1
|
Toh H, Au Yeung WK, Unoki M, Matsumoto Y, Miki Y, Matsumura Y, Baba Y, Sado T, Nakamura Y, Matsuda M, Sasaki H. A deletion at the X-linked ARHGAP36 gene locus is associated with the orange coloration of tortoiseshell and calico cats. Curr Biol 2025:S0960-9822(25)00391-4. [PMID: 40378840 DOI: 10.1016/j.cub.2025.03.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/28/2025] [Indexed: 05/19/2025]
Abstract
The X-linked orange (O) locus in domestic cats controls an unknown molecular mechanism that causes the suppression of black-brownish pigmentation in favor of orange coloration. The alternating black-brownish and orange patches seen in tortoiseshell and calico cats are considered classic examples of the phenotypic expression of random X chromosome inactivation (XCI) occurring in female mammals. However, the O gene in the cat genome has not been identified, and the genetic variation responsible for the orange coloration remains unknown. We report here that a 5.1-kilobase (kb) deletion within an intron of the X-linked ARHGAP36 gene, encoding a Rho GTPase-activating protein, is closely and exclusively associated with orange coloration. The deleted region contains a highly conserved putative regulatory element, whose removal is presumed to alter ARHGAP36 expression. Notably, ARHGAP36 expression in cat skin tissues is linked to the suppression of many melanogenesis genes, potentially shifting pigment synthesis from eumelanin to pheomelanin. Furthermore, we find evidence that the gene undergoes XCI in female human and mouse cells and XCI-dependent CpG island methylation consistent with random XCI in female domestic cats. The 5.1-kb deletion seems widespread in domestic cats with orange coat coloration, suggesting a single origin of this coat color phenotype.
Collapse
Affiliation(s)
- Hidehiro Toh
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; National Institute of Genetics, Research Organization of Information and Systems, Mishima 411-8540, Japan
| | - Wan Kin Au Yeung
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; College of Liberal Arts, International Christian University, Mitaka 181-8585, Japan
| | - Motoko Unoki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; School of International Health, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Matsumoto
- Data Science Center, Azabu University, Sagamihara 252-5201, Japan; Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama 231-0033, Japan
| | - Yuka Miki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | | | - Yoshihiro Baba
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Sado
- Graduate School of Agriculture and Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima 411-8540, Japan
| | - Miho Matsuda
- Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Sasaki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
2
|
Ding M, Wang D, Chen H, Kesner B, Grimm NB, Weissbein U, Lappala A, Jiang J, Rivera C, Lou J, Li P, Lee JT. A biophysical basis for the spreading behavior and limited diffusion of Xist. Cell 2025; 188:978-997.e25. [PMID: 39824183 PMCID: PMC11863002 DOI: 10.1016/j.cell.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 01/20/2025]
Abstract
Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome. HNRNPK droplets pull on Xist and internalize the RNA. Once internalized, Xist induces a further phase transition and "softens" the HNRNPK droplet. Xist alters the condensate's deformability, adhesiveness, and wetting properties in vitro. Other Xist-interacting proteins are internalized and entrapped within the droplet, resulting in a concentration of Xist and protein partners within the condensate. We attribute LLPS to HNRNPK's RGG and Xist's repeat B (RepB) motifs. Mutating these motifs causes Xist diffusion, disrupts polycomb recruitment, and precludes the required mixing of chromosomal compartments for Xist's migration. Thus, we hypothesize that phase transitions in HNRNPK condensates allow Xist to locally concentrate silencing factors and to spread through internal channels of the HNRNPK-encapsulated chromosome.
