1
|
Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M, Schiebinger G, McClay DR, Wray GA. Single-Cell Transcriptomics Reveals Evolutionary Reconfiguration of Embryonic Cell Fate Specification in the Sea Urchin Heliocidaris erythrogramma. Genome Biol Evol 2025; 17:evae258. [PMID: 39587400 PMCID: PMC11719709 DOI: 10.1093/gbe/evae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of single-cell transcriptome analysis (scRNA-seq) developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states, respectively) reveal numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events and the primary signaling center are co-localized in the ancestral developmental gene regulatory network; remarkably, in H. erythrogramma, they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Anton Afanassiev
- Department of Mathematics, University of British Colombia, Vancouver, BC, Canada V6T 1Z2
| | - Laura Greenstreet
- Department of Mathematics, University of British Colombia, Vancouver, BC, Canada V6T 1Z2
| | - Krista Pipho
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maria Byrne
- School of Life and Environmental Sciences, Sydney University, Sydney, NSW, Australia
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Colombia, Vancouver, BC, Canada V6T 1Z2
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Warner JF, Range RC, Fenner J, Ka C, Waits DS, Boddy K, David KT, Mahon AR, Halanych KM. Chromosomal-Level Genome Assembly of the Antarctic Sea Urchin Sterechinus neumayeri: A Model for Antarctic Invertebrate Biology. Genome Biol Evol 2024; 16:evae237. [PMID: 39475447 PMCID: PMC11586663 DOI: 10.1093/gbe/evae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/26/2024] Open
Abstract
The Antarctic sea urchin Sterechinus neumayeri (Echinoida; Echinidae) is routinely used as a model organism for Antarctic biology. Here, we present a high-quality genome of S. neumayeri. This chromosomal-level assembly was generated using PacBio long-read sequencing and Hi-C chromatin conformation capture sequencing. This 885.3-Mb assembly exhibits high contiguity with a scaffold length N50 of 36.7 Mb assembled into 20 chromosomal length scaffolds. These putative chromosomes exhibit a high degree of synteny compared to other sea urchin models. We used transcript evidence gene modeling combined with sequence homology to identify 21,638 gene models that capture 97.4% of BUSCO orthologs. Among these, we were able to identify and annotate conserved developmental gene regulatory network orthologs, positioning S. neumayeri as a tractable model for comparative studies on evolution and development.
Collapse
Affiliation(s)
- Jacob F Warner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Jennifer Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Cheikouna Ka
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Damien S Waits
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Kristen Boddy
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Kyle T David
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Andrew R Mahon
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Kenneth M Halanych
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| |
Collapse
|
3
|
Emura N, Wavreil FD, Fries A, Yajima M. The evolutionary modifications of a GoLoco motif in the AGS protein facilitate micromere formation in the sea urchin embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601440. [PMID: 39005292 PMCID: PMC11244941 DOI: 10.1101/2024.06.30.601440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, to species diversification. The micromere of the sea urchin embryo may serve as one of those examples: An ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, Activator of G-protein Signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms' AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.
Collapse
Affiliation(s)
| | | | - Annaliese Fries
- MCB Department, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| |
Collapse
|
4
|
Telmer CA, Karimi K, Chess MM, Agalakov S, Arshinoff BI, Lotay V, Wang DZ, Chu S, Pells TJ, Vize PD, Hinman VF, Ettensohn CA. Echinobase: a resource to support the echinoderm research community. Genetics 2024; 227:iyae002. [PMID: 38262680 PMCID: PMC11075573 DOI: 10.1093/genetics/iyae002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Echinobase (www.echinobase.org) is a model organism knowledgebase serving as a resource for the community that studies echinoderms, a phylum of marine invertebrates that includes sea urchins and sea stars. Echinoderms have been important experimental models for over 100 years and continue to make important contributions to environmental, evolutionary, and developmental studies, including research on developmental gene regulatory networks. As a centralized resource, Echinobase hosts genomes and collects functional genomic data, reagents, literature, and other information for the community. This third-generation site is based on the Xenbase knowledgebase design and utilizes gene-centric pages to minimize the time and effort required to access genomic information. Summary gene pages display gene symbols and names, functional data, links to the JBrowse genome browser, and orthology to other organisms and reagents, and tabs from the Summary gene page contain more detailed information concerning mRNAs, proteins, diseases, and protein-protein interactions. The gene pages also display 1:1 orthologs between the fully supported species Strongylocentrotus purpuratus (purple sea urchin), Lytechinus variegatus (green sea urchin), Patiria miniata (bat star), and Acanthaster planci (crown-of-thorns sea star). JBrowse tracks are available for visualization of functional genomic data from both fully supported species and the partially supported species Anneissia japonica (feather star), Asterias rubens (sugar star), and L. pictus (painted sea urchin). Echinobase serves a vital role by providing researchers with annotated genomes including orthology, functional genomic data aligned to the genomes, and curated reagents and data. The Echinoderm Anatomical Ontology provides a framework for standardizing developmental data across the phylum, and knowledgebase content is formatted to be findable, accessible, interoperable, and reusable by the research community.
