1
|
Gattoni G, Keitley D, Sawle A, Benito-Gutiérrez E. An ancient apical patterning system sets the position of the forebrain in chordates. SCIENCE ADVANCES 2025; 11:eadq4731. [PMID: 39854450 PMCID: PMC11758999 DOI: 10.1126/sciadv.adq4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates. Using functional approaches, we show Wnt signaling regulating this co-expression module in amphioxus, like the aGRN in echinoderms, and that its overactivation suppresses forebrain identity. This suggests a previously undescribed role for Wnt signaling in amphioxus in determining the position of the forebrain. We propose this Wnt-regulated gene co-expression module as a possible mechanism by which the brain set antero-dorsally early in chordate evolution.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ashley Sawle
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | | |
Collapse
|
2
|
Cedden D, Bucher G. The quest for the best target genes for RNAi-mediated pest control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39450789 DOI: 10.1111/imb.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.
Collapse
Affiliation(s)
- Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Gilbert E, Craggs J, Modepalli V. Gene Regulatory Network that Shaped the Evolution of Larval Apical Organ in Cnidaria. Mol Biol Evol 2024; 41:msad285. [PMID: 38152864 PMCID: PMC10781443 DOI: 10.1093/molbev/msad285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Among non-bilaterian animals, a larval apical sensory organ with integrated neurons is only found in cnidarians. Within cnidarians, an apical organ with a ciliary tuft is mainly found in Actiniaria. Whether this apical tuft has evolved independently in Actiniaria or alternatively originated in the common ancestor of Cnidaria and Bilateria and was lost in specific groups is uncertain. To test this hypothesis, we generated transcriptomes of the apical domain during the planula stage of four species representing three key groups of cnidarians: Aurelia aurita (Scyphozoa), Nematostella vectensis (Actiniaria), and Acropora millepora and Acropora tenuis (Scleractinia). We showed that the canonical genes implicated in patterning the apical domain of N. vectensis are largely absent in A. aurita. In contrast, the apical domain of the scleractinian planula shares gene expression pattern with N. vectensis. By comparing the larval single-cell transcriptomes, we revealed the apical organ cell type of Scleractinia and confirmed its homology to Actiniaria. However, Fgfa2, a vital regulator of the regionalization of the N. vectensis apical organ, is absent in the scleractinian genome. Likewise, we found that FoxJ1 and 245 genes associated with cilia are exclusively expressed in the N. vectensis apical domain, which is in line with the presence of ciliary apical tuft in Actiniaria and its absence in Scleractinia and Scyphozoa. Our findings suggest that the common ancestor of cnidarians lacked a ciliary apical tuft, and it could have evolved independently in the Actiniaria.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jamie Craggs
- Horniman Museum and Gardens, London SE23 3PQ, UK
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
4
|
Posnien N, Hunnekuhl VS, Bucher G. Gene expression mapping of the neuroectoderm across phyla - conservation and divergence of early brain anlagen between insects and vertebrates. eLife 2023; 12:e92242. [PMID: 37750868 PMCID: PMC10522337 DOI: 10.7554/elife.92242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.
Collapse
Affiliation(s)
- Nico Posnien
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute, University GoettingenGöttingenGermany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| |
Collapse
|
5
|
Strausfeld NJ, Hou X, Sayre ME, Hirth F. Response to Comment on "The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains". Science 2023; 380:eadg6051. [PMID: 37384690 DOI: 10.1126/science.adg6051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 07/01/2023]
Abstract
Budd et al. challenge the identity of neural traces reported for the Cambrian lobopodian Cardiodictyon catenulum. Their argumentation is unsupported, as are objections with reference to living Onychophora that misinterpret established genomic, genetic, developmental, and neuroanatomical evidence. Instead, phylogenetic data corroborate the finding that the ancestral panarthropod head and brain is unsegmented, as in C. catenulum.