Collapse
Affiliation(s)
- Mingrui Ding
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Danni Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hui Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Niklas-Benedikt Grimm
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anna Lappala
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Carlos Rivera
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Du Z, Hu L, Zou Z, Liu M, Li Z, Lu X, Harris C, Xiang Y, Chen F, Yu G, Xu K, Kong F, Xu Q, Huang B, Liu L, Fan Q, Wang H, Kalantry S, Xie W. Stepwise de novo establishment of inactive X chromosome architecture in early development. Nat Genet 2024; 56:2185-2198. [PMID: 39256583 DOI: 10.1038/s41588-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
X chromosome inactivation triggers a dramatic reprogramming of transcription and chromosome architecture. However, how the chromatin organization of inactive X chromosome is established de novo in vivo remains elusive. Here, we identified an Xist-separated megadomain structure (X-megadomains) on the inactive X chromosome in mouse extraembryonic lineages and extraembryonic endoderm (XEN) cell lines, and transiently in the embryonic lineages, before Dxz4-delineated megadomain formation at later stages in a strain-specific manner. X-megadomain boundary coincides with strong enhancer activities and cohesin binding in an Xist regulatory region required for proper Xist activation in early embryos. Xist regulatory region disruption or cohesin degradation impaired X-megadomains in extraembryonic endoderm cells and caused ectopic activation of regulatory elements and genes near Xist, indicating that cohesin loading at regulatory elements promotes X-megadomains and confines local gene activities. These data reveal stepwise X chromosome folding and transcriptional regulation to achieve both essential gene activation and global silencing during the early stages of X chromosome inactivation.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Liangjun Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Meishuo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zihan Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yunlong Xiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fengling Chen
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Guang Yu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bo Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Haifeng Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
4
|
Huang Z, Cui W, Ratnayake I, Tawil R, Pfeifer GP. SMCHD1 maintains heterochromatin and genome compartments in human myoblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602392. [PMID: 39026812 PMCID: PMC11257445 DOI: 10.1101/2024.07.07.602392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Mammalian genomes are subdivided into euchromatic A compartments that contain mostly active chromatin, and inactive, heterochromatic B compartments. However, it is unknown how A and B genome compartments are established and maintained. Here we studied SMCHD1, an SMC-like protein in human male myoblasts. SMCHD1 colocalizes with Lamin B1 and the heterochromatin mark H3K9me3. Loss of SMCHD1 leads to extensive heterochromatin depletion at the nuclear lamina and acquisition of active chromatin states along all chromosomes. In absence of SMCHD1, long range intra-chromosomal and inter-chromosomal contacts between B compartments are lost while many new TADs and loops are formed. Inactivation of SMCHD1 promotes numerous B to A compartment transitions accompanied by activation of silenced genes. SMCHD1 functions as an anchor for heterochromatin domains ensuring that these domains are inaccessible to epigenome modification enzymes that typically operate in active chromatin. Therefore, A compartments are formed by default when not prevented by SMCHD1.
Collapse
|
5
|
Aharonoff A, Kim J, Washington A, Ercan S. SMC-mediated dosage compensation in C. elegans evolved in the presence of an ancestral nematode mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595224. [PMID: 38826443 PMCID: PMC11142195 DOI: 10.1101/2024.05.21.595224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Mechanisms of X chromosome dosage compensation have been studied extensively in a few model species representing clades of shared sex chromosome ancestry. However, the diversity within each clade as a function of sex chromosome evolution is largely unknown. Here, we anchor ourselves to the nematode Caenorhabditis elegans, for which a well-studied mechanism of dosage compensation occurs through a specialized structural maintenance of chromosomes (SMC) complex, and explore the diversity of dosage compensation in the surrounding phylogeny of nematodes. Through phylogenetic analysis of the C. elegans dosage compensation complex and a survey of its epigenetic signatures, including X-specific topologically associating domains (TADs) and X-enrichment of H4K20me1, we found that the condensin-mediated mechanism evolved recently in the lineage leading to Caenorhabditis through an SMC-4 duplication. Intriguingly, an independent duplication of SMC-4 and the presence of X-specific TADs in Pristionchus pacificus suggest that condensin-mediated dosage compensation arose more than once. mRNA-seq analyses of gene expression in several nematode species indicate that dosage compensation itself is ancestral, as expected from the ancient XO sex determination system. Indicative of the ancestral mechanism, H4K20me1 is enriched on the X chromosomes in Oscheius tipulae, which does not contain X-specific TADs or SMC-4 paralogs. Together, our results indicate that the dosage compensation system in C. elegans is surprisingly new, and condensin may have been co-opted repeatedly in nematodes, suggesting that the process of evolving a chromosome-wide gene regulatory mechanism for dosage compensation is constrained. Significance statement X chromosome dosage compensation mechanisms evolved in response to Y chromosome degeneration during sex chromosome evolution. However, establishment of dosage compensation is not an endpoint. As sex chromosomes change, dosage compensation strategies may have also changed. In this study, we performed phylogenetic and epigenomic analyses surrounding Caenorhabditis elegans and found that the condensin-mediated dosage compensation mechanism in C. elegans is surprisingly new, and has evolved in the presence of an ancestral mechanism. Intriguingly, condensin-based dosage compensation may have evolved more than once in the nematode lineage, the other time in Pristionchus. Together, our work highlights a previously unappreciated diversity of dosage compensation mechanisms within a clade, and suggests constraints in evolving new mechanisms in the presence of an existing one.