Collapse
Affiliation(s)
- Cheryl A Telmer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Macie M Chess
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sergei Agalakov
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Bradley I Arshinoff
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Vaneet Lotay
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Dong Zhuo Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Stanley Chu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M, Schiebinger G, McClay DR, Wray GA. Single-cell transcriptomics reveals evolutionary reconfiguration of embryonic cell fate specification in the sea urchin Heliocidaris erythrogramma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591752. [PMID: 38746376 PMCID: PMC11092583 DOI: 10.1101/2024.04.30.591752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of scRNA-seq developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states respectively) reveals numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events, and the primary signaling center are co-localized in the ancestral dGRN but remarkably, in H. erythrogramma they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27701 USA
| | | | - Anton Afanassiev
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Laura Greenstreet
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Krista Pipho
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Maria Byrne
- School of Life and Environmental Sciences, Sydney University, Sydney, NSW Australia
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27701 USA
| |
Collapse
|
6
|
Gautam S, Fenner JL, Wang B, Range RC. Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos. iScience 2024; 27:108616. [PMID: 38179064 PMCID: PMC10765061 DOI: 10.1016/j.isci.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Studies across a diverse group of metazoan embryos indicate that Wnt signaling often activates the transcription factor Sp5, forming a signaling 'cassette' that plays critical roles in many developmental processes. This study explores the role of Wnt/Sp5 signaling during the specification and patterning of the primary germ layers during early anterior-posterior axis formation in the deuterostome sea urchin embryo. Our functional analyses show that Sp5 is critical for endomesoderm specification downstream of Wnt/β-catenin in posterior cells as well as anterior neuroectoderm patterning downstream of non-canonical Wnt/JNK signaling in anterior cells. Interestingly, expression and functional data comparisons show that Wnt/Sp5 signaling often plays similar roles in posterior endomesoderm as well as neuroectoderm patterning along the AP axis of several deuterostome embryos, including vertebrates. Thus, our findings provide strong support for the idea that Wnt-Sp5 signaling cassettes were critical for the establishment of early germ layers in the common deuterostome ancestor.
Collapse
Affiliation(s)
- Sujan Gautam
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer L. Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Boyuan Wang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C. Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Devens HR, Davidson PL, Byrne M, Wray GA. Hybrid Epigenomes Reveal Extensive Local Genetic Changes to Chromatin Accessibility Contribute to Divergence in Embryonic Gene Expression Between Species. Mol Biol Evol 2023; 40:msad222. [PMID: 37823438 PMCID: PMC10638671 DOI: 10.1093/molbev/msad222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 10/13/2023] Open
Abstract
Chromatin accessibility plays an important role in shaping gene expression, yet little is known about the genetic and molecular mechanisms that influence the evolution of chromatin configuration. Both local (cis) and distant (trans) genetic influences can in principle influence chromatin accessibility and are based on distinct molecular mechanisms. We, therefore, sought to characterize the role that each of these plays in altering chromatin accessibility in 2 closely related sea urchin species. Using hybrids of Heliocidaris erythrogramma and Heliocidaris tuberculata, and adapting a statistical framework previously developed for the analysis of cis and trans influences on the transcriptome, we examined how these mechanisms shape the regulatory landscape at 3 important developmental stages, and compared our results to similar analyses of the transcriptome. We found extensive cis- and trans-based influences on evolutionary changes in chromatin, with cis effects generally larger in effect. Evolutionary changes in accessibility and gene expression are correlated, especially when expression has a local genetic basis. Maternal influences appear to have more of an effect on chromatin accessibility than on gene expression, persisting well past the maternal-to-zygotic transition. Chromatin accessibility near gene regulatory network genes appears to be distinctly regulated, with trans factors appearing to play an outsized role in the configuration of chromatin near these genes. Together, our results represent the first attempt to quantify cis and trans influences on evolutionary divergence in chromatin configuration in an outbred natural study system and suggest that chromatin regulation is more genetically complex than was previously appreciated.
