas Gregor
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France.
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Fu Z, Shi Y, Yu S, Zhao Q, Mo H, Yang P. Variation of gene expression of fatty acid acyl CoA reductase associated with wax secretion of a scale insect, Ericerus pela, and identification of its regulation factors through the accessible chromatin analyses and yeast one-hybrid. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22101. [PMID: 38500444 DOI: 10.1002/arch.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The Chinese white wax scale insect (CWWSI), Ericerus pela, can secret an amount of wax equivalent to their body weight. Previous studies demonstrated the fatty acyl-CoA reductase (far3) plays a pivotal role in wax secretion of CWWSI. The high expression of far3 is crucial for the massive wax secretion. However, the transcription regulation of far3 was not clear. To identify regulatory factors that control the expression of far3, the assay for transposase-accessible chromatin (ATAC) and yeast one-hybrid (Y1H) were carried out in this study. The ATAC sequencing of the CWWSI at the early wax-secretion stage ATAC-seq resulted in 22.75 GB raw data, generated 75,827,225 clean reads and revealed 142,771 peaks. There was one significant peak in the 3 kb upstream regulation regions. The peak sequence is located between -1000 and -670 bp upstream of the far3 transcription start site, spanning a length of 331 bp. This peak sequence served as bait for creating the pAbAi-peak recombinant vector, used in Y1H screenings to identify proteins interacting with far3 gene. The results indicate a successful CWWSI cDNA library construction with a capacity of 1.2 × 107 colony forming unit, a 95.8% recombination rate, and insert sizes between 1,000 and 2,000 bp. Self-activation tests established that 100 ng/mL of AbA effectively inhibited bait vector self-activation. Finally, a total of 88 positive clones were selected. After sequencing and removal of duplication, 63 unique clones were obtained from these screened colonies. By aligning the clone sequences with full-length transcriptome and genome of CWWSI, the full-length coding sequences of these clones were obtained. BlastX analysis identified a transcription factor, nuclear transcription factor Y beta, and two co-activators, cAMP-response-element-binding-protein-binding protein and WW domain binding protein 2. Reverse transcription quantitative polymerase chain reaction analysis confirmed that their expression patterns were consistent with the developmental stages preceding wax secretion and matched the wax secretion characteristics during ovulation periods. These results are beneficial for further research into the regulatory mechanisms of wax secretion of CWWSI.
Collapse
Affiliation(s)
- Zuoyi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Nanjing Forestry University, Nanjing, China
| | - Yuanchong Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Shuhui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Qiuyu Zhao
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Haifeng Mo
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming, China
| |
Collapse
|
4
|
Wang X, Liu D, Luo J, Kong D, Zhang Y. Exploring the Role of Enhancer-Mediated Transcriptional Regulation in Precision Biology. Int J Mol Sci 2023; 24:10843. [PMID: 37446021 PMCID: PMC10342031 DOI: 10.3390/ijms241310843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The emergence of precision biology has been driven by the development of advanced technologies and techniques in high-resolution biological research systems. Enhancer-mediated transcriptional regulation, a complex network of gene expression and regulation in eukaryotes, has attracted significant attention as a promising avenue for investigating the underlying mechanisms of biological processes and diseases. To address biological problems with precision, large amounts of data, functional information, and research on the mechanisms of action of biological molecules is required to address biological problems with precision. Enhancers, including typical enhancers and super enhancers, play a crucial role in gene expression and regulation within this network. The identification and targeting of disease-associated enhancers hold the potential to advance precision medicine. In this review, we present the concepts, progress, importance, and challenges in precision biology, transcription regulation, and enhancers. Furthermore, we propose a model of transcriptional regulation for multi-enhancers and provide examples of their mechanisms in mammalian cells, thereby enhancing our understanding of how enhancers achieve precise regulation of gene expression in life processes. Precision biology holds promise in providing new tools and platforms for discovering insights into gene expression and disease occurrence, ultimately benefiting individuals and society as a whole.
