1
|
Li H, Liu Q, Liu C, Wang S, Zhang Y, Pan J, Liu K, Huang S, Chu T, Shang L, Song Q, Feng K, Wu Z. Identification of SNHG11 as a Therapeutic Target in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2025; 72:244-257. [PMID: 39265177 DOI: 10.1165/rcmb.2023-0428oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 09/14/2024] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening condition characterized by pulmonary vascular remodeling and endothelial dysfunction. Current therapies primarily target vasoactive imbalances but often fail to address adverse vascular remodeling. Long noncoding RNAs (lncRNAs), which are key regulators of various cellular processes, remain underexplored in the context of PH. To investigate the role of lncRNA in PH, we performed a comprehensive analysis using weighted gene coexpression network analysis on the GSE113439 dataset, comprising human lung tissue samples from different PH subtypes. Our analysis identified the lncRNA SNHG11 as consistently downregulated in PH. Functional assays in human pulmonary artery endothelial cells demonstrated that SNHG11 plays a critical role in modulating inflammation, cell proliferation, apoptosis, and the Janus kinase/signal transducers and activators of transcription and mitogen-activated protein kinase signaling pathways. Mechanistically, SNHG11 influences the stability of PRPF8, a crucial mRNA spliceosome component, thereby affecting multiple cellular functions beyond splicing. In vivo experiments using a hypoxic rat model showed that knockdown of SNHG11 alleviates PH development and improves right ventricular function. These findings highlight SNHG11 as a key regulator in PH pathogenesis and suggest it as a potential therapeutic target.
Collapse
Affiliation(s)
- Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Quan Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chiyu Liu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shunjun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Changsha Medical University, Changsha, China; and
| | - Yitao Zhang
- Department of Cardiology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinyu Pan
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kaizheng Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Suiqing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tongxin Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liqun Shang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingyang Song
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kangni Feng
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
López-Cánovas JL, Hermán-Sánchez N, Del Rio-Moreno M, Fuentes-Fayos AC, Lara-López A, Sánchez-Frias ME, Amado V, Ciria R, Briceño J, de la Mata M, Castaño JP, Rodriguez-Perálvarez M, Luque RM, Gahete MD. PRPF8 increases the aggressiveness of hepatocellular carcinoma by regulating FAK/AKT pathway via fibronectin 1 splicing. Exp Mol Med 2023; 55:132-142. [PMID: 36609600 PMCID: PMC9898568 DOI: 10.1038/s12276-022-00917-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) pathogenesis is associated with alterations in splicing machinery components (spliceosome and splicing factors) and aberrant expression of oncogenic splice variants. We aimed to analyze the expression and potential role of the spliceosome component PRPF8 (pre-mRNA processing factor 8) in HCC. PRPF8 expression (mRNA/protein) was analyzed in a retrospective cohort of HCC patients (n = 172 HCC and nontumor tissues) and validated in two in silico cohorts (TCGA and CPTAC). PRPF8 expression was silenced in liver cancer cell lines and in xenograft tumors to understand the functional and mechanistic consequences. In silico RNAseq and CLIPseq data were also analyzed. Our results indicate that PRPF8 is overexpressed in HCC and associated with increased tumor aggressiveness (patient survival, etc.), expression of HCC-related splice variants, and modulation of critical genes implicated in cancer-related pathways. PRPF8 silencing ameliorated aggressiveness in vitro and decreased tumor growth in vivo. Analysis of in silico CLIPseq data in HepG2 cells demonstrated that PRPF8 binds preferentially to exons of protein-coding genes, and RNAseq analysis showed that PRPF8 silencing alters splicing events in multiple genes. Integrated and in vitro analyses revealed that PRPF8 silencing modulates fibronectin (FN1) splicing, promoting the exclusion of exon 40.2, which is paramount for binding to integrins. Consistent with this finding, PRPF8 silencing reduced FAK/AKT phosphorylation and blunted stress fiber formation. Indeed, HepG2 and Hep3B cells exhibited a lower invasive capacity in membranes treated with conditioned medium from PRPF8-silenced cells compared to medium from scramble-treated cells. This study demonstrates that PRPF8 is overexpressed and associated with aggressiveness in HCC and plays important roles in hepatocarcinogenesis by altering FN1 splicing, FAK/AKT activation and stress fiber formation.