Collapse
Affiliation(s)
| | | | - Maria Byrne
- School of Medical Science, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Bronchain O, Ducos B, Putzer H, Delagrange M, Laalami S, Philippe-Caraty L, Saroul K, Ciapa B. Natural antisense transcription of presenilin in sea urchin reveals a possible role for natural antisense transcription in the general control of gene expression during development. J Cell Sci 2023; 136:jcs261284. [PMID: 37345489 DOI: 10.1242/jcs.261284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.
Collapse
Affiliation(s)
- Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Harald Putzer
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Marine Delagrange
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Soumaya Laalami
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Laetitia Philippe-Caraty
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Krystel Saroul
- Institut CURIE, Université Paris-Saclay, INSERM U932, Immunité et Cancer, 91400 Orsay, France
| | - Brigitte Ciapa
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| |
Collapse
|
9
|
Devens HR, Davidson PL, Byrne M, Wray GA. Hybrid epigenomes reveal extensive local genetic changes to chromatin accessibility contribute to divergence in embryonic gene expression between species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522781. [PMID: 36711588 PMCID: PMC9881966 DOI: 10.1101/2023.01.04.522781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chromatin accessibility plays an important role in shaping gene expression patterns across development and evolution; however, little is known about the genetic and molecular mechanisms that influence chromatin configuration itself. Because cis and trans influences can both theoretically influence the accessibility of the epigenome, we sought to better characterize the role that both of these mechanisms play in altering chromatin accessibility in two closely related sea urchin species. Using hybrids of the two species, and adapting a statistical framework previously developed for the analysis of cis and trans influences on the transcriptome, we examined how these mechanisms shape the regulatory landscape at three important developmental stages, and compared our results to similar patterns in the transcriptome. We found extensive cis- and trans-based influences on evolutionary changes in chromatin, with cis effects slightly more numerous and larger in effect. Genetic mechanisms influencing gene expression and chromatin configuration are correlated, but differ in several important ways. Maternal influences also appear to have more of an effect on chromatin accessibility than on gene expression, persisting well past the maternal-to-zygotic transition. Furthermore, chromatin accessibility near GRN genes appears to be regulated differently than the rest of the epigenome, and indicates that trans factors may play an outsized role in the configuration of chromatin near these genes. Together, our results represent the first attempt to quantify cis and trans influences on evolutionary divergence in chromatin configuration in an outbred natural study system, and suggest that the regulation of chromatin is more genetically complex than was previously appreciated.
Collapse
Affiliation(s)
| | | | - Maria Byrne
- School of Medical Science, The University of Sydney, NSW 2006, Australia
- School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Davidson PL, Guo H, Swart JS, Massri AJ, Edgar A, Wang L, Berrio A, Devens HR, Koop D, Cisternas P, Zhang H, Zhang Y, Byrne M, Fan G, Wray GA. Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins. Nat Ecol Evol 2022; 6:1907-1920. [PMID: 36266460 DOI: 10.1038/s41559-022-01906-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species. Positive selection and chromatin accessibility modifications within putative regulatory elements are enriched on the branch leading to the derived life history, particularly near dGRN genes. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near conserved cell fate specification genes. Experimentally perturbing key transcription factors reveals profound evolutionary changes to early embryonic patterning events, disrupting regulatory interactions previously conserved for ~225 million years. These results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change. More broadly, even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.
