1
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
2
|
Zhang G, Mao Y, Zhang Y, Huang H, Pan J. Assisted reproductive technology and imprinting errors: analyzing underlying mechanisms from epigenetic regulation. HUM FERTIL 2023; 26:864-878. [PMID: 37929309 DOI: 10.1080/14647273.2023.2261628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/11/2023] [Indexed: 11/07/2023]
Abstract
With the increasing maturity and widespread application of assisted reproductive technology (ART), more attention has been paid to the health outcomes of offspring following ART. It is well established that children born from ART treatment are at an increased risk of imprinting errors and imprinting disorders. The disturbances of genetic imprinting are attributed to the overlap of ART procedures and important epigenetic reprogramming events during the development of gametes and early embryos, but the detailed mechanisms are hitherto obscure. In this review, we summarized the DNA methylation-dependent and independent mechanisms that control the dynamic epigenetic regulation of imprinted genes throughout the life cycle of a mammal, including erasure, establishment, and maintenance. In addition, we systematically described the dysregulation of imprinted genes in embryos conceived through ART and discussed the corresponding underlying mechanisms according to findings in animal models. This work is conducive to evaluating and improving the safety of ART.
Collapse
Affiliation(s)
- Gaochen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Hsu FM, Wu QY, Fabyanic EB, Wei A, Wu H, Clark AT. TET1 facilitates specification of early human lineages including germ cells. iScience 2023; 26:107191. [PMID: 37456839 PMCID: PMC10345126 DOI: 10.1016/j.isci.2023.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
Ten Eleven Translocation 1 (TET1) is a regulator of localized DNA demethylation through the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). To examine DNA demethylation in human primordial germ cell-like cells (hPGCLCs) induced from human embryonic stem cells (hESCs), we performed bisulfite-assisted APOBEC coupled epigenetic sequencing (bACEseq) followed by integrated genomics analysis. Our data indicates that 5hmC enriches at hPGCLC-specific NANOG, SOX17 or TFAP2C binding sites on hPGCLC induction, and this is accompanied by localized DNA demethylation. Using CRISPR-Cas9, we show that deleting the catalytic domain of TET1 reduces hPGCLC competency when starting with hESC cultured on mouse embryonic fibroblasts, and this phenotype can be rescued after transitioning hESCs to defined media and a recombinant substrate. Taken together, our study demonstrates the importance of 5hmC in facilitating hPGCLC competency, and the role of hESC culture conditions in modulating this effect.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily B. Fabyanic
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Wei
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amander T. Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. TET1 Catalytic Activity is Required for Reprogramming of Imprinting Control Regions and Patterning of Sperm-Specific Hypomethylated Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529426. [PMID: 36865267 PMCID: PMC9980038 DOI: 10.1101/2023.02.21.529426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
DNA methylation erasure is required for mammalian primordial germ cell reprogramming. TET enzymes iteratively oxidize 5-methylcytosine to generate 5-hyroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxycytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during germline reprogramming remains unresolved due to the lack of genetic models that decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 ( Tet1-HxD ) and TET1 that stalls oxidation at 5hmC ( Tet1-V ). Tet1 -/- , Tet1 V/V , and Tet1 HxD/HxD sperm methylomes show that TET1 V and TET1 HxD rescue most Tet1 -/- hypermethylated regions, demonstrating the importance of TET1’s extra-catalytic functions. Imprinted regions, in contrast, require iterative oxidation. We further reveal a broader class of hypermethylated regions in sperm of Tet1 mutant mice that are excluded from de novo methylation during male germline development and depend on TET oxidation for reprogramming. Our study underscores the link between TET1-mediated demethylation during reprogramming and sperm methylome patterning.