Collapse
Affiliation(s)
- Xueyan Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Danli Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Jing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Dashuai Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Yubo Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| |
Collapse
|
5
|
Gautam P, Sinha SK. Theoretical investigation of functional responses of bio-molecular assembly networks. SOFT MATTER 2023; 19:3803-3817. [PMID: 37191191 DOI: 10.1039/d2sm01530g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cooperative protein-protein and protein-DNA interactions form programmable complex assemblies, often performing non-linear gene regulatory operations involved in signal transductions and cell fate determination. The apparent structure of those complex assemblies is very similar, but their functional response strongly depends on the topology of the protein-DNA interaction networks. Here, we demonstrate how the coordinated self-assembly creates gene regulatory network motifs that corroborate the existence of a precise functional response at the molecular level using thermodynamic and dynamic analyses. Our theoretical and Monte Carlo simulations show that a complex network of interactions can form a decision-making loop, such as feedback and feed-forward circuits, only by a few molecular mechanisms. We characterize each possible network of interactions by systematic variations of free energy parameters associated with the binding among biomolecules and DNA looping. We also find that the higher-order networks exhibit alternative steady states from the stochastic dynamics of each network. We capture this signature by calculating stochastic potentials and attributing their multi-stability features. We validate our findings against the Gal promoter system in yeast cells. Overall, we show that the network topology is vital in phenotype diversity in regulatory circuits.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Sudipta Kumar Sinha
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
6
|
Harden TT, Vincent BJ, DePace AH. Transcriptional activators in the early Drosophila embryo perform different kinetic roles. Cell Syst 2023; 14:258-272.e4. [PMID: 37080162 PMCID: PMC10473017 DOI: 10.1016/j.cels.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/26/2022] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
Combinatorial regulation of gene expression by transcription factors (TFs) may in part arise from kinetic synergy-wherein TFs regulate different steps in the transcription cycle. Kinetic synergy requires that TFs play distinguishable kinetic roles. Here, we used live imaging to determine the kinetic roles of three TFs that activate transcription in the Drosophila embryo-Zelda, Bicoid, and Stat92E-by introducing their binding sites into the even-skipped stripe 2 enhancer. These TFs influence different sets of kinetic parameters, and their influence can change over time. All three TFs increased the fraction of transcriptionally active nuclei; Zelda also shortened the first-passage time into transcription and regulated the interval between transcription events. Stat92E also increased the lifetimes of active transcription. Different TFs can therefore play distinct kinetic roles in activating the transcription. This has consequences for understanding the composition and flexibility of regulatory DNA sequences and the biochemical function of TFs. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Timothy T Harden
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben J Vincent
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Lynch TR, Xue M, Czerniak CW, Lee C, Kimble J. Notch-dependent DNA cis-regulatory elements and their dose-dependent control of C. elegans stem cell self-renewal. Development 2022; 149:dev200332. [PMID: 35394007 PMCID: PMC9058496 DOI: 10.1242/dev.200332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
A long-standing biological question is how DNA cis-regulatory elements shape transcriptional patterns during metazoan development. Reporter constructs, cell culture assays and computational modeling have made major contributions to answering this question, but analysis of elements in their natural context is an important complement. Here, we mutate Notch-dependent LAG-1 binding sites (LBSs) in the endogenous Caenorhabditis elegans sygl-1 gene, which encodes a key stem cell regulator, and analyze the consequences on sygl-1 expression (nascent transcripts, mRNA, protein) and stem cell maintenance. Mutation of one LBS in a three-element cluster approximately halved both expression and stem cell pool size, whereas mutation of two LBSs essentially abolished them. Heterozygous LBS mutant clusters provided intermediate values. Our results lead to two major conclusions. First, both LBS number and configuration impact cluster activity: LBSs act additively in trans and synergistically in cis. Second, the SYGL-1 gradient promotes self-renewal above its functional threshold and triggers differentiation below the threshold. Our approach of coupling CRISPR/Cas9 LBS mutations with effects on both molecular and biological readouts establishes a powerful model for in vivo analyses of DNA cis-regulatory elements.
Collapse
Affiliation(s)
- Tina R. Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| | - Mingyu Xue
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Cazza W. Czerniak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - ChangHwan Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| |
Collapse
|
8
|
Bellec M, Dufourt J, Hunt G, Lenden-Hasse H, Trullo A, Zine El Aabidine A, Lamarque M, Gaskill MM, Faure-Gautron H, Mannervik M, Harrison MM, Andrau JC, Favard C, Radulescu O, Lagha M. The control of transcriptional memory by stable mitotic bookmarking. Nat Commun 2022; 13:1176. [PMID: 35246556 PMCID: PMC8897465 DOI: 10.1038/s41467-022-28855-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 01/23/2023] Open
Abstract
To maintain cellular identities during development, gene expression profiles must be faithfully propagated through cell generations. The reestablishment of gene expression patterns upon mitotic exit is mediated, in part, by transcription factors (TF) mitotic bookmarking. However, the mechanisms and functions of TF mitotic bookmarking during early embryogenesis remain poorly understood. In this study, taking advantage of the naturally synchronized mitoses of Drosophila early embryos, we provide evidence that GAGA pioneer factor (GAF) acts as a stable mitotic bookmarker during zygotic genome activation. We show that, during mitosis, GAF remains associated to a large fraction of its interphase targets, including at cis-regulatory sequences of key developmental genes with both active and repressive chromatin signatures. GAF mitotic targets are globally accessible during mitosis and are bookmarked via histone acetylation (H4K8ac). By monitoring the kinetics of transcriptional activation in living embryos, we report that GAF binding establishes competence for rapid activation upon mitotic exit.