Collapse
Affiliation(s)
| | - Haobing Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jane S Swart
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Allison Edgar
- Department of Biology, Duke University, Durham, NC, USA
| | - Lingyu Wang
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Demian Koop
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - He Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Abstract
As analyses of developmental mechanisms extend to ever more species, it becomes important to understand not just what is conserved or altered during evolution, but why. Closely related species that exhibit extreme phenotypic divergence can be uniquely informative in this regard. A case in point is the sea urchin genus Heliocidaris, which contains species that recently evolved a life history involving nonfeeding larvae following nearly half a billion years of prior evolution with feeding larvae. The resulting shift in selective regimes produced rapid and surprisingly extensive changes in developmental mechanisms that are otherwise highly conserved among echinoderm species. The magnitude and extent of these changes challenges the notion that conservation of early development in echinoderms is largely due to internal constraints that prohibit modification and instead suggests that natural selection actively maintains stability of inherently malleable trait developmental mechanisms over immense time periods. Knowing how and why natural selection changed during the evolution of nonfeeding larvae can also reveal why developmental mechanisms do and do not change in particular ways.
Collapse
Affiliation(s)
- Gregory A Wray
- Department of Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
12
|
Srivastava M. Beyond Casual Resemblances: Rigorous Frameworks for Comparing Regeneration Across Species. Annu Rev Cell Dev Biol 2021; 37:415-440. [PMID: 34288710 DOI: 10.1146/annurev-cellbio-120319-114716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of animal phyla have species that can regenerate. Comparing regeneration across animals can reconstruct the molecular and cellular evolutionary history of this process. Recent studies have revealed some similarity in regeneration mechanisms, but rigorous comparative methods are needed to assess whether these resemblances are ancestral pathways (homology) or are the result of convergent evolution (homoplasy). This review aims to provide a framework for comparing regeneration across animals, focusing on gene regulatory networks (GRNs), which are substrates for assessing process homology. The homology of the wound-induced activation of Wnt signaling and of adult stem cells are discussed as examples of ongoing studies of regeneration that enable comparisons in a GRN framework. Expanding the study of regeneration GRNs in currently studied species and broadening taxonomic sampling for these approaches will identify processes that are unifying principles of regeneration biology across animals. These insights are important both for evolutionary studies of regeneration and for human regenerative medicine. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
13
|
Oriola D, Spagnoli FM. Engineering life in synthetic systems. Development 2021; 148:270849. [PMID: 34251450 DOI: 10.1242/dev.199497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
The second EMBO-EMBL Symposium 'Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture' was held virtually in March 2021, with participants from all over the world joining from the comfort of their sofas to discuss synthetic morphogenesis at large. Leading scientists from a range of disciplines, including developmental biology, physics, chemistry and computer science, covered a gamut of topics from the principles of cell and tissue organization, patterning and gene regulatory networks, to synthetic approaches for exploring evolutionary and developmental biology principles. Here, we describe some of the high points.
Collapse
Affiliation(s)
- David Oriola
- EMBL Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Francesca M Spagnoli
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
14
|
Andrikou C, Hejnol A. FGF signaling acts on different levels of mesoderm development within Spiralia. Development 2021; 148:264929. [PMID: 33999997 PMCID: PMC8180254 DOI: 10.1242/dev.196089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023]
Abstract
FGF signaling is involved in mesoderm induction in members of deuterostomes (e.g. tunicates, hemichordates), but not in flies and nematodes, in which it has a role in mesoderm patterning and migration. However, we need comparable studies in other protostome taxa in order to decipher whether this mesoderm-inducing function of FGF extends beyond the lineage of deuterostomes. Here, we investigated the role of FGF signaling in mesoderm development in three species of lophophorates, a clade within the protostome group Spiralia. Our gene expression analyses show that the mesodermal molecular patterning is conserved between brachiopods and phoronids, but the spatial and temporal recruitment of transcription factors differs significantly. Moreover, the use of the inhibitor SU5402 demonstrates that FGF signaling is involved in different steps of mesoderm development, as well as in morphogenetic movements of gastrulation and axial elongation. Our findings suggest that the mesoderm-inducing role of FGF extends beyond the group of deuterostomes.