Collapse
Affiliation(s)
- Juan L López-Cánovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Mercedes Del Rio-Moreno
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Araceli Lara-López
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Marina E Sánchez-Frias
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Víctor Amado
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Hepatic and Digestive Diseases (CIBERehd), 14004, Córdoba, Spain
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Unit of Hepatobiliary Surgery and Liver Transplantation, University Hospital Reina Sofia, 14004, Cordoba, Spain
| | - Javier Briceño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Unit of Hepatobiliary Surgery and Liver Transplantation, University Hospital Reina Sofia, 14004, Cordoba, Spain
| | - Manuel de la Mata
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Hepatic and Digestive Diseases (CIBERehd), 14004, Córdoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Manuel Rodriguez-Perálvarez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Hepatic and Digestive Diseases (CIBERehd), 14004, Córdoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain
- Reina Sofía University Hospital, 14004, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.
- Reina Sofía University Hospital, 14004, Córdoba, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004, Córdoba, Spain.
| |
Collapse
|
3
|
Erkelenz S, Stanković D, Mundorf J, Bresser T, Claudius AK, Boehm V, Gehring NH, Uhlirova M. Ecd promotes U5 snRNP maturation and Prp8 stability. Nucleic Acids Res 2021; 49:1688-1707. [PMID: 33444449 PMCID: PMC7897482 DOI: 10.1093/nar/gkaa1274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Pre-mRNA splicing catalyzed by the spliceosome represents a critical step in the regulation of gene expression contributing to transcriptome and proteome diversity. The spliceosome consists of five small nuclear ribonucleoprotein particles (snRNPs), the biogenesis of which remains only partially understood. Here we define the evolutionarily conserved protein Ecdysoneless (Ecd) as a critical regulator of U5 snRNP assembly and Prp8 stability. Combining Drosophila genetics with proteomic approaches, we demonstrate the Ecd requirement for the maintenance of adult healthspan and lifespan and identify the Sm ring protein SmD3 as a novel interaction partner of Ecd. We show that the predominant task of Ecd is to deliver Prp8 to the emerging U5 snRNPs in the cytoplasm. Ecd deficiency, on the other hand, leads to reduced Prp8 protein levels and compromised U5 snRNP biogenesis, causing loss of splicing fidelity and transcriptome integrity. Based on our findings, we propose that Ecd chaperones Prp8 to the forming U5 snRNP allowing completion of the cytoplasmic part of the U5 snRNP biogenesis pathway necessary to meet the cellular demand for functional spliceosomes.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tina Bresser
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Ann-Katrin Claudius
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Volker Boehm
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Niels H Gehring
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
4
|
Stanković D, Claudius AK, Schertel T, Bresser T, Uhlirova M. A Drosophila model to study retinitis pigmentosa pathology associated with mutations in the core splicing factor Prp8. Dis Model Mech 2020; 13:dmm043174. [PMID: 32424050 PMCID: PMC7328144 DOI: 10.1242/dmm.043174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
Retinitis pigmentosa (RP) represents genetically heterogeneous and clinically variable disease characterized by progressive degeneration of photoreceptors resulting in a gradual loss of vision. The autosomal dominant RP type 13 (RP13) has been linked to the malfunction of PRPF8, an essential component of the spliceosome. Over 20 different RP-associated PRPF8 mutations have been identified in human patients. However, the cellular and molecular consequences of their expression in vivo in specific tissue contexts remain largely unknown. Here, we establish a Drosophila melanogaster model for RP13 by introducing the nine distinct RP mutations into the fly PRPF8 ortholog prp8 and express the mutant proteins in precise spatiotemporal patterns using the Gal4/UAS system. We show that all nine RP-Prp8 mutant proteins negatively impact developmental timing, albeit to a different extent, when expressed in the endocrine cells producing the primary insect moulting hormone. In the developing eye primordium, uncommitted epithelial precursors rather than differentiated photoreceptors appeared sensitive to Prp8 malfunction. Expression of the two most pathogenic variants, Prp8S>F and Prp8H>R, induced apoptosis causing alterations to the adult eye morphology. The affected tissue mounted stress and cytoprotective responses, while genetic programs underlying neuronal function were attenuated. Importantly, the penetrance and expressivity increased under prp8 heterozygosity. In contrast, blocking apoptosis alleviated cell loss but not the redox imbalance. Remarkably, the pathogenicity of the RP-Prp8 mutations in Drosophila correlates with the severity of clinical phenotypes in patients carrying the equivalent mutations, highlighting the suitability of the Drosophila model for in-depth functional studies of the mechanisms underlying RP13 etiology.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Ann-Katrin Claudius
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Thomas Schertel
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tina Bresser
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany
| |
Collapse
|