Collapse
Affiliation(s)
- Maëlle Bellec
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Jérémy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - George Hunt
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Hélène Lenden-Hasse
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Antonio Trullo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Marie Lamarque
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Marissa M Gaskill
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Heloïse Faure-Gautron
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Ovidiu Radulescu
- LPHI, UMR CNRS 5235, University of Montpellier, Place E. Bataillon - Bât. 24 cc 107, Montpellier, 34095, Cedex 5, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France.
| |
Collapse
|
9
|
Abstract
Duplication and divergence is a major mechanism by which new proteins and functions emerge in biology. Consequently, most organisms, in all domains of life, have genomes that encode large paralogous families of proteins. For recently duplicated pathways to acquire different, independent functions, the two paralogs must acquire mutations that effectively insulate them from one another. For instance, paralogous signaling proteins must acquire mutations that endow them with different interaction specificities such that they can participate in different signaling pathways without disruptive cross-talk. Although duplicated genes undoubtedly shape each other's evolution as they diverge and attain new functions, it is less clear how other paralogs impact or constrain gene duplication. Does the establishment of a new pathway by duplication and divergence require the system-wide optimization of all paralogs? The answer has profound implications for molecular evolution and our ability to engineer biological systems. Here, we discuss models, experiments, and approaches for tackling this question, and for understanding how new proteins and pathways are born.
Collapse
Affiliation(s)
- Conor J McClune
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Xiao JY, Hafner A, Boettiger AN. How subtle changes in 3D structure can create large changes in transcription. eLife 2021; 10:e64320. [PMID: 34240703 PMCID: PMC8352591 DOI: 10.7554/elife.64320] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Animal genomes are organized into topologically associated domains (TADs). TADs are thought to contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within a TAD and preventing these contacts across TAD borders. However, the absolute difference in contact frequency across TAD boundaries is usually less than 2-fold, even though disruptions of TAD borders can change gene expression by 10-fold. Existing models fail to explain this hypersensitive response. Here, we propose a futile cycle model of enhancer-mediated regulation that can exhibit hypersensitivity through bistability and hysteresis. Consistent with recent experiments, this regulation does not exhibit strong correlation between E-P contact and promoter activity, even though regulation occurs through contact. Through mathematical analysis and stochastic simulation, we show that this system can create an illusion of E-P biochemical specificity and explain the importance of weak TAD boundaries. It also offers a mechanism to reconcile apparently contradictory results from recent global TAD disruption with local TAD boundary deletion experiments. Together, these analyses advance our understanding of cis-regulatory contacts in controlling gene expression and suggest new experimental directions.
Collapse
Affiliation(s)
| | - Antonina Hafner
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| | - Alistair N Boettiger
- Program in Biophysics, Stanford UniversityStanfordUnited States
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
11
|
Pachano T, Sánchez-Gaya V, Ealo T, Mariner-Faulí M, Bleckwehl T, Asenjo HG, Respuela P, Cruz-Molina S, Muñoz-San Martín M, Haro E, van IJcken WFJ, Landeira D, Rada-Iglesias A. Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness. Nat Genet 2021; 53:1036-1049. [PMID: 34183853 PMCID: PMC7611182 DOI: 10.1038/s41588-021-00888-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
CpG islands (CGIs) represent a widespread feature of vertebrate genomes, being associated with ~70% of all gene promoters. CGIs control transcription initiation by conferring nearby promoters with unique chromatin properties. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance is barely known. Here we show that oCGIs are an essential component of poised enhancers that augment their long-range regulatory activity and control the responsiveness of their target genes. Using a knock-in strategy in mouse embryonic stem cells, we introduced poised enhancers with or without oCGIs within topologically associating domains harboring genes with different types of promoters. Analysis of the resulting cell lines revealed that oCGIs act as tethering elements that promote the physical and functional communication between poised enhancers and distally located genes, particularly those with large CGI clusters in their promoters. Therefore, by acting as genetic determinants of gene-enhancer compatibility, CGIs can contribute to gene expression control under both physiological and potentially pathological conditions.