Collapse
Affiliation(s)
- Carmen Andrikou
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Andreas Hejnol
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
15
|
Abstract
Epithelial Mesenchymal Transition (EMT) initially discovered as a key developmental mechanism is now shown to be indirectly involved in fibrosis and is contributing to the progression of carcinomas. Additionally, to transcription factors driving the morphological transition, novel mechanisms are now described to modulate the different features of the transition. The debate as to whether EMT is essential for the dissemination of carcinoma cells from the primary tumors is likely to be resolved soon, considering that EMT is not a linear transition from an epithelial to a mesenchymal state. Multiple intermediate states can be reached without involving the presence of some of known transcription factors initially described as indispensable for the acquisition of mesenchymal-like phenotypes.
Collapse
Affiliation(s)
- Jean Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
16
|
Clairambault J. Stepping From Modeling Cancer Plasticity to the Philosophy of Cancer. Front Genet 2020; 11:579738. [PMID: 33329717 PMCID: PMC7710795 DOI: 10.3389/fgene.2020.579738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jean Clairambault
- Laboratoire Jacques-Louis Lions, BC 187, Sorbonne Université, Paris, France
- Inria, Paris, France
| |
Collapse
|
17
|
Peter IS. The function of architecture and logic in developmental gene regulatory networks. Curr Top Dev Biol 2020; 139:267-295. [PMID: 32450963 DOI: 10.1016/bs.ctdb.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An important contribution of systems biology is the insight that biological systems depend on the function of molecular interactions and not just on individual molecules. System level mechanisms are particularly important in the development of animals and plants which depends not just on transcription factors and signaling molecules, but also on regulatory circuits and gene regulatory networks (GRNs). However, since GRNs consist of transcription factors, it can be challenging to assess the function of regulatory circuits independently of the function of regulatory factors. The comparison of different GRNs offers a way to do so and leads to several observations. First, similar regulatory circuits operate in various developmental contexts and in different species, and frequently, these circuits are associated with similar developmental functions. Second, given regulatory circuits are often used at particular positions within the GRN hierarchy. Third, in some GRNs, regulatory circuits are organized in a particular order in respect to each other. And fourth, the evolution of GRNs occurs not just by co-option of regulatory genes but also by rewiring of regulatory linkages between conserved regulatory genes, indicating that the organization of interactions is important. Thus, even though in most instances the function of regulatory circuits remains to be discovered, it becomes evident that the architecture and logic of GRNs are functionally important for the control of genome activity and for the specification of the body plan.
Collapse
Affiliation(s)
- Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
18
|
Wang L, Israel JW, Edgar A, Raff RA, Raff EC, Byrne M, Wray GA. Genetic basis for divergence in developmental gene expression in two closely related sea urchins. Nat Ecol Evol 2020; 4:831-840. [PMID: 32284581 DOI: 10.1038/s41559-020-1165-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
The genetic basis for divergence in developmental gene expression among species is poorly understood, despite growing evidence that such changes underlie many interesting traits. Here we quantify transcription in hybrids of Heliocidaris tuberculata and Heliocidaris erythrogramma, two closely related sea urchins with highly divergent developmental gene expression and life histories. We find that most expression differences between species result from genetic influences that affect one stage of development, indicating limited pleiotropic consequences for most mutations that contribute to divergence in gene expression. Activation of zygotic transcription is broadly delayed in H. erythrogramma, the species with the derived life history, despite its overall faster premetamorphic development. Altered expression of several terminal differentiation genes associated with the derived larval morphology of H. erythrogramma is based largely on differences in the expression or function of their upstream regulators, providing insights into the genetic basis for the evolution of key life history traits.