Collapse
Affiliation(s)
- Avrami Aharonoff
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Aaliyah Washington
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
6
|
Malcore RM, Kalantry S. A Comparative Analysis of Mouse Imprinted and Random X-Chromosome Inactivation. EPIGENOMES 2024; 8:8. [PMID: 38390899 PMCID: PMC10885068 DOI: 10.3390/epigenomes8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The mammalian sexes are distinguished by the X and Y chromosomes. Whereas males harbor one X and one Y chromosome, females harbor two X chromosomes. To equalize X-linked gene expression between the sexes, therian mammals have evolved X-chromosome inactivation as a dosage compensation mechanism. During X-inactivation, most genes on one of the two X chromosomes in females are transcriptionally silenced, thus equalizing X-linked gene expression between the sexes. Two forms of X-inactivation characterize eutherian mammals, imprinted and random. Imprinted X-inactivation is defined by the exclusive inactivation of the paternal X chromosome in all cells, whereas random X-inactivation results in the silencing of genes on either the paternal or maternal X chromosome in individual cells. Both forms of X-inactivation have been studied intensively in the mouse model system, which undergoes both imprinted and random X-inactivation early in embryonic development. Stable imprinted and random X-inactivation requires the induction of the Xist long non-coding RNA. Following its induction, Xist RNA recruits proteins and complexes that silence genes on the inactive-X. In this review, we present a current understanding of the mechanisms of Xist RNA induction, and, separately, the establishment and maintenance of gene silencing on the inactive-X by Xist RNA during imprinted and random X-inactivation.
Collapse
Affiliation(s)
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
7
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Poonperm R, Ichihara S, Miura H, Tanigawa A, Nagao K, Obuse C, Sado T, Hiratani I. Replication dynamics identifies the folding principles of the inactive X chromosome. Nat Struct Mol Biol 2023; 30:1224-1237. [PMID: 37563439 PMCID: PMC10442229 DOI: 10.1038/s41594-023-01052-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
Chromosome-wide late replication is an enigmatic hallmark of the inactive X chromosome (Xi). How it is established and what it represents remains obscure. By single-cell DNA replication sequencing, here we show that the entire Xi is reorganized to replicate rapidly and uniformly in late S-phase during X-chromosome inactivation (XCI), reflecting its relatively uniform structure revealed by 4C-seq. Despite this uniformity, only a subset of the Xi became earlier replicating in SmcHD1-mutant cells. In the mutant, these domains protruded out of the Xi core, contacted each other and became transcriptionally reactivated. 4C-seq suggested that they constituted the outermost layer of the Xi even before XCI and were rich in escape genes. We propose that this default positioning forms the basis for their inherent heterochromatin instability in cells lacking the Xi-binding protein SmcHD1 or exhibiting XCI escape. These observations underscore the importance of 3D genome organization for heterochromatin stability and gene regulation.
