1
|
Riboul DV, Crill S, Oliva CD, Restifo MG, Joseph R, Joseph K, Nguyen KC, Hall DH, Fily Y, Macleod GT. Ultrastructural Analysis Reveals Mitochondrial Placement Independent of Synapse Placement in Fine Caliber C. elegans Neurons. J Comp Neurol 2024; 532:e70002. [PMID: 39690920 PMCID: PMC11977862 DOI: 10.1002/cne.70002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Neurons rely on mitochondria for an efficient supply of ATP and other metabolites. However, while neurons are highly elongated, mitochondria are discrete and limited in number. Due to the slow rates of metabolite diffusion over long distances, it follows that neurons would benefit from an ability to control the distribution of mitochondria to sites of high metabolic activity such as synapses. Ultrastructural data over substantial portions of a neuron's extent that would allow for tests of such hypotheses are scarce. Here, we mined the Caenorhabditis elegans' electron micrographs of John White and Sydney Brenner and found systematic differences in average mitochondrial length (ranging from 1.3 to 2.4 µm), diameter (0.18-0.24 µm) and volume density (3.7%-6.5%) between neurons of different function and neurotransmitter type, but found limited differences in mitochondrial length, diameter, and density between axons and dendrites of the same neurons. In analyses of mitochondrial distribution, mitochondria were found to be distributed randomly with respect to presynaptic sites. Presynaptic sites were primarily localized to varicosities, but mitochondria were no more likely to be found in synaptic varicosities than non-synaptic varicosities. Consistently, mitochondrial volume density was no greater in synaptic varicosities than non-synaptic varicosities. Therefore, beyond the capacity to disperse mitochondria throughout their length, at least in C. elegans, fine caliber neurons manifest limited subcellular control of mitochondrial size and distribution.
Collapse
Affiliation(s)
- Danielle V. Riboul
- Integrative Biology & Neuroscience Graduate Program, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sarah Crill
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Carlos D. Oliva
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
| | | | - Reggie Joseph
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Kerdes Joseph
- Department of Biology, C.E.S. College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ken C.Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Gregory T. Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
- Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Jiang T, Ruan N, Luo P, Wang Q, Wei X, Li Y, Dai Y, Lin L, Lv J, Liu Y, Zhang C. Modulation of ER-mitochondria tethering complex VAPB-PTPIP51: Novel therapeutic targets for aging-associated diseases. Ageing Res Rev 2024; 98:102320. [PMID: 38719161 DOI: 10.1016/j.arr.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Ruan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiagao Lv
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Mikeworth BP, Compere FV, Petrella LN. LIN-35 is necessary in both the soma and germline for preserving fertility in Caenorhabditis elegans under moderate temperature stress. PLoS One 2023; 18:e0286926. [PMID: 37294778 PMCID: PMC10256190 DOI: 10.1371/journal.pone.0286926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/25/2023] [Indexed: 06/11/2023] Open
Abstract
Maintenance of germline function under stress conditions is crucial for species survival. The germ line in many species is especially sensitive to elevated temperature. We have investigated the role of the pocket protein LIN-35 in preserving fertility in Caenorhabditis elegans under moderate temperature stress. We show that lin-35 mutants display several temperature sensitive germline defects, and more severe reductions in brood size at elevated temperatures compared to wild type. This loss of fertility under temperature stress is primarily due to loss of zygotic, but not maternal, LIN-35. Additionally, we have found that expression of LIN-35 is necessary in both the germ line and soma for the preserving fertility under moderate temperature stress. Specifically, while LIN-35 function in the germ line is required for maintaining fertility in hermaphrodites, broad somatic expression of LIN-35 is also necessary for oocyte formation and/or function under moderate temperature stress. Together, our data add to the emerging understanding of the critical role that LIN-35 plays in preserving tissues against stress.