Collapse
Affiliation(s)
- Lingyu Wang
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Allison Edgar
- Department of Biology, Duke University, Durham, NC, USA
| | - Rudolf A Raff
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Maria Byrne
- School of Medical Science, The University of Sydney, Sydney, New South Wales, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Yamazaki A, Morino Y, Urata M, Yamaguchi M, Minokawa T, Furukawa R, Kondo M, Wada H. pmar1/ phb homeobox genes and the evolution of the double-negative gate for endomesoderm specification in echinoderms. Development 2020; 147:dev.182139. [PMID: 32001441 DOI: 10.1242/dev.182139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
In several model animals, the earliest phases of embryogenesis are regulated by lineage-specific genes, such as Drosophila bicoid Sea urchin (echinoid) embryogenesis is initiated by zygotic expression of pmar1, a paired-class homeobox gene that has been considered to be present only in the lineage of modern urchins (euechinoids). In euechinoids, Pmar1 promotes endomesoderm specification by repressing the hairy and enhancer of split C (hesC) gene. Here, we have identified the basal echinoid (cidaroid) pmar1 gene, which also promotes endomesoderm specification but not by repressing hesC A further search for related genes demonstrated that other echinoderms have pmar1-related genes named phb Functional analyses of starfish Phb proteins indicated that, similar to cidaroid Pmar1, they promote activation of endomesoderm regulatory gene orthologs via an unknown repressor that is not HesC. Based on these results, we propose that Pmar1 may have recapitulated the regulatory function of Phb during the early diversification of echinoids and that the additional repressor HesC was placed under the control of Pmar1 in the euechinoid lineage. This case provides an exceptional model for understanding how early developmental processes diverge.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Makoto Urata
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan.,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaaki Yamaguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Tohoku University, Sakamoto 9, Asamushi, Aomori 039-3501, Japan
| | - Ryohei Furukawa
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521, Japan
| | - Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
20
|
Hogan JD, Keenan JL, Luo L, Ibn-Salem J, Lamba A, Schatzberg D, Piacentino ML, Zuch DT, Core AB, Blumberg C, Timmermann B, Grau JH, Speranza E, Andrade-Navarro MA, Irie N, Poustka AJ, Bradham CA. The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes. Dev Biol 2019; 460:139-154. [PMID: 31816285 DOI: 10.1016/j.ydbio.2019.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.
Collapse
Affiliation(s)
- John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Lingqi Luo
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Jonas Ibn-Salem
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Faculty of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Arjun Lamba
- Biology Department, Boston University, Boston, MA, USA
| | | | - Michael L Piacentino
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Daniel T Zuch
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Amanda B Core
- Biology Department, Boston University, Boston, MA, USA
| | | | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - José Horacio Grau
- Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany; Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Emily Speranza
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Naoki Irie
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Albert J Poustka
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany
| | - Cynthia A Bradham
- Program in Bioinformatics, Boston University, Boston, MA, USA; Biology Department, Boston University, Boston, MA, USA; Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
21
|
Erkenbrack EM, Thompson JR. Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity. Commun Biol 2019; 2:160. [PMID: 31069269 PMCID: PMC6499829 DOI: 10.1038/s42003-019-0417-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/04/2019] [Indexed: 01/19/2023] Open
Abstract
The multiplicity of cell types comprising multicellular organisms begs the question as to how cell type identities evolve over time. Cell type phylogenetics informs this question by comparing gene expression of homologous cell types in distantly related taxa. We employ this approach to inform the identity of larval skeletogenic cells of echinoderms, a clade for which there are phylogenetically diverse datasets of spatial gene expression patterns. We determined ancestral spatial expression patterns of alx1, ets1, tbr, erg, and vegfr, key components of the skeletogenic gene regulatory network driving identity of the larval skeletogenic cell. Here we show ancestral state reconstructions of spatial gene expression of extant eleutherozoan echinoderms support homology and common ancestry of echinoderm larval skeletogenic cells. We propose larval skeletogenic cells arose in the stem lineage of eleutherozoans during a cell type duplication event that heterochronically activated adult skeletogenic cells in a topographically distinct tissue in early development.
Collapse
Affiliation(s)
- Eric M. Erkenbrack
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511 USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516 USA
| | - Jeffrey R. Thompson
- Department of Geosciences, Baylor University, Waco, TX 76706 USA
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740 USA
| |
Collapse
|