Collapse
Affiliation(s)
- Rawin Poonperm
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Saya Ichihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics, Shizuoka, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Akie Tanigawa
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
9
|
Šikrová D, Testa AM, Willemsen I, van den Heuvel A, Tapscott SJ, Daxinger L, Balog J, van der Maarel SM. SMCHD1 and LRIF1 converge at the FSHD-associated D4Z4 repeat and LRIF1 promoter yet display different modes of action. Commun Biol 2023; 6:677. [PMID: 37380887 DOI: 10.1038/s42003-023-05053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic derepression of the 4q-linked D4Z4 macrosatellite repeat resulting in inappropriate expression of the D4Z4 repeat-encoded DUX4 gene in skeletal muscle. In 5% of FSHD cases, D4Z4 chromatin relaxation is due to germline mutations in one of the chromatin modifiers SMCHD1, DNMT3B or LRIF1. The mechanism of SMCHD1- and LRIF1-mediated D4Z4 repression is not clear. We show that somatic loss-of-function of either SMCHD1 or LRIF1 does not result in D4Z4 chromatin changes and that SMCHD1 and LRIF1 form an auxiliary layer of D4Z4 repressive mechanisms. We uncover that SMCHD1, together with the long isoform of LRIF1, binds to the LRIF1 promoter and silences LRIF1 expression. The interdependency of SMCHD1 and LRIF1 binding differs between D4Z4 and the LRIF1 promoter, and both loci show different transcriptional responses to either early developmentally or somatically perturbed chromatin function of SMCHD1 and LRIF1.
Collapse
Affiliation(s)
- Darina Šikrová
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Alessandra M Testa
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
- Department of Biomedical Sciences, University of Padua, 35100, Padua, Italy
| | - Iris Willemsen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands.
| |
Collapse
|
10
|
Ichihara S, Nagao K, Sakaguchi T, Obuse C, Sado T. SmcHD1 underlies the formation of H3K9me3 blocks on the inactive X chromosome in mice. Development 2022; 149:dev200864. [PMID: 38771307 DOI: 10.1242/dev.200864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
Stable silencing of the inactive X chromosome (Xi) in female mammals is crucial for the development of embryos and their postnatal health. SmcHD1 is essential for stable silencing of the Xi, and its functional deficiency results in derepression of many X-inactivated genes. Although SmcHD1 has been suggested to play an important role in the formation of higher-order chromatin structure of the Xi, the underlying mechanism is largely unknown. Here, we explore the epigenetic state of the Xi in SmcHD1-deficient epiblast stem cells and mouse embryonic fibroblasts in comparison with their wild-type counterparts. The results suggest that SmcHD1 underlies the formation of H3K9me3-enriched blocks on the Xi, which, although the importance of H3K9me3 has been largely overlooked in mice, play a crucial role in the establishment of the stably silenced state. We propose that the H3K9me3 blocks formed on the Xi facilitate robust heterochromatin formation in combination with H3K27me3, and that the substantial loss of H3K9me3 caused by SmcHD1 deficiency leads to aberrant distribution of H3K27me3 on the Xi and derepression of X-inactivated genes.
Collapse
Affiliation(s)
- Saya Ichihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Koji Nagao
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takehisa Sakaguchi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikashi Obuse
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
11
|
Epigenetic modifier SMCHD1 maintains a normal pool of long-term hematopoietic stem cells. iScience 2022; 25:104684. [PMID: 35856023 PMCID: PMC9287190 DOI: 10.1016/j.isci.2022.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
SMCHD1 (structural maintenance of chromosomes hinge domain containing 1) is a noncanonical SMC protein that mediates long-range repressive chromatin structures. SMCHD1 is required for X chromosome inactivation in female cells and repression of imprinted and clustered autosomal genes, with SMCHD1 mutations linked to human diseases facioscapulohumeral muscular dystrophy (FSHD) and bosma arhinia and micropthalmia syndrome (BAMS). We used a conditional mouse model to investigate SMCHD1 in hematopoiesis. Smchd1-deleted mice maintained steady-state hematopoiesis despite showing an impaired reconstitution capacity in competitive bone marrow transplantations and age-related hematopoietic stem cell (HSC) loss. This phenotype was more pronounced in Smchd1-deleted females, which showed a loss of quiescent HSCs and fewer B cells. Gene expression profiling of Smchd1-deficient HSCs and B cells revealed known and cell-type-specific SMCHD1-sensitive genes and significant disruption to X-linked gene expression in female cells. These data show SMCHD1 is a regulator of HSCs whose effects are more profound in females. SMCHD1 is not required to maintain steady-state hematopoiesis Smchd1-deletion leads to loss of adult hematopoietic stem cells Smchd1-deleted female mice are more severely affected than males SMCHD1 maintains cellular quiescence in female hematopoietic stem cells
Collapse
|
12
|