Collapse
Affiliation(s)
- Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Thais Ealo
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Maria Mariner-Faulí
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Helena G Asenjo
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Virgen de las Nieves, Granada, Spain
| | - Patricia Respuela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Sara Cruz-Molina
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - María Muñoz-San Martín
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | | | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Virgen de las Nieves, Granada, Spain
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Abstract
Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.
Collapse
|
13
|
Abstract
Half a century after Lewis Wolpert's seminal conceptual advance on how cellular fates distribute in space, we provide a brief historical perspective on how the concept of positional information emerged and influenced the field of developmental biology and beyond. We focus on a modern interpretation of this concept in terms of information theory, largely centered on its application to cell specification in the early Drosophila embryo. We argue that a true physical variable (position) is encoded in local concentrations of patterning molecules, that this mapping is stochastic, and that the processes by which positions and corresponding cell fates are determined based on these concentrations need to take such stochasticity into account. With this approach, we shift the focus from biological mechanisms, molecules, genes and pathways to quantitative systems-level questions: where does positional information reside, how it is transformed and accessed during development, and what fundamental limits it is subject to?
Collapse
Affiliation(s)
- Gašper Tkačik
- Institute of Science and Technology Austria, Am Campus 1, AT-3400 Klosterneuburg, Austria
| | - Thomas Gregor
- Joseph Henry Laboratories of Physics and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Developmental and Stem Cell Biology, UMR3738, Institut Pasteur, FR-75015 Paris, France
| |
Collapse
|
14
|
Irizarry J, Stathopoulos A. Dynamic patterning by morphogens illuminated by cis-regulatory studies. Development 2021; 148:148/2/dev196113. [PMID: 33472851 DOI: 10.1242/dev.196113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphogen concentration changes in space as well as over time during development. However, how these dynamics are interpreted by cells to specify fate is not well understood. Here, we focus on two morphogens: the maternal transcription factors Bicoid and Dorsal, which directly regulate target genes to pattern Drosophila embryos. The actions of these factors at enhancers has been thoroughly dissected and provides a rich platform for understanding direct input by morphogens and their changing roles over time. Importantly, Bicoid and Dorsal do not work alone; we also discuss additional inputs that work with morphogens to control spatiotemporal gene expression in embryos.
Collapse
Affiliation(s)
- Jihyun Irizarry
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Le Poul Y, Xin Y, Ling L, Mühling B, Jaenichen R, Hörl D, Bunk R, Harz H, Leonhardt H, Wang Y, Osipova E, Museridze M, Dharmadhikari D, Murphy E, Rohs R, Preibisch S, Prud'homme B, Gompel N. Regulatory encoding of quantitative variation in spatial activity of a Drosophila enhancer. SCIENCE ADVANCES 2020; 6:eabe2955. [PMID: 33268361 PMCID: PMC7821883 DOI: 10.1126/sciadv.abe2955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Developmental enhancers control the expression of genes prefiguring morphological patterns. The activity of an enhancer varies among cells of a tissue, but collectively, expression levels in individual cells constitute a spatial pattern of gene expression. How the spatial and quantitative regulatory information is encoded in an enhancer sequence is elusive. To link spatial pattern and activity levels of an enhancer, we used systematic mutations of the yellow spot enhancer, active in developing Drosophila wings, and tested their effect in a reporter assay. Moreover, we developed an analytic framework based on the comprehensive quantification of spatial reporter activity. We show that the quantitative enhancer activity results from densely packed regulatory information along the sequence, and that a complex interplay between activators and multiple tiers of repressors carves the spatial pattern. Our results shed light on how an enhancer reads and integrates trans-regulatory landscape information to encode a spatial quantitative pattern.
Collapse
Affiliation(s)
- Yann Le Poul
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yaqun Xin
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Liucong Ling
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Bettina Mühling
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Rita Jaenichen
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - David Hörl
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Raven Bunk
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Hartmann Harz
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yingfei Wang
- Quantitative and Computational Biology, Departments of Biological Sciences, Chemistry, Physics and Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Elena Osipova
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Mariam Museridze
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Deepak Dharmadhikari
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Eamonn Murphy
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Remo Rohs
- Quantitative and Computational Biology, Departments of Biological Sciences, Chemistry, Physics and Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Benjamin Prud'homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France.
