1
|
Song P, Li Y, Song K, Xing Y, Zhang A, Zhao W, Zhao H, Guo X, Zhang X, Sun S, Feng Y, Sun D. QTL analysis of spike traits and KASP marker validation for basal sterile spikelet number in wheat. BMC PLANT BIOLOGY 2025; 25:458. [PMID: 40211124 PMCID: PMC11984228 DOI: 10.1186/s12870-025-06488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Spike traits play a pivotal role in determining wheat yield. In this study, two recombinant inbred line (RIL) populations were employed to identify quantitative trait loci (QTLs) for spike length (SL), spikelet number per spike (SNS), and basal sterile spikelet number (BSSN). A total of 30 QTLs were identified, including 7 major-effect QTLs that exhibited stability across multiple environments. Among these, two novel QTLs were discovered: QBssn.A-3 A.3 and QBssn.AV-5B.2. Furthermore, it was found that the combination of these two QTLs with other major effect QTLs had no impact on thousand-kernel weight (TKW). For QBssn.A-3 A.3, a Kompetitive Allele-Specific PCR (KASP) marker was developed and validated based on its physical location. Additionally, candidate genes within the intervals of QBssn.A-3 A.3 and QBssn.AV-5B.2 were predicted, based on these genes primarily associated with sterile spikelet number per spike. This study provides a foundation for future map-baesd cloning of genes related to spike traits, and for the breeding of high-yield wheat varieties.
Collapse
Affiliation(s)
- Pengbo Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yueyue Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kefeng Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuanhang Xing
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aoyan Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wensha Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huiling Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoran Guo
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengjie Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Feng
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daojie Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Cai Z, Li J, Su Y, Zheng L, Zhang J, Zhu M, Qiu B, Kong L, Ye Y, Xue Y, Wu W, Duan Y. The MADS6, JAGGED, and YABBY proteins synergistically determine floral organ development in rice. PLANT PHYSIOLOGY 2025; 197:kiaf076. [PMID: 39977122 DOI: 10.1093/plphys/kiaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 02/22/2025]
Abstract
MADS6, JAGGED (JAG), and DROOPING LEAF (DL) are key regulators of floral organ patterns in rice (Oryza sativa); however, how they work together in specifying floral organs remains to be determined. Here, we extensively analyzed the coordination mechanism. Genetic interactions showed that all double/triple mutant combinations of mads6-5 with jag and/or dl-sup7 generated an inflorescence from the spikelet center and lemma-like organs (LLOs) at the periphery, indicating that these genes synergistically promote floral organ specification, inhibit inflorescence initiation, and terminate the floral meristem (FM). Particularly, a fully developed mads6-5 jag spikelet appeared as a large bouquet composed of numerous multifloral complexes (MFC), while the triple mutant was generally similar to mads6-5 jag, except for a longer pedicel and fewer MFCs. Expression analysis revealed that JAG directly inhibits the transcription of MADS6 in stamens but not in pistils, as JAG and DL co-express in pistils and form a JAG-DL complex, indicating that JAG and DL may coordinate the transcription of MADS6 in sexual organs. Protein interactions revealed that MADS6 and JAG bind to 5 spikelet-related YABBY proteins (including DL), forming 10 heterodimers, suggesting that they may promote floral differentiation through various pathways. However, MADS6 and JAG neither bound together nor formed a heterotrimer with any of the 5 YABBY proteins. These findings revealed specific synergistic patterns between MADS6, JAGGED, and YABBY proteins, which may contribute to the unique characteristics of rice spikelets and provide insights into the diversity regulation mechanisms of floral specification in plants.
Collapse
Affiliation(s)
- Zhengzheng Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jieqiong Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Su
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lili Zheng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianwei Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Miaomiao Zhu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bingwen Qiu
- Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lan Kong
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Crops, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yanfang Ye
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanlin Duan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Duan SF, Yu JC, Baldwin TC, Yuan Y, Xiang GS, Cui R, Zhao Y, Mo XC, Lu YC, Liang YL. Genome-wide identification of a MADS-box transcription factor family and their expression during floral development in Coptis teeta wall. BMC PLANT BIOLOGY 2024; 24:1023. [PMID: 39468440 PMCID: PMC11520390 DOI: 10.1186/s12870-024-05714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND MADS-box transcription factors have been shown to be involved in multiple developmental processes, including the regulation