1
|
Reding K, Pick L. Recent approaches lead to a deeper understanding of diverse segmentation mechanisms in insects, with a focus on the pair-rule genes. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101317. [PMID: 39638284 PMCID: PMC11875919 DOI: 10.1016/j.cois.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The division of the insect embryo into repeated units - segments - is a fundamental feature of the body plan. The genes controlling this process in Drosophila melanogaster were identified in genetic screens and characterized in that species in numerous studies in the 1980s and 1990s. These genes form a well-established hierarchy and have been leveraged to examine gene regulation, transcriptional machinery, chromatin structure, and more. Much of the genetic toolkit identified in Drosophila is highly conserved throughout the animal kingdom, spearheading the field of evolutionary developmental biology or Evo-Devo. Accordingly, a 'Drosophila-centric' approach has examined the evolutionary conservation of orthologs of Drosophila segmentation genes in closely and distantly related insects. Here, we report on progress in both Drosophila and emerging model insects in recent years (2022 to present), with much of the new research related to the pair-rule subset of segmentation genes. We highlight new findings on 'classic' Drosophila genes, revealing unexpected roles of genes and cis-regulatory elements in this species. We further report on the expanding knowledge about mechanisms regulating to segmentation in emerging model insects that are distantly related to Drosophila, including those that pattern segments sequentially. We also describe technical advances in both Drosophila and nonmodel species that are currently progressing research in this field.
Collapse
Affiliation(s)
- Katie Reding
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742, USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Reding K, Chung M, Heath A, Hotopp JD, Pick L. Same rule, different genes: Blimp1 is a pair-rule gene in the milkweed bug Oncopeltus fasciatus. SCIENCE ADVANCES 2024; 10:eadq9045. [PMID: 39546609 PMCID: PMC11566998 DOI: 10.1126/sciadv.adq9045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Morphological features of organismal body plans are often highly conserved within large taxa. For example, segmentation is a shared and defining feature of all insects. Screens in Drosophila identified genes responsible for the development of body segments, including the "pair-rule" genes (PRGs), which subdivide embryos into double-segment units in a previously unexpected pre-patterning step. Here we show that the milkweed bug Oncopeltus fasciatus also uses a pair rule for embryo subdivision but Oncopeltus employs different genes for this process. We identified the gene Blimp1 as an Oncopeltus PRG based on its expression pattern, tested its function with RNA interference and CRISPR-Cas9, and generated the first PR mutant in this species. Although it does not have PR function in Drosophila, like Drosophila PRGs, Blimp1 encodes a transcription factor required for embryonic viability. Thus, pair-rule subdivision of the insect body plan is more highly conserved than the factors mediating this process, suggesting a developmental constraint on this pre-patterning step.
Collapse
Affiliation(s)
- Katie Reding
- Department of Entomology, University of Maryland, 4291 Fieldhouse Dr., College Park, MD 20742, USA
| | - Matthew Chung
- Microbiology and Immunology and Institute for Genome Sciences, University of Maryland School of Medicine, 670 West Baltimore St., Baltimore, MD 21201, USA
| | - Abigail Heath
- Department of Entomology, University of Maryland, 4291 Fieldhouse Dr., College Park, MD 20742, USA
| | - Julie Dunning Hotopp
- Microbiology and Immunology and Institute for Genome Sciences, University of Maryland School of Medicine, 670 West Baltimore St., Baltimore, MD 21201, USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, 4291 Fieldhouse Dr., College Park, MD 20742, USA
| |
Collapse
|
3
|
Mundaca-Escobar M, Cepeda RE, Sarrazin AF. The organizing role of Wnt signaling pathway during arthropod posterior growth. Front Cell Dev Biol 2022; 10:944673. [PMID: 35990604 PMCID: PMC9389326 DOI: 10.3389/fcell.2022.944673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Wnt signaling pathways are recognized for having major roles in tissue patterning and cell proliferation. In the last years, remarkable progress has been made in elucidating the molecular and cellular mechanisms that underlie sequential segmentation and axial elongation in various arthropods, and the canonical Wnt pathway has emerged as an essential factor in these processes. Here we review, with a comparative perspective, the current evidence concerning the participation of this pathway during posterior growth, its degree of conservation among the different subphyla within Arthropoda and its relationship with the rest of the gene regulatory network involved. Furthermore, we discuss how this signaling pathway could regulate segmentation to establish this repetitive pattern and, at the same time, probably modulate different cellular processes precisely coupled to axial elongation. Based on the information collected, we suggest that this pathway plays an organizing role in the formation of the body segments through the regulation of the dynamic expression of segmentation genes, via controlling the caudal gene, at the posterior region of the embryo/larva, that is necessary for the correct sequential formation of body segments in most arthropods and possibly in their common segmented ancestor. On the other hand, there is insufficient evidence to link this pathway to axial elongation by controlling its main cellular processes, such as convergent extension and cell proliferation. However, conclusions are premature until more studies incorporating diverse arthropods are carried out.