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
16
|
Barbier I, Perez‐Carrasco R, Schaerli Y. Controlling spatiotemporal pattern formation in a concentration gradient with a synthetic toggle switch. Mol Syst Biol 2020; 16:e9361. [PMID: 32529808 PMCID: PMC7290156 DOI: 10.15252/msb.20199361] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 11/20/2022] Open
Abstract
The formation of spatiotemporal patterns of gene expression is frequently guided by gradients of diffusible signaling molecules. The toggle switch subnetwork, composed of two cross-repressing transcription factors, is a common component of gene regulatory networks in charge of patterning, converting the continuous information provided by the gradient into discrete abutting stripes of gene expression. We present a synthetic biology framework to understand and characterize the spatiotemporal patterning properties of the toggle switch. To this end, we built a synthetic toggle switch controllable by diffusible molecules in Escherichia coli. We analyzed the patterning capabilities of the circuit by combining quantitative measurements with a mathematical reconstruction of the underlying dynamical system. The toggle switch can produce robust patterns with sharp boundaries, governed by bistability and hysteresis. We further demonstrate how the hysteresis, position, timing, and precision of the boundary can be controlled, highlighting the dynamical flexibility of the circuit.
Collapse
Affiliation(s)
- Içvara Barbier
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Rubén Perez‐Carrasco
- Department of Life SciencesImperial College LondonSouth Kensington CampusLondonUK
- Department of MathematicsUniversity College LondonLondonUK
| | - Yolanda Schaerli
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
17
|
Tissue-Scale Mechanical Coupling Reduces Morphogenetic Noise to Ensure Precision during Epithelial Folding. Dev Cell 2020; 53:212-228.e12. [PMID: 32169160 DOI: 10.1016/j.devcel.2020.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Morphological constancy is universal in developing systems. It is unclear whether precise morphogenesis stems from faithful mechanical interpretation of gene expression patterns. We investigate the formation of the cephalic furrow, an epithelial fold that is precisely positioned with a linear morphology. Fold initiation is specified by a precise genetic code with single-cell row resolution. This positional code activates and spatially confines lateral myosin contractility to induce folding. However, 20% of initiating cells are mis-specified because of fluctuating myosin intensities at the cellular level. Nevertheless, the furrow remains linearly aligned. We find that lateral myosin is planar polarized, integrating contractile membrane interfaces into supracellular "ribbons." Local reduction of mechanical coupling at the "ribbons" using optogenetics decreases furrow linearity. Furthermore, 3D vertex modeling indicates that polarized, interconnected contractility confers morphological robustness against noise. Thus, tissue-scale mechanical coupling functions as a denoising mechanism to ensure morphogenetic precision despite noisy decoding of positional information.
Collapse
|
18
|
Kalay G, Atallah J, Sierra NC, Tang AM, Crofton AE, Murugesan MK, Wykoff-Clary S, Lott SE. Evolution of larval segment position across 12 Drosophila species. Evolution 2019; 74:1409-1422. [PMID: 31886902 PMCID: PMC7496318 DOI: 10.1111/evo.13911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022]
Abstract
Many developmental traits that are critical to the survival of the organism are also robust. These robust traits are resistant to phenotypic change in the face of variation. This presents a challenge to evolution. In this article, we asked whether and how a well‐established robust trait, Drosophila segment patterning, changed over the evolutionary history of the genus. We compared segment position scaled to body length at the first‐instar larval stage among 12 Drosophila species. We found that relative segment position has changed many times across the phylogeny. Changes were frequent, but primarily small in magnitude. Phylogenetic analysis demonstrated that rates of change in segment position are variable along the Drosophila phylogenetic tree, and that these changes can occur in short evolutionary timescales. Correlation between position shifts of segments decreased as the distance between two segments increased, suggesting local control of segment position. The posterior‐most abdominal segment showed the highest magnitude of change on average, had the highest rate of evolution between species, and appeared to be evolving more independently as compared to the rest of the segments. This segment was exceptionally elongated in the cactophilic species in our dataset, raising questions as to whether this change may be adaptive.