Collapse
Affiliation(s)
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
| | - Marcel E Sayre
- Lund University, Lund Vision Group, Department of Biology, Lund, Sweden & Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RT, UK
| |
Collapse
|
6
|
Feuda R, Peter IS. Homologous gene regulatory networks control development of apical organs and brains in Bilateria. SCIENCE ADVANCES 2022; 8:eabo2416. [PMID: 36322649 PMCID: PMC9629743 DOI: 10.1126/sciadv.abo2416] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Apical organs are relatively simple larval nervous systems. The extent to which apical organs are evolutionarily related to the more complex nervous systems of other animals remains unclear. To identify common developmental mechanisms, we analyzed the gene regulatory network (GRN) controlling the development of the apical organ in sea urchins. We characterized the developmental expression of 30 transcription factors and identified key regulatory functions for FoxQ2, Hbn, Delta/Notch signaling, and SoxC in the patterning of the apical organ and the specification of neurons. Almost the entire set of apical transcription factors is expressed in the nervous system of worms, flies, zebrafish, frogs, and mice. Furthermore, a regulatory module controlling the axial patterning of the vertebrate brain is expressed in the ectoderm of sea urchin embryos. We conclude that GRNs controlling the formation of bilaterian nervous systems share a common origin and that the apical GRN likely resembles an ancestral regulatory program.
Collapse
|
7
|
Seudre O, Martín-Zamora FM, Rapisarda V, Luqman I, Carrillo-Baltodano AM, Martín-Durán JM. The Fox Gene Repertoire in the Annelid Owenia fusiformis Reveals Multiple Expansions of the foxQ2 Class in Spiralia. Genome Biol Evol 2022; 14:evac139. [PMID: 36099507 PMCID: PMC9539403 DOI: 10.1093/gbe/evac139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Fox genes are a large and conserved family of transcription factors involved in many key biological processes, including embryogenesis and body patterning. Although the role of Fox genes has been studied in an array of model systems, comprehensive comparative studies in Spiralia-a large clade of invertebrate animals including molluscs and annelids-are scarce but much needed to better understand the evolutionary history of this gene family. Here, we reconstruct and functionally characterize the Fox gene complement in the annelid Owenia fusiformis, a slow evolving species and member of the sister group to all remaining annelids. The genome of O. fusiformis contains at least a single ortholog for 20 of the 22 Fox gene classes that are ancestral to Bilateria, including an ortholog of the recently discovered foxT class. Temporal and spatial expression dynamics reveal a conserved role of Fox genes in gut formation, mesoderm patterning, and apical organ and cilia formation in Annelida and Spiralia. Moreover, we uncover an ancestral expansion of foxQ2 genes in Spiralia, represented by 11 paralogs in O. fusiformis. Notably, although all foxQ2 copies have apical expression in O. fusiformis, they show variable spatial domains and staggered temporal activation, which suggest cooperation and sub-functionalization among foxQ2 genes for the development of apical fates in this annelid. Altogether, our study informs the evolution and developmental roles of Fox genes in Annelida and Spiralia generally, providing the basis to explore how regulatory changes in Fox gene expression might have contributed to developmental and morphological diversification in Spiralia.
Collapse
Affiliation(s)
- Océane Seudre
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Valentina Rapisarda
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Imran Luqman
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| |
Collapse
|
8
|
Gilbert E, Teeling C, Lebedeva T, Pedersen S, Chrismas N, Genikhovich G, Modepalli V. Molecular and cellular architecture of the larval sensory organ in the cnidarian Nematostella vectensis. Development 2022; 149:dev200833. [PMID: 36000354 PMCID: PMC9481973 DOI: 10.1242/dev.200833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Cnidarians are the only non-bilaterian group to evolve ciliated larvae with an apical sensory organ, which is possibly homologous to the apical organs of bilaterian primary larvae. Here, we generated transcriptomes of the apical tissue in the sea anemone Nematostella vectensis and showed that it has a unique neuronal signature. By integrating previously published larval single-cell data with our apical transcriptomes, we discovered that the apical domain comprises a minimum of six distinct cell types. We show that the apical organ is compartmentalised into apical tuft cells (spot) and larval-specific neurons (ring). Finally, we identify ISX-like (NVE14554), a PRD class homeobox gene specifically expressed in apical tuft cells, as an FGF signalling-dependent transcription factor responsible for the formation of the apical tuft domain via repression of the neural ring fate in apical cells. With this study, we contribute a comparison of the molecular anatomy of apical organs, which must be carried out across phyla to determine whether this crucial larval structure evolved once or multiple times.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Callum Teeling