Collapse
Affiliation(s)
- Brian P. Mikeworth
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Frances V. Compere
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Lisa N. Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
4
|
Driesschaert B, Temmerman L. The Q system for conditional gene expression is leaky and lacks dynamic range in C. elegans neurons. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000573. [PMID: 35601753 PMCID: PMC9115586 DOI: 10.17912/micropub.biology.000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
The Q system allows for conditional gene expression in several organisms, including
C. elegans
. We aimed to apply this system in
C. elegans
neurons to obtain temporally-resolved, tissue-specific expression of a fluorescent reporter. We report that, in our hands, there is undesired expression of the reporter in conditions where expression is supposed to be repressed. In addition, in this setup, the signal‑to‑noise ratio of the Q system is unfavorable. We conclude that the Q system is far from optimal in the
C. elegans
nervous system, and advise cautious use.
Collapse
Affiliation(s)
| | - Liesbet Temmerman
- Katholieke Universiteit Leuven, Leuven, Belgium
,
Correspondence to: Liesbet Temmerman (
)
| |
Collapse
|
5
|
Fölsz O, Lin CC, Task D, Riabinina O, Potter CJ. The Q-system: A Versatile Repressible Binary Expression System. Methods Mol Biol 2022; 2540:35-78. [PMID: 35980572 DOI: 10.1007/978-1-0716-2541-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.
Collapse
Affiliation(s)
- Orsolya Fölsz
- Department of Biosciences, Durham University, Durham, UK
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Giesel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Darya Task
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Zein-Sabatto H, Cole T, Hoang HD, Tiwary E, Chang C, Miller MA. The type II integral ER membrane protein VAP-B homolog in C. elegans is cleaved to release the N-terminal MSP domain to signal non-cell-autonomously. Dev Biol 2020; 470:10-20. [PMID: 33160939 DOI: 10.1016/j.ydbio.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022]
Abstract
VAMP/synaptobrevin-associated protein B (VAP-B) is a type II ER membrane protein, but its N-terminal MSP domain (MSPd) can be cleaved and secreted. Mutations preventing the cleavage and secretion of MSPd have been implicated in cases of human neurodegenerative diseases. The site of VAP cleavage and the tissues capable in releasing the processed MSPd are not understood. In this study, we analyze the C. elegans VAP-B homolog, VPR-1, for its processing and secretion from the intestine. We show that intestine-specific expression of an N-terminally FLAG-tagged VPR-1 rescues underdeveloped gonad and sterility defects in vpr-1 null hermaphrodites. Immunofluorescence studies reveal that the tagged intestinal expressed VPR-1 is present at the distal gonad. Mass spectrometry analysis of a smaller product of the N-terminally tagged VPR-1 identifies a specific cleavage site at Leu156. Mutation of the leucine results in loss of gonadal MSPd signal and reduced activity of the mutant VPR-1. Thus, we report for the first time the cleavage site of VPR-1 and provide direct evidence that intestinally expressed VPR-1 can be released and signal in the distal gonad. These results establish the foundation for further exploration of VAP cleavage, MSPd secretion, and non-cell-autonomous signaling in development and diseases.
Collapse
Affiliation(s)
- Hala Zein-Sabatto
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA.
| | - Tim Cole
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Hieu D Hoang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Ekta Tiwary
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Michael A Miller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| |
Collapse
|
7
|
Maremonti E, Eide DM, Oughton DH, Salbu B, Grammes F, Kassaye YA, Guédon R, Lecomte-Pradines C, Brede DA. Gamma radiation induces life stage-dependent reprotoxicity in Caenorhabditis elegans via impairment of spermatogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133835. [PMID: 31425988 DOI: 10.1016/j.scitotenv.2019.133835] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The current study investigated life stage, tissue and cell dependent sensitivity to ionizing radiation of the nematode Caenorhabditis elegans. Results showed that irradiation of post mitotic L4 stage larvae induced no significant effects with respect to mortality, morbidity or reproduction at either acute dose ≤6 Gy (1500 mGy·h-1) or chronic exposure ≤15 Gy (≤100 mGy·h-1). In contrast, chronic exposure from the embryo to the L4-young adult stage caused a dose and dose-rate dependent reprotoxicity with 43% reduction in total brood size at 6.7 Gy (108 mGy·h-1). Systematic irradiation of the different developmental stages showed that the most sensitive life stage was L1 to young L4. Exposure during these stages was associated with dose-rate dependent genotoxic effects, resulting in a 1.8 to 2 fold increase in germ cell apoptosis in larvae subjected to 40 or 100 mGy·h-1, respectively. This was accompanied by a dose-rate dependent reduction in the number of spermatids, which was positively correlated to the reprotoxic effect (0.99, PCC). RNAseq analysis of nematodes irradiated from L1 to L4 stage revealed a significant enrichment of differentially expressed genes related to both male and hermaphrodite reproductive processes. Gene network analysis revealed effects related to down-regulation of genes required for spindle formation and sperm meiosis/maturation, including smz-1, smz-2 and htas-1. Furthermore, the expression of a subset of 28 set-17 regulated Major Sperm Proteins (MSP) required for spermatid production was correlated (R2 0.80) to the reduction in reproduction and the number of spermatids. Collectively these observations corroborate the impairment of spermatogenesis as the major cause of gamma radiation induced life-stage dependent reprotoxic effect. Furthermore, the progeny of irradiated nematodes showed significant embryonal DNA damage that was associated with persistent effect on somatic growth. Unexpectedly, these nematodes maintained much of their reproductive capacity in spite of the reduced growth.