Collapse
Affiliation(s)
| | | | - Andres F. Sarrazin
- CoDe-Lab, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
4
|
Taylor SE, Dearden PK. The Nasonia pair-rule gene regulatory network retains its function over 300 million years of evolution. Development 2022; 149:dev199632. [PMID: 35142336 PMCID: PMC8959145 DOI: 10.1242/dev.199632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022]
Abstract
Insect segmentation is a well-studied and tractable system with which to investigate the genetic regulation of development. Though insects segment their germband using a variety of methods, modelling work implies that a single gene regulatory network can underpin the two main types of insect segmentation. This means limited genetic changes are required to explain significant differences in segmentation mode between different insects. This idea needs to be tested in a wider variety of species, and the nature of the gene regulatory network (GRN) underlying this model has not been tested. Some insects, e.g. Nasonia vitripennis and Apis mellifera segment progressively, a pattern not examined in previous studies of this segmentation model, producing stripes at different times progressively through the embryo, but not from a segment addition zone. Here, we aim to understand the GRNs patterning Nasonia using a simulation-based approach. We found that an existing model of Drosophila segmentation ( Clark, 2017) can be used to recapitulate the progressive segmentation of Nasonia, if provided with altered inputs in the form of expression of the timer genes Nv-caudal and Nv-odd paired. We predict limited topological changes to the pair-rule network and show, by RNAi knockdown, that Nv-odd paired is required for morphological segmentation. Together this implies that very limited changes to the Drosophila network are required to simulate Nasonia segmentation, despite significant differences in segmentation modes, implying that Nasonia use a very similar version of an ancestral GRN used by Drosophila, which must therefore have been conserved for at least 300 million years.
Collapse
Affiliation(s)
| | - Peter K. Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, Aotearoa-New Zealand
| |
Collapse
|
5
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Spatiotemporal variation in cell proliferation patterns during arthropod axial elongation. Sci Rep 2021; 11:327. [PMID: 33431947 PMCID: PMC7801698 DOI: 10.1038/s41598-020-79373-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
An elongated and segmented body plan is a common morphological characteristic of all arthropods and is probably responsible for their high adaptation ability to diverse environments. Most arthropods form their bodies by progressively adding segments, resembling vertebrate somitogenesis. This sequential segmentation relies on a molecular clock that operates in the posterior region of the elongating embryo that combines dynamically with cellular behaviors and tissue rearrangements, allowing the extension of the developing body along its main embryonic axis. Even though the molecular mechanisms involved in elongation and segment formation have been found to be conserved in a considerable degree, cellular processes such as cell division are quite variable between different arthropods. In this study, we show that cell proliferation in the beetle Tribolium castaneum has a nonuniform spatiotemporal patterning during axial elongation. We found that dividing cells are preferentially oriented along the anterior-posterior axis, more abundant and posteriorly localized during thoracic segments formation and that this cell proliferation peak was triggered at the onset of axis elongation. This raise in cell divisions, in turn, was correlated with an increase in the elongation rate, but not with changes in cell density. When DNA synthesis was inhibited over this period, both the area and length of thoracic segments were significantly reduced but not of the first abdominal segment. We discuss the variable participation that different cell division patterns and cell movements may have on arthropod posterior growth and their evolutionary contribution.