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
- Doctoral School of Ecology and Evolution, University of Vienna, Vienna, 1030, Austria
| | - Siffreya Pedersen
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Nathan Chrismas
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| |
Collapse
|
9
|
Chang Y, Yang B, Zhang Y, Dong C, Liu L, Zhao X, Wang G. Identification of sex-biased and neurodevelopment genes via brain transcriptome in Ostrinia furnacalis. Front Physiol 2022; 13:953538. [PMID: 36003649 PMCID: PMC9393524 DOI: 10.3389/fphys.2022.953538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Insect brains play important roles in the regulation of sex-biased behaviors such as mating and oviposition. The neural structure and function of brain differences between males and females have been identified, in which the antenna lobes (AL) showed the most discrepancy, however, the whole repertoire of the genes expressed in the brains and the molecular mechanism of neural signaling and structural development are still unclear. In this study, high-throughput transcriptome analysis of male and female brains was carried on in the Asia corn borer, Ostrinia furnacalis, and a total of 39.23 Gb data and 34,092 unigenes were obtained. Among them, 276 genes displayed sex-biased expression by DEG analysis, of which 125 genes were highly expressed in the males and 151 genes were highly expressed in the females. Besides, by homology analysis against genes that have been confirmed to be related to brain neurodevelopment, a total of 24 candidate genes were identified in O. furnacalis. In addition, to further screen the core genes that may be important for sex-biased nerve signaling and neurodevelopment, protein-protein interaction networks were constructed for the sex-biased genes and neurodevelopment genes. We identified 10 (Mhc, Mlc1, Mlc2, Prm, Mf, wupA, TpnC25D, fln, l(2)efl, and Act5C), 11 (PPO2, GNBP3, Spn77Ba, Ppn, yellow-d2, PGRP-LB, PGRP-SD, PGRP-SC2, Hml, Cg25C, and vkg) and 8 (dac, wg, hh, ci, run, Lim1, Rbp9, and Bx) core hub genes that may be related to brain neural development from male-biased, female-biased, and neurodevelopment gene groups. Our results provide a reference for further analysis of the dimorphism of male and female brain structures in agricultural pests.
Collapse
Affiliation(s)
- Yajun Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| | - Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chenxi Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xincheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| |
Collapse
|
10
|
Hakeemi MS, Ansari S, Teuscher M, Weißkopf M, Großmann D, Kessel T, Dönitz J, Siemanowski J, Wan X, Schultheis D, Frasch M, Roth S, Schoppmeier M, Klingler M, Bucher G. Screens in fly and beetle reveal vastly divergent gene sets required for developmental processes. BMC Biol 2022; 20:38. [PMID: 35135533 PMCID: PMC8827203 DOI: 10.1186/s12915-022-01231-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Most of the known genes required for developmental processes have been identified by genetic screens in a few well-studied model organisms, which have been considered representative of related species, and informative—to some degree—for human biology. The fruit fly Drosophila melanogaster is a prime model for insect genetics, and while conservation of many gene functions has been observed among bilaterian animals, a plethora of data show evolutionary divergence of gene function among more closely-related groups, such as within the insects. A quantification of conservation versus divergence of gene functions has been missing, without which it is unclear how representative data from model systems actually are. Results Here, we systematically compare the gene sets required for a number of homologous but divergent developmental processes between fly and beetle in order to quantify the difference of the gene sets. To that end, we expanded our RNAi screen in the red flour beetle Tribolium castaneum to cover more than half of the protein-coding genes. Then we compared the gene sets required for four different developmental processes between beetle and fly. We found that around 50% of the gene functions were identified in the screens of both species while for the rest, phenotypes were revealed only in fly (~ 10%) or beetle (~ 40%) reflecting both technical and biological differences. Accordingly, we were able to annotate novel developmental GO terms for 96 genes studied in this work. With this work, we publish the final dataset for the pupal injection screen of the iBeetle screen reaching a coverage of 87% (13,020 genes). Conclusions We conclude that the gene sets required for a homologous process diverge more than widely believed. Hence, the insights gained in flies may be less representative for insects or protostomes than previously thought, and work in complementary model systems is required to gain a comprehensive picture. The RNAi screening resources developed in this project, the expanding transgenic toolkit, and our large-scale functional data make T. castaneum an excellent model system in that endeavor. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01231-4.