Collapse
Affiliation(s)
- Erica Maremonti
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway.
| | - Dag M Eide
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Deborah H Oughton
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Fabian Grammes
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Rémi Guédon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
8
|
Kamemura K, Chihara T. Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. J Biochem 2019; 165:391-400. [PMID: 30726905 DOI: 10.1093/jb/mvz011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
VAP (VAMP-associated protein) is a type II integral membrane protein of the endoplasmic reticulum (ER), and its N-terminal major sperm protein (MSP) domain faces the cytoplasmic side. VAP functions as a tethering molecule at the membrane contact sites between the ER and intracellular organelles and regulates a wide variety of cellular functions, including lipid transport, membrane trafficking, microtubule reorganization and unfolded protein response. VAP-point mutations in human vapb are strongly associated with amyotrophic lateral sclerosis. Importantly, the MSP domain of VAP is cleaved, secreted and interacts with the axon growth cone guidance receptors (Eph, Robo, Lar), suggesting that VAP could function as a circulating hormone similar to the Caenorhabditis elegans MSP protein. In this review, we discuss not only the intracellular functions of VAP but also the recently discovered extracellular functions and their implications for neurodegenerative disease.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Schultz J, Lee SJ, Cole T, Hoang HD, Vibbert J, Cottee PA, Miller MA, Han SM. The secreted MSP domain of C. elegans VAPB homolog VPR-1 patterns the adult striated muscle mitochondrial reticulum via SMN-1. Development 2017. [PMID: 28634272 PMCID: PMC5482996 DOI: 10.1242/dev.152025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major sperm protein domain (MSPd) has an extracellular signaling function implicated in amyotrophic lateral sclerosis. Secreted MSPds derived from the C. elegans VAPB homolog VPR-1 promote mitochondrial localization to actin-rich I-bands in body wall muscle. Here we show that the nervous system and germ line are key MSPd secretion tissues. MSPd signals are transduced through the CLR-1 Lar-like tyrosine phosphatase receptor. We show that CLR-1 is expressed throughout the muscle plasma membrane, where it is accessible to MSPd within the pseudocoelomic fluid. MSPd signaling is sufficient to remodel the muscle mitochondrial reticulum during adulthood. An RNAi suppressor screen identified survival of motor neuron 1 (SMN-1) as a downstream effector. SMN-1 acts in muscle, where it colocalizes at myofilaments with ARX-2, a component of the Arp2/3 actin-nucleation complex. Genetic studies suggest that SMN-1 promotes Arp2/3 activity important for localizing mitochondria to I-bands. Our results support the model that VAPB homologs are circulating hormones that pattern the striated muscle mitochondrial reticulum. This function is crucial in adults and requires SMN-1 in muscle, likely independent of its role in pre-mRNA splicing.
Collapse
Affiliation(s)
- Jessica Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Se-Jin Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tim Cole
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jack Vibbert
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pauline A Cottee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sung Min Han
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|