Collapse
|
5
|
Chang S, Fulmer D, Hur SK, Thorvaldsen JL, Li L, Lan Y, Rhon-Calderon EA, Leu NA, Chen X, Epstein JA, Bartolomei MS. Dysregulated H19/Igf2 expression disrupts cardiac-placental axis during development of Silver-Russell syndrome-like mouse models. eLife 2022; 11:e78754. [PMID: 36441651 PMCID: PMC9704805 DOI: 10.7554/elife.78754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Dysregulation of the imprinted H19/IGF2 locus can lead to Silver-Russell syndrome (SRS) in humans. However, the mechanism of how abnormal H19/IGF2 expression contributes to various SRS phenotypes remains unclear, largely due to incomplete understanding of the developmental functions of these two genes. We previously generated a mouse model with humanized H19/IGF2 imprinting control region (hIC1) on the paternal allele that exhibited H19/Igf2 dysregulation together with SRS-like growth restriction and perinatal lethality. Here, we dissect the role of H19 and Igf2 in cardiac and placental development utilizing multiple mouse models with varying levels of H19 and Igf2. We report severe cardiac defects such as ventricular septal defects and thinned myocardium, placental anomalies including thrombosis and vascular malformations, together with growth restriction in mouse embryos that correlated with the extent of H19/Igf2 dysregulation. Transcriptomic analysis using cardiac endothelial cells of these mouse models shows that H19/Igf2 dysregulation disrupts pathways related to extracellular matrix and proliferation of endothelial cells. Our work links the heart and placenta through regulation by H19 and Igf2, demonstrating that accurate dosage of both H19 and Igf2 is critical for normal embryonic development, especially related to the cardiac-placental axis.
Collapse
Affiliation(s)
- Suhee Chang
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Diana Fulmer
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Stella K Hur
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Li Li
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicolae Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaowen Chen
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
6
|
Juan AM, Foong YH, Thorvaldsen JL, Lan Y, Leu NA, Rurik JG, Li L, Krapp C, Rosier CL, Epstein JA, Bartolomei MS. Tissue-specific Grb10/Ddc insulator drives allelic architecture for cardiac development. Mol Cell 2022; 82:3613-3631.e7. [PMID: 36108632 PMCID: PMC9547965 DOI: 10.1016/j.molcel.2022.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.
Collapse
Affiliation(s)
- Aimee M Juan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yee Hoon Foong
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanne L Thorvaldsen
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolae A Leu
- Department of Biomedical Sciences, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joel G Rurik
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Krapp
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Casey L Rosier
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Vrooman LA, Rhon-Calderon EA, Suri KV, Dahiya AK, Lan Y, Schultz RM, Bartolomei MS. Placental Abnormalities are Associated With Specific Windows of Embryo Culture in a Mouse Model. Front Cell Dev Biol 2022; 10:884088. [PMID: 35547813 PMCID: PMC9081528 DOI: 10.3389/fcell.2022.884088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Assisted Reproductive Technologies (ART) employ gamete/embryo handling and culture in vitro to produce offspring. ART pregnancies have an increased risk of low birth weight, abnormal placentation, pregnancy complications, and imprinting disorders. Embryo culture induces low birth weight, abnormal placental morphology, and lower levels of DNA methylation in placentas in a mouse model of ART. Whether preimplantation embryos at specific stages of development are more susceptible to these perturbations remains unresolved. Accordingly, we performed embryo culture for several discrete periods of preimplantation development and following embryo transfer, assessed fetal and placental outcomes at term. We observed a reduction in fetal:placental ratio associated with two distinct windows of preimplantation embryo development, one prior to the morula stage and the other from the morula to blastocyst stage, whereas placental morphological abnormalities and reduced imprinting control region methylation were only associated with culture prior to the morula stage. Extended culture to the blastocyst stage also induces additional placental DNA methylation changes compared to embryos transferred at the morula stage, and female concepti exhibited a higher loss of DNA methylation than males. By identifying specific developmental windows of susceptibility, this study provides a framework to optimize further culture conditions to minimize risks associated with ART pregnancies.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Eric A. Rhon-Calderon
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Kashviya V. Suri
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Asha K. Dahiya
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard M. Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:111-136. [PMID: 36350508 PMCID: PMC9815518 DOI: 10.1007/978-3-031-11454-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosine methylation at the C5-position-generating 5-methylcytosine (5mC)-is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80%) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation and genetic alterations in enzymes and regulators involved in DNA methylation are associated with various human diseases, including cancer and developmental disorders. In mammals, DNA methylation is mediated by two families of DNA methyltransferases (Dnmts), namely Dnmt1 and Dnmt3 proteins. Over the last three decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and human diseases.