Collapse
Affiliation(s)
- Muhammad Salim Hakeemi
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Salim Ansari
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Current address: Institute of Clinical Pharmacology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Matthias Teuscher
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Matthias Weißkopf
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Daniela Großmann
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Current address: Department of Medical Bioinformatics, University Medical Center Göttingen, University of Göttingen, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Tobias Kessel
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.,Current address: Department of Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| | - Jürgen Dönitz
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Janna Siemanowski
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Current address: Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Xuebin Wan
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Dorothea Schultheis
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.,Current address: Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Frasch
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Siegfried Roth
- Institute for Zoology/Developmental Biology, University of Cologne, Biocenter, Zülpicher Straße 47b, D-50674, Köln, Germany
| | - Michael Schoppmeier
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Martin Klingler
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
11
|
Lin HY, Zhu CQ, Zhang HH, Shen ZC, Zhang CX, Ye YX. The Genetic Network of Forkhead Gene Family in Development of Brown Planthoppers. BIOLOGY 2021; 10:867. [PMID: 34571744 PMCID: PMC8469257 DOI: 10.3390/biology10090867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
We identified 18 distinct Fox genes in the genome of the brown planthopper, Nilaparvata lugens, and further found a novel insect-specific subfamily that we temporarily named FoxT. A total of 16 genes were highly expressed in the eggs, while NlFoxL2 and NlFoxT are female- and male-specific genes, respectively. Large scale RNAi and RNA-seq analyses were used to reveal the functions and potential targets of NlFoxs. In the eggs, NlFoxA, NlFoxN1 and NlFoxN2 are indispensable to early embryogenesis by regulating different target genes; NlFoxG and NlFoxQ co-regulate NlSix3 for brain development; and NlFoxC, NlFoxJ1 and NlFoxP have complementary effects on late embryogenesis. Moreover, NlFoxA, NlFoxNl and NlFoxQ have pleiotropism. NlFoxA and NlFoxQ regulate the expression of NlCHS1 and cuticular proteins, respectively, thereby participating in the formation of cuticles. NlFoxN1, which regulates the expression of NlKrt9 is involved in the formation of intermediate filament frameworks. Our previous studies have revealed that NlFoxL2 and NlFoxO play important roles in chorion formation and wing polyphenism. Altogether, N. lugens Fox genes exhibit functional diversity in embryonic development and organogenesis. This comprehensive study combines genomics, transcriptomics and phenomics, thereby constructing a complex genetic network that spans the entire life cycle of the brown planthopper.
Collapse
Affiliation(s)
- Hai-Yan Lin
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (C.-Q.Z.)
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| | - Cheng-Qi Zhu
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (C.-Q.Z.)
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| | - Hou-Hong Zhang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| | - Zhi-Cheng Shen
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| | - Chuan-Xi Zhang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu-Xuan Ye
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (C.-Q.Z.)
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| |
Collapse
|
12
|
Schacht MI, Schomburg C, Bucher G. six3 acts upstream of foxQ2 in labrum and neural development in the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:95-104. [PMID: 32040712 PMCID: PMC7128001 DOI: 10.1007/s00427-020-00654-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Anterior patterning in animals is based on a gene regulatory network, which comprises highly conserved transcription factors like six3, pax6 and otx. More recently, foxQ2 was found to be an ancestral component of this network but its regulatory interactions showed evolutionary differences. In most animals, foxQ2 is a downstream target of six3 and knockdown leads to mild or no epidermal phenotypes. In contrast, in the red flour beetle Tribolium castaneum, foxQ2 gained a more prominent role in patterning leading to strong epidermal and brain phenotypes and being required for six3 expression. However, it has remained unclear which of these novel aspects were insect or arthropod specific. Here, we study expression and RNAi phenotype of the single foxQ2 ortholog of the spider Parasteatoda tepidariorum. We find early anterior expression similar to the one of insects. Further, we show an epidermal phenotype in the labrum similar to the insect phenotype. However, our data indicate that foxQ2 is positioned downstream of six3 like in other animals but unlike insects. Hence, the epidermal and neural pattering function of foxQ2 is ancestral for arthropods while the upstream role of foxQ2 may have evolved in the lineage leading to the insects.