Collapse
Affiliation(s)
- Gizem Kalay
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Joel Atallah
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616.,current address: Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA, 70148
| | - Noemie C Sierra
- Earth and Planetary Sciences Department, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Austin M Tang
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Amanda E Crofton
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Mohan K Murugesan
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Sherri Wykoff-Clary
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Susan E Lott
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| |
Collapse
|
19
|
Racioppi C, Wiechecki KA, Christiaen L. Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices. eLife 2019; 8:49921. [PMID: 31746740 PMCID: PMC6952182 DOI: 10.7554/elife.49921] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
During embryogenesis, chromatin accessibility profiles control lineage-specific gene expression by modulating transcription, thus impacting multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model Ciona to profile chromatin accessibility through stereotyped transitions from naive Mesp+ mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors. An FGF-Foxf pathway acts in multipotent progenitors to establish cardiopharyngeal-specific patterns of accessibility, which govern later heart vs. pharyngeal muscle-specific expression profiles, demonstrating extensive spatiotemporal decoupling between early cardiopharyngeal enhancer accessibility and late cell-type-specific activity. We found that multiple cis-regulatory elements, with distinct chromatin accessibility profiles and motif compositions, are required to activate Ebf and Tbx1/10, two key determinants of cardiopharyngeal fate choices. We propose that these 'combined enhancers' foster spatially and temporally accurate fate choices, by increasing the repertoire of regulatory inputs that control gene expression, through either accessibility and/or activity.
Collapse
Affiliation(s)
- Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Keira A Wiechecki
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
20
|
Bellec M, Radulescu O, Lagha M. Remembering the past: Mitotic bookmarking in a developing embryo. ACTA ACUST UNITED AC 2018; 11:41-49. [PMID: 30417158 PMCID: PMC6218673 DOI: 10.1016/j.coisb.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During development, transcriptional properties of progenitor cells are stably propagated across multiple cellular divisions. Yet, at each division, chromatin faces structural constraints imposed by the important nuclear re-organization operating during mitosis. It is now clear that not all transcriptional regulators are ejected during mitosis, but rather that a subset of transcription factors, chromatin regulators and epigenetic histone marks are able to ‘bookmark’ specific loci, thereby providing a mitotic memory. Here we review mechanisms of mitotic bookmarking and discuss their impact on transcriptional dynamics in the context of multicellular developing embryos. We document recent discoveries and technological advances, and present current mathematical models of short-term transcriptional memory. Mitotically retained factors are able to ‘bookmark’ specific loci during embryogenesis. Mitotic bookmarking can elicit rapid post-mitotic transcriptional re-activation. Mathematical models relating transcriptional memory predict that efficient memory requires slow dynamics. Mitotic memory leads to a spectrum of consequences: stability, flexibility or plasticity.
Collapse
Affiliation(s)
- Maelle Bellec
- Institut de Genetique Moleculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Ovidiu Radulescu
- DIMNP, UMR CNRS 5235, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Genetique Moleculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Corresponding author: Lagha, Mounia
| |
Collapse
|
21
|
Saunders TE, He CY, Koehl P, Ong LLS, So PTC. Eleven quick tips for running an interdisciplinary short course for new graduate students. PLoS Comput Biol 2018; 14:e1006039. [PMID: 29596417 PMCID: PMC5875739 DOI: 10.1371/journal.pcbi.1006039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantitative reasoning and techniques are increasingly ubiquitous across the life sciences. However, new graduate researchers with a biology background are often not equipped with the skills that are required to utilize such techniques correctly and efficiently. In parallel, there are increasing numbers of engineers, mathematicians, and physical scientists interested in studying problems in biology with only basic knowledge of this field. Students from such varied backgrounds can struggle to engage proactively together to tackle problems in biology. There is therefore a need to establish bridges between those disciplines. It is our proposal that the beginning of graduate school is the appropriate time to initiate those bridges through an interdisciplinary short course. We have instigated an intensive 10-day course that brought together new graduate students in the life sciences from across departments within the National University of Singapore. The course aimed at introducing biological problems as well as some of the quantitative approaches commonly used when tackling those problems. We have run the course for three years with over 100 students attending. Building on this experience, we share 11 quick tips on how to run such an effective, interdisciplinary short course for new graduate students in the biosciences.
Collapse
Affiliation(s)
- Timothy E. Saunders
- Department of Biological Sciences, National University of Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore
- * E-mail:
| | - Cynthia Y. He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Patrice Koehl
- Department of Computer Science and Genome Center, University of California Davis, Davis, California, United States of America
| | - L. L. Sharon Ong
- Singapore MIT Alliance for Research and Technology Centre, Singapore
| | - Peter T. C. So
- Singapore MIT Alliance for Research and Technology Centre, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States of America
| |
Collapse
|