Collapse
|
7
|
Janssen R. The embryonic expression pattern of a second, hitherto unrecognized, paralog of the pair-rule gene sloppy-paired in the beetle Tribolium castaneum. Dev Genes Evol 2020; 230:247-256. [PMID: 32430691 PMCID: PMC7260273 DOI: 10.1007/s00427-020-00660-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
In the fly Drosophila melanogaster, a hierarchic segmentation gene cascade patterns the anterior-posterior body axis of the developing embryo. Within this cascade, the pair-rule genes (PRGs) transform the more uniform patterning of the higher-level genes into a metameric pattern that first represents double-segmental units, and then, in a second step, represents a true segmental pattern. Within the PRG network, primary PRGs regulate secondary PRGs that are directly involved in the regulation of the next lower level, the segment-polarity genes (SPGs). While the complement of primary PRGs is different in Drosophila and the beetle Tribolium, another arthropod model organism, both paired (prd) and sloppy-paired (slp), acts as secondary PRGs. In earlier studies, the interaction of PRGs and the role of the single slp ortholog in Tribolium have been investigated in some detail revealing conserved and diverged aspects of PRG function. In this study, I present the identification and the analysis of embryonic expression patterns of a second slp gene (called slp2) in Tribolium. While the previously identified gene, slp, is expressed in a typical PRG pattern, expression of slp2 is more similar to that of the downstream-acting SPGs, and shows expression similarities to slp2 in Drosophila. The previously reported differences between the function of slp in Drosophila and Tribolium may partially account for the function of the newly identified second slp paralog in Tribolium, and it may therefore be advised to conduct further studies on PRG function in the beetle.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
8
|
Hernandez J, Pick L, Reding K. Oncopeltus-like gene expression patterns in Murgantia histrionica, a new hemipteran model system, suggest ancient regulatory network divergence. EvoDevo 2020; 11:9. [PMID: 32337018 PMCID: PMC7178596 DOI: 10.1186/s13227-020-00154-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Much has been learned about basic biology from studies of insect model systems. The pre-eminent insect model system, Drosophila melanogaster, is a holometabolous insect with a derived mode of segment formation. While additional insect models have been pioneered in recent years, most of these fall within holometabolous lineages. In contrast, hemimetabolous insects have garnered less attention, although they include agricultural pests, vectors of human disease, and present numerous evolutionary novelties in form and function. The milkweed bug, Oncopeltus fasciatus (order: Hemiptera)—close outgroup to holometabolous insects—is an emerging model system. However, comparative studies within this order are limited as many phytophagous hemipterans are difficult to stably maintain in the lab due to their reliance on fresh plants, deposition of eggs within plant material, and long development time from embryo to adult. Results Here we present the harlequin bug, Murgantia histrionica, as a new hemipteran model species. Murgantia—a member of the stink bug family Pentatomidae which shares a common ancestor with Oncopeltus ~ 200 mya—is easy to rear in the lab, produces a large number of eggs, and is amenable to molecular genetic techniques. We use Murgantia to ask whether Pair-Rule Genes (PRGs) are deployed in ways similar to holometabolous insects or to Oncopeltus. Specifically, PRGs even-skipped, odd-skipped, paired and sloppy-paired are initially expressed in PR-stripes in Drosophila and a number of holometabolous insects but in segmental-stripes in Oncopeltus. We found that these genes are likewise expressed in segmental-stripes in Murgantia, while runt displays partial PR-character in both species. Also like Oncopeltus, E75A is expressed in a clear PR-pattern in blastoderm- and germband-stage Murgantia embryos, although it plays no role in segmentation in Drosophila. Thus, genes diagnostic of the split between holometabolous insects and Oncopeltus are expressed in an Oncopeltus-like fashion during Murgantia development. Conclusions The similarity in gene expression between Murgantia and Oncopeltus suggests that Oncopeltus is not a sole outlier species in failing to utilize orthologs of Drosophila PRGs for PR-patterning. Rather, strategies deployed for PR-patterning, including the use of E75A in the PRG-network, are likely conserved within Hemiptera, and possibly more broadly among hemimetabolous insects.
Collapse
Affiliation(s)
- Jessica Hernandez
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Katie Reding
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| |
Collapse
|
9
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
10
|
Reding K, Chen M, Lu Y, Cheatle Jarvela AM, Pick L. Shifting roles of Drosophila pair-rule gene orthologs: segmental expression and function in the milkweed bug Oncopeltus fasciatus. Development 2019; 146:dev181453. [PMID: 31444220 PMCID: PMC6765130 DOI: 10.1242/dev.181453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/12/2019] [Indexed: 01/21/2023]
Abstract
The discovery of pair-rule genes (PRGs) in Drosophila revealed the existence of an underlying two-segment-wide prepattern directing embryogenesis. The milkweed bug Oncopeltus fasciatus, a hemimetabolous insect, is a more representative arthropod: most of its segments form sequentially after gastrulation. Here, we report the expression and function of orthologs of the complete set of nine Drosophila PRGs in Oncopeltus Seven Of-PRG-orthologs are expressed in stripes in the primordia of every segment, rather than every other segment; Of-runt is PR-like and several orthologs are also expressed in the segment addition zone. RNAi-mediated knockdown of Of-odd-skipped, paired and sloppy-paired impacted all segments, with no indication of PR-like register. We confirm that Of-E75A is expressed in PR-like stripes, although it is not expressed in this way in Drosophila, demonstrating the existence of an underlying PR-like prepattern in Oncopeltus These findings reveal that a switch occurred in regulatory circuits, leading to segment formation: while several holometabolous insects are 'Drosophila-like', using PRG orthologs for PR patterning, most Of-PRGs are expressed segmentally in Oncopeltus, a more basally branching insect. Thus, an evolutionarily stable phenotype - segment formation - is directed by alternate regulatory pathways in diverse species.
Collapse
Affiliation(s)
- Katie Reding
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Mengyao Chen
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Yong Lu
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Alys M Cheatle Jarvela
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Wexler J, Delaney EK, Belles X, Schal C, Wada-Katsumata A, Amicucci MJ, Kopp A. Hemimetabolous insects elucidate the origin of sexual development via alternative splicing. eLife 2019; 8:e47490. [PMID: 31478483 PMCID: PMC6721801 DOI: 10.7554/elife.47490] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/11/2019] [Indexed: 02/02/2023] Open
Abstract
Insects are the only known animals in which sexual differentiation is controlled by sex-specific splicing. The doublesex transcription factor produces distinct male and female isoforms, which are both essential for sex-specific development. dsx splicing depends on transformer, which is also alternatively spliced such that functional Tra is only present in females. This pathway has evolved from an ancestral mechanism where dsx was independent of tra and expressed and required only in males. To reconstruct this transition, we examined three basal, hemimetabolous insect orders: Hemiptera, Phthiraptera, and Blattodea. We show that tra and dsx have distinct functions in these insects, reflecting different stages in the changeover from a transcription-based to a splicing-based mode of sexual differentiation. We propose that the canonical insect tra-dsx pathway evolved via merger between expanding dsx function (from males to both sexes) and narrowing tra function (from a general splicing factor to dedicated regulator of dsx).
Collapse
Affiliation(s)
- Judith Wexler
- Department of Evolution and EcologyUniversity of California, DavisDavisUnited States
| | - Emily Kay Delaney
- Department of Evolution and EcologyUniversity of California, DavisDavisUnited States
| | - Xavier Belles
- Institut de Biologia EvolutivaConsejo Superior de Investigaciones Cientificas, Universitat Pompeu FabraBarcelonaSpain
| | - Coby Schal
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighUnited States
| | - Ayako Wada-Katsumata
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighUnited States
| | - Matthew J Amicucci
- Department of ChemistryUniversity of California, DavisDavisUnited States
| | - Artyom Kopp
- Department of Evolution and EcologyUniversity of California, DavisDavisUnited States
| |
Collapse
|
12
|
Auman T, Chipman AD. Growth zone segmentation in the milkweed bug Oncopeltus fasciatus sheds light on the evolution of insect segmentation. BMC Evol Biol 2018; 18:178. [PMID: 30486779 PMCID: PMC6262967 DOI: 10.1186/s12862-018-1293-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/12/2018] [Indexed: 11/12/2022] Open
Abstract
Background One of the best studied developmental processes is the Drosophila segmentation cascade. However, this cascade is generally considered to be highly derived and unusual, with segments being patterned simultaneously, rather than the ancestral sequential segmentation mode. We present a detailed analysis of the segmentation cascade of the milkweed bug Oncopletus fasciatus, an insect with a more primitive segmentation mode, as a comparison to Drosophila, with the aim of reconstructing the evolution of insect segmentation modes. Results We document the expression of 12 genes, representing different phases in the segmentation process. Using double staining we reconstruct the spatio-temporal relationships among these genes. We then show knock-down phenotypes of representative genes in order to uncover their roles and position in the cascade. Conclusions We conclude that sequential segmentation in the Oncopeltus germband includes three slightly overlapping phases: Primary pair-rule genes generate the first segmental gene expression in the anterior growth zone. This pattern is carried anteriorly by a series of secondary pair-rule genes, expressed in the transition between the growth zone and the segmented germband. Segment polarity genes are expressed in the segmented germband with conserved relationships. Unlike most holometabolous insects, this process generates a single-segment periodicity, and does not have a double-segment pattern at any stage. We suggest that the evolutionary transition to double-segment patterning lies in mutually exclusive expression patterns of secondary pair-rule genes. The fact that many aspects of the putative Oncopeltus segmentation network are similar to those of Drosophila, is consistent with a simple transition between sequential and simultaneous segmentation. Electronic supplementary material The online version of this article (10.1186/s12862-018-1293-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tzach Auman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.
| |
Collapse
|
13
|
Lu Y, Chen M, Reding K, Pick L. Establishment of molecular genetic approaches to study gene expression and function in an invasive hemipteran, Halyomorpha halys. EvoDevo 2017; 8:15. [PMID: 29075432 PMCID: PMC5648497 DOI: 10.1186/s13227-017-0078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/04/2017] [Indexed: 01/08/2023] Open
Abstract
Hemiptera is a large clade of insects understudied in terms of developmental biology. Halyomorpha halys, the Brown Marmorated Stink Bug (BMSB, referred to throughout as H. halys), is an invasive hemipteran pest of the mid-Atlantic region of the USA that has rapidly spread to other regions in recent years, devastating a wide range of crops using a piercing and sucking mechanism. Its phylogenetic position, polyphagous habits, and rapid spread in the USA suggested that H. halys would be an ideal system to broaden our knowledge of developmental mechanisms in insects. We and others previously generated transcriptome sequences from different life stages of this insect. Here, we describe tools to examine gene expression patterns in whole-mount H. halys embryos and to test the response of H. halys to RNA interference (RNAi). We show that spatial and temporal patterns of gene expression in H. halys can be effectively monitored by both immunostaining and in situ hybridization. We also show that delivery of dsRNA to adult females knocks down gene function in offspring, using the homeotic gene Sex combs reduced (Scr). Knockdown of Hh-Scr resulted in dramatic malformations of the mouthparts, demonstrating for the first time that RNAi is effective in this species. Our results suggest that, despite difficulties with long-term laboratory culture of H. halys, this species shows promise as a developmental system.
Collapse
Affiliation(s)
- Yong Lu
- Department of Entomology, University of Maryland, College Park, MD 20742 USA.,Present Address: Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Mengyao Chen
- Department of Entomology, University of Maryland, College Park, MD 20742 USA
| | - Katie Reding
- Department of Entomology, University of Maryland, College Park, MD 20742 USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|