Collapse
Affiliation(s)
- Magdalena Ines Schacht
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christoph Schomburg
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
13
|
He B, Buescher M, Farnworth MS, Strobl F, Stelzer EHK, Koniszewski NDB, Muehlen D, Bucher G. An ancestral apical brain region contributes to the central complex under the control of foxQ2 in the beetle Tribolium. eLife 2019; 8:e49065. [PMID: 31625505 PMCID: PMC6837843 DOI: 10.7554/elife.49065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
The genetic control of anterior brain development is highly conserved throughout animals. For instance, a conserved anterior gene regulatory network specifies the ancestral neuroendocrine center of animals and the apical organ of marine organisms. However, its contribution to the brain in non-marine animals has remained elusive. Here, we study the function of the Tc-foxQ2 forkhead transcription factor, a key regulator of the anterior gene regulatory network of insects. We characterized four distinct types of Tc-foxQ2 positive neural progenitor cells based on differential co-expression with Tc-six3/optix, Tc-six4, Tc-chx/vsx, Tc-nkx2.1/scro, Tc-ey, Tc-rx and Tc-fez1. An enhancer trap line built by genome editing marked Tc-foxQ2 positive neurons, which projected through the primary brain commissure and later through a subset of commissural fascicles. Eventually, they contributed to the central complex. Strikingly, in Tc-foxQ2 RNAi knock-down embryos the primary brain commissure did not split and subsequent development of midline brain structures stalled. Our work establishes foxQ2 as a key regulator of brain midline structures, which distinguish the protocerebrum from segmental ganglia. Unexpectedly, our data suggest that the central complex evolved by integrating neural cells from an ancestral anterior neuroendocrine center.
Collapse
Affiliation(s)
- Bicheng He
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Marita Buescher
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Max Stephen Farnworth
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
- Göttingen Graduate Center for Molecular BiosciencesNeurosciences and BiophysicsGöttingenGermany
| | - Frederic Strobl
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe UniversityFrankfurtGermany
| | - Ernst HK Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe UniversityFrankfurtGermany
| | - Nikolaus DB Koniszewski
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Dominik Muehlen
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| | - Gregor Bucher
- Johann Friedrich Blumenbach Institute of Zoology, GZMBUniversity of GöttingenGöttingenGermany
| |
Collapse
|
14
|
Dönitz J, Gerischer L, Hahnke S, Pfeiffer S, Bucher G. Expanded and updated data and a query pipeline for iBeetle-Base. Nucleic Acids Res 2019; 46:D831-D835. [PMID: 29069517 PMCID: PMC5753255 DOI: 10.1093/nar/gkx984] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
The iBeetle-Base provides access to sequence and phenotype information for genes of the beetle Tribolium castaneum. It has been updated including more and updated data and new functions. RNAi phenotypes are now available for >50% of the genes, which represents an expansion of 60% compared to the previous version. Gene sequence information has been updated based on the new official gene set OGS3 and covers all genes. Interoperability with FlyBase has been enhanced: First, gene information pages of homologous genes are interlinked between both databases. Second, some steps of a new query pipeline allow transforming gene lists from either species into lists with related gene IDs, names or GO terms. This facilitates the comparative analysis of gene functions between fly and beetle. The backend of the pipeline is implemented as endpoints of a RESTful interface, such that it can be reused by other projects or tools. A novel online interface allows the community to propose GO terms for their gene of interest expanding the range of animals where GO terms are defined. iBeetle-Base is available at http://ibeetle-base.uni-goettingen.de/.
Collapse
Affiliation(s)
- Jürgen Dönitz
- Dpt. of Evolutionary Developmental Genetics, Georg August University of Göttingen, 37077 Göttingen, Germany.,Institute of Bioinformatics, University Medical Center Göttingen (UMG) Georg August University, 37077 Göttingen, Germany
| | - Lizzy Gerischer
- Institute for Mathematics and Computer Science, Ernst Moritz Arndt University, 17487 Greifswald, Germany
| | - Stefan Hahnke
- Dpt. of Evolutionary Developmental Genetics, Georg August University of Göttingen, 37077 Göttingen, Germany
| | - Stefan Pfeiffer
- Dpt. of Evolutionary Developmental Genetics, Georg August University of Göttingen, 37077 Göttingen, Germany
| | - Gregor Bucher
- Dpt. of Evolutionary Developmental Genetics, Georg August University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Yamazaki A, Yamamoto A, Yaguchi J, Yaguchi S. cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos. Genesis 2019; 57:e23302. [PMID: 31025827 DOI: 10.1002/dvg.23302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/31/2023]
Abstract