Zinc finger protein 280C contributes to colorectal tumorigenesis by maintaining epigenetic repression at H3K27me3-marked loci. Proc Natl Acad Sci U S A 2022; 119:e2120633119. [PMID: 35605119 PMCID: PMC9295756 DOI: 10.1073/pnas.2120633119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study uncovered the role of ZNF280C, a known DNA damage response protein, as a tumorigenic transcription regulator that contributes to colorectal tumorigenesis and metastasis through maintaining an epigenetic repression program at key cancer gene loci. These findings identified a contributor with potential prognostic value to colorectal pathogenesis and provide mechanistic insight to the essential function of transcription factor in fine-tuning the activity of chromatin regulators for proper transcription control. Dysregulated epigenetic and transcriptional programming due to abnormalities of transcription factors (TFs) contributes to and sustains the oncogenicity of cancer cells. Here, we unveiled the role of zinc finger protein 280C (ZNF280C), a known DNA damage response protein, as a tumorigenic TF in colorectal cancer (CRC), required for colitis-associated carcinogenesis and Apc deficiency–driven intestinal tumorigenesis in mice. Consistently, ZNF280C silencing in human CRC cells inhibited proliferation, clonogenicity, migration, xenograft growth, and liver metastasis. As a C2H2 (Cys2-His2) zinc finger-containing TF, ZNF280C occupied genomic intervals with both transcriptionally active and repressive states and coincided with CCCTC-binding factor (CTCF) and cohesin binding. Notably, ZNF280C was crucial for the repression program of trimethylation of histone H3 at lysine 27 (H3K27me3)-marked genes and the maintenance of both focal and broad H3K27me3 levels. Mechanistically, ZNF280C counteracted CTCF/cohesin activities and condensed the chromatin environment at the cis elements of certain tumor suppressor genes marked by H3K27me3, at least partially through recruiting the epigenetic repressor structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1). In clinical relevance, ZNF280C was highly expressed in primary CRCs and distant metastases, and a higher ZNF280C level independently predicted worse prognosis of CRC patients. Thus, our study uncovered a contributor with good prognostic value to CRC pathogenesis and also elucidated the essence of DNA-binding TFs in orchestrating the epigenetic programming of gene regulation.
Collapse
|
13
|
Xist-mediated silencing requires additive functions of SPEN and Polycomb together with differentiation-dependent recruitment of SmcHD1. Cell Rep 2022; 39:110830. [PMID: 35584662 DOI: 10.1016/j.celrep.2022.110830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
X chromosome inactivation (XCI) is mediated by the non-coding RNA Xist, which directs chromatin modification and gene silencing in cis. The RNA binding protein SPEN and associated corepressors have a central role in Xist-mediated gene silencing. Other silencing factors, notably the Polycomb system, have been reported to function downstream of SPEN. In recent work, we found that SPEN has an additional role in correct localization of Xist RNA in cis, indicating that its contribution to chromatin-mediated gene silencing needs to be reappraised. Making use of a SPEN separation-of-function mutation, we show that SPEN and Polycomb pathways, in fact, function in parallel to establish gene silencing. We also find that differentiation-dependent recruitment of the chromosomal protein SmcHD1 is required for silencing many X-linked genes. Our results provide important insights into the mechanism of X inactivation and the coordination of chromatin-based gene regulation with cellular differentiation and development.
Collapse
|
14
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
15
|
Poonperm R, Hiratani I. Formation of a multi-layered 3-dimensional structure of the heterochromatin compartment during early mammalian development. Dev Growth Differ 2021; 63:5-17. [PMID: 33491197 DOI: 10.1111/dgd.12709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023]
Abstract
During embryogenesis in mammals, the 3-dimensional (3D) genome organization changes globally in parallel with transcription changes in a cell-type specific manner. This involves the progressive formation of heterochromatin, the best example of which is the inactive X chromosome (Xi) in females, originally discovered as a compact 3D structure at the nuclear periphery known as the Barr body. The heterochromatin formation on the autosomes and the Xi is tightly associated with the differentiation state and the developmental potential of cells, making it an ideal readout of the cellular epigenetic state. At a glance, the heterochromatin appears to be uniform. However, recent studies are beginning to reveal a more complex picture, with multiple hierarchical levels co-existing within the heterochromatin compartment. Such hierarchical levels appear to exist in the heterochromatin compartment on autosomes as well as on the Xi. Here, we review recent progress in our understanding of the 3D genome organization changes during the period of differentiation surrounding pluripotency in vivo and in vitro, with a focus on the heterochromatin compartment. We first look at the whole genome, then focus on the Xi, and discuss their differences and similarities. Finally, we present a unified view of how the heterochromatin compartment is formed and regulated during early development. In particular, we emphasize that there are multiple layers within the heterochromatic compartment on both the autosomes and the Xi, with regulatory mechanisms common and specific to each layer.