Collapse
|
9
|
Chen Z, Zhang Y. Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat Rev Genet 2020; 21:555-571. [PMID: 32514155 DOI: 10.1038/s41576-020-0245-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Genomic imprinting and X-chromosome inactivation (XCI) are classic epigenetic phenomena that involve transcriptional silencing of one parental allele. Germline-derived differential DNA methylation is the best-studied epigenetic mark that initiates imprinting, but evidence indicates that other mechanisms exist. Recent studies have revealed that maternal trimethylation of H3 on lysine 27 (H3K27me3) mediates autosomal maternal allele-specific gene silencing and has an important role in imprinted XCI through repression of maternal Xist. Furthermore, loss of H3K27me3-mediated imprinting contributes to the developmental defects observed in cloned embryos. This novel maternal H3K27me3-mediated non-canonical imprinting mechanism further emphasizes the important role of parental chromatin in development and could provide the basis for improving the efficiency of embryo cloning.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA. .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
10
|
Vrooman LA, Rhon-Calderon EA, Chao OY, Nguyen DK, Narapareddy L, Dahiya AK, Putt ME, Schultz RM, Bartolomei MS. Assisted reproductive technologies induce temporally specific placental defects and the preeclampsia risk marker sFLT1 in mouse. Development 2020; 147:147/11/dev186551. [PMID: 32471820 DOI: 10.1242/dev.186551] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Although widely used, assisted reproductive technologies (ARTs) are associated with adverse perinatal outcomes. To elucidate their underlying causes, we have conducted a longitudinal analysis of placental development and fetal growth using a mouse model to investigate the effects of individual ART procedures: hormone stimulation, in vitro fertilization (IVF), embryo culture and embryo transfer. We demonstrate that transfer of blastocysts naturally conceived without hormone stimulation and developed in vivo prior to transfer can impair early placentation and fetal growth, but this effect normalizes by term. In contrast, embryos cultured in vitro before transfer do not exhibit this compensation but rather display placental overgrowth, reduced fetal weight, reduced placental DNA methylation and increased levels of sFLT1, an anti-angiogenic protein implicated in causing the maternal symptoms of preeclampsia in humans. Increases in sFLT1 observed in this study suggest that IVF procedures could increase the risk for preeclampsia. Moreover, our results indicate that embryo culture is the major factor contributing to most placental abnormalities and should therefore be targeted for optimization.
Collapse
Affiliation(s)
- Lisa A Vrooman
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric A Rhon-Calderon
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olivia Y Chao
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Duy K Nguyen
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laren Narapareddy
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Family and Community Health, Claire M. Fagin School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Asha K Dahiya
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard M Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Abstract
Germ cells undergo epigenome reprogramming for proper development of the next generation. The achievement of in vitro germ cell derivation from human and mouse pluripotent stem cells and further differentiation in a plane culture and in aggregation with gonadal somatic cells offers unprecedented opportunities for investigation of the germ cell development. Moreover, advances in low-input/single-cell genomics have enabled detailed investigation of epigenome dynamics during germ cell development. These technologies have advanced our knowledge of epigenome reprogramming during the specification and development of primordial germ cells, their sex differentiation, and gametogenesis. Key findings include details of chromatin remodeling and transcriptional regulation, progressive and comprehensive DNA demethylation, and tight links between DNA demethylation and histone marks during the development of primordial germ cells, acquisition of unique totipotent epigenome during oogenesis (e.g., broad H3K4me3 domains and low-level three-dimensional genomic organization), and unexpected organization of the sperm genome. Moreover, these studies suggest the importance of epigenome analyses for in-depth evaluations of in vitro gametogenesis.
Collapse
Affiliation(s)
- Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara, Japan.
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma 2019; 128:423-441. [DOI: 10.1007/s00412-019-00704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
|
13
|
|