The specification of anterior neuroectoderm is controlled by a highly conserved molecular mechanism in bilaterians. A forkhead family gene, foxQ2, is known to be one of the pivotal regulators, which is zygotically expressed in this region during embryogenesis of a broad range of bilaterians. However, what controls the expression of this essential factor has remained unclear to date. To reveal the regulatory mechanism of foxQ2, we performed cis-regulatory analysis of two foxQ2 genes, foxQ2a and foxQ2b, in a sea urchin Hemicentrotus pulcherrimus. In sea urchin embryos, foxQ2 is initially expressed in the entire animal hemisphere and subsequently shows narrower expression restricted to the anterior pole region. In this study, as a first step to understand the foxQ2 regulation, we focused on the later restricted expression and analyzed the upstream cis-regulatory sequences of foxQ2a and foxQ2b by using the constructs fused to short half-life green fluorescent protein. Based on deletion and mutation analyses of both foxQ2, we identified each of the five regulatory sequences, which were 4-9 bp long. Neither of the regulatory sequences contains any motifs for ectopic activation or spatial repression, suggesting that later mRNA localization is regulated in situ. We also suggest that the three amino acid loop extension-class homeobox gene Meis is involved in the maintenance of foxQ2b, the expression of which is dominant during embryogenesis.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Akane Yamamoto
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
16
|
Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos. Dev Biol 2018; 444:83-92. [PMID: 30332609 DOI: 10.1016/j.ydbio.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 01/02/2023]
Abstract
The spatiotemporal expression of Frizzled receptors is critical for patterning along the early anterior-posterior axis during embryonic development in many animal species. However, the molecular mechanisms that regulate the expression of Frizzled receptors are incompletely understood in any species. In this study, I examine how the expression of two Frizzled receptors, Fzl1/2/7 and Fzl5/8, is controlled by the Wnt signaling network which directs specification and positioning of early regulatory states along the anterior-posterior (AP) axis of sea urchin embryos. I used a combination of morpholino- and dominant negative-mediated interference to knock down each Wnt signaling pathway involved in the AP Wnt signaling network. I found that the expression of zygotic fzl5/8 as well as that of the anterior neuroectoderm gene regulatory network (ANE GRN) is activated by an unknown broadly expressed regulatory state and that posterior Wnt/β-catenin signaling is necessary to down regulate fzl5/8's expression in posterior blastomeres. I show that zygotic expression of fzl1/2/7 in the equatorial ectodermal belt is dependent on an uncharacterized regulatory mechanism that works in the same cells receiving the TGF-β signals patterning this territory along the dorsal-ventral axis. In addition, my data indicate that Fzl1/2/7 signaling represses its own expression in a negative feedback mechanism. Finally, we discovered that a balance between the activities of posterior Wnt8 and anterior Dkk1 is necessary to establish the correct spatial expression of zygotic fzl12/7 expression in the equatorial ectodermal domain during blastula and gastrula stages. Together, these studies lead to a better understanding of the complex interactions among the three Wnt signaling pathway governing AP axis specification and patterning in sea urchin embryos.
Collapse
|
17
|
Hinman VF, Burke RD. Embryonic neurogenesis in echinoderms. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e316. [PMID: 29470839 DOI: 10.1002/wdev.316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023]
Abstract
The phylogenetic position of echinoderms is well suited to revealing shared features of deuterostomes that distinguish them from other bilaterians. Although echinoderm neurobiology remains understudied, genomic resources, molecular methods, and systems approaches have enabled progress in understanding mechanisms of embryonic neurogenesis. Even though the morphology of echinoderm larvae is diverse, larval nervous systems, which arise during gastrulation, have numerous similarities in their organization. Diverse neural subtypes and specialized sensory neurons have been identified and details of neuroanatomy using neuron-specific labels provide hypotheses for neural function. The early patterning of ectoderm and specification of axes has been well studied in several species and underlying gene regulatory networks have been established. The cells giving rise to central and peripheral neural components have been identified in urchins and sea stars. Neurogenesis includes typical metazoan features of asymmetric division of neural progenitors and in some cases limited proliferation of neural precursors. Delta/Notch signaling has been identified as having critical roles in regulating neural patterning and differentiation. Several transcription factors functioning in pro-neural phases of specification, neural differentiation, and sub-type specification have been identified and structural or functional components of neurons are used as differentiation markers. Several methods for altering expression in embryos have revealed aspects of a regulatory hierarchy of transcription factors in neurogenesis. Interfacing neurogenic gene regulatory networks to the networks regulating ectodermal domains and identifying the spatial and temporal inputs that pattern the larval nervous system is a major challenge that will contribute substantially to our understanding of the evolution of metazoan nervous systems. This article is categorized under: Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|