Collapse
Affiliation(s)
- Rawin Poonperm
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
16
|
Abstract
The X inactive-specific transcript (Xist) gene is the master regulator of X chromosome inactivation in mammals. Xist produces a long noncoding (lnc)RNA that accumulates over the entire length of the chromosome from which it is transcribed, recruiting factors to modify underlying chromatin and silence X-linked genes in cis Recent years have seen significant progress in identifying important functional elements in Xist RNA, their associated RNA-binding proteins (RBPs), and the downstream pathways for chromatin modification and gene silencing. In this review, we summarize progress in understanding both how these pathways function in Xist-mediated silencing and the complex interplay between them.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joseph S Bowness
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Guifeng Wei
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
17
|
Abstract
Female mammals express the long noncoding X inactivation-specific transcript ( Xist) RNA to initiate X chromosome inactivation (XCI) that eventually results in the formation of the Barr body. Xist encompasses half a dozen repeated sequence stretches containing motifs for RNA-binding proteins that recruit effector complexes with functions for silencing genes and establishing a repressive chromatin configuration. Functional characterization of these effector proteins unveils the cooperation of a number of pathways to repress genes on the inactive X chromosome. Mechanistic insights can be extended to other noncoding RNAs with similar structure and open avenues for the design of new therapies to switch off gene expression. Here we review recent advances in the understanding of Xist and on this basis try to synthesize a model for the initiation of XCI.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|
18
|
Fang H, Disteche CM, Berletch JB. X Inactivation and Escape: Epigenetic and Structural Features. Front Cell Dev Biol 2019; 7:219. [PMID: 31632970 PMCID: PMC6779695 DOI: 10.3389/fcell.2019.00219] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
X inactivation represents a complex multi-layer epigenetic mechanism that profoundly modifies chromatin composition and structure of one X chromosome in females. The heterochromatic inactive X chromosome adopts a unique 3D bipartite structure and a location close to the nuclear periphery or the nucleolus. X-linked lncRNA loci and their transcripts play important roles in the recruitment of proteins that catalyze chromatin and DNA modifications for silencing, as well as in the control of chromatin condensation and location of the inactive X chromosome. A subset of genes escapes X inactivation, raising questions about mechanisms that preserve their expression despite being embedded within heterochromatin. Escape gene expression differs between males and females, which can lead to physiological sex differences. We review recent studies that emphasize challenges in understanding the role of lncRNAs in the control of epigenetic modifications, structural features and nuclear positioning of the inactive X chromosome. Second, we highlight new findings about the distribution of genes that escape X inactivation based on single cell studies, and discuss the roles of escape genes in eliciting sex differences in health and disease.
Collapse
Affiliation(s)
- He Fang
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Joel B. Berletch
- Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Wang CY, Brand H, Shaw ND, Talkowski ME, Lee JT. Role of the Chromosome Architectural Factor SMCHD1 in X-Chromosome Inactivation, Gene Regulation, and Disease in Humans. Genetics 2019; 213:685-703. [PMID: 31420322 PMCID: PMC6781896 DOI: 10.1534/genetics.119.302600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an architectural factor critical for X-chromosome inactivation (XCI) and the repression of select autosomal gene clusters. In mice, homozygous nonsense mutations in Smchd1 cause female-specific embryonic lethality due to an XCI defect. However, although human mutations in SMCHD1 are associated with congenital arhinia and facioscapulohumeral muscular dystrophy type 2 (FSHD2), the diseases do not show a sex-specific bias, despite the essential nature of XCI in humans. To investigate whether there is a dosage imbalance for the sex chromosomes, we here analyze transcriptomic data from arhinia and FSHD2 patient blood and muscle cells. We find that X-linked dosage compensation is maintained in these patients. In mice, SMCHD1 controls not only protocadherin (Pcdh) gene clusters, but also Hox genes critical for craniofacial development. Ablating Smchd1 results in aberrant expression of these genes, coinciding with altered chromatin states and three-dimensional (3D) topological organization. In a subset of FSHD2 and arhinia patients, we also found dysregulation of clustered PCDH, but not HOX genes. Overall, our study demonstrates preservation of XCI in arhinia and FSHD2, and implicates SMCHD1 in the regulation of the 3D organization of select autosomal gene clusters.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Harrison Brand
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Natalie D Shaw
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Michael E Talkowski
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
20
|
Talon I, Janiszewski A, Chappell J, Vanheer L, Pasque V. Recent Advances in Understanding the Reversal of Gene Silencing During X Chromosome Reactivation. Front Cell Dev Biol 2019; 7:169. [PMID: 31552244 PMCID: PMC6733891 DOI: 10.3389/fcell.2019.00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Dosage compensation between XX female and XY male cells is achieved by a process known as X chromosome inactivation (XCI) in mammals. XCI is initiated early during development in female cells and is subsequently stably maintained in most somatic cells. Despite its stability, the robust transcriptional silencing of XCI is reversible, in the embryo and also in a number of reprogramming settings. Although XCI has been intensively studied, the dynamics, factors, and mechanisms of X chromosome reactivation (XCR) remain largely unknown. In this review, we discuss how new sequencing technologies and reprogramming approaches have enabled recent advances that revealed the timing of transcriptional activation during XCR. We also discuss the factors and chromatin features that might be important to understand the dynamics and mechanisms of the erasure of transcriptional gene silencing on the inactive X chromosome (Xi).
Collapse
Affiliation(s)
| | | | | | | | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Wang CY, Colognori D, Sunwoo H, Wang D, Lee JT. PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome compartments. Nat Commun 2019; 10:2950. [PMID: 31270318 PMCID: PMC6610634 DOI: 10.1038/s41467-019-10755-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
X-chromosome inactivation triggers fusion of A/B compartments to inactive X (Xi)-specific structures known as S1 and S2 compartments. SMCHD1 then merges S1/S2s to form the Xi super-structure. Here, we ask how S1/S2 compartments form and reveal that Xist RNA drives their formation via recruitment of Polycomb repressive complex 1 (PRC1). Ablating Smchd1 in post-XCI cells unveils S1/S2 structures. Loss of SMCHD1 leads to trapping Xist in the S1 compartment, impairing RNA spreading into S2. On the other hand, depleting Xist, PRC1, or HNRNPK precludes re-emergence of S1/S2 structures, and loss of S1/S2 compartments paradoxically strengthens the partition between Xi megadomains. Finally, Xi-reactivation in post-XCI cells can be enhanced by depleting both SMCHD1 and DNA methylation. We conclude that Xist, PRC1, and SMCHD1 collaborate in an obligatory, sequential manner to partition, fuse, and direct self-association of Xi compartments required for proper spreading of Xist RNA. The inactive X (Xi)-specific S1/S2 chromosome compartments are merged by SMCHD1, but how the S1/S2 structure is constructed is unclear. The authors find that PRC1 drives the formation of S1/S2s and that the stepwise folding process of the Xi facilitates Xist RNA spreading between Xi compartments.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David Colognori
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hongjae Sunwoo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danni Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat Commun 2019; 10:30. [PMID: 30604745 PMCID: PMC6318279 DOI: 10.1038/s41467-018-07907-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), A/B compartments and formation of two mega-domains. Here we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 mutant cells reveals the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including A/B compartments and partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred following SmcHD1 knockout in a somatic cell model, but in this case, independent of Xi gene derepression. We conclude that SmcHD1 is a key factor in defining the unique chromosome architecture of Xi. The inactive X chromosome (Xi) has an atypical structure, with global loss of TADs, A/B compartments and formation of mega-domains. Here the authors show that the non-canonical SMC family protein, SmcHD1, important for developmental gene silencing on Xi, antagonises TAD formation and compartmentalization on the Xi in a transcription independent way.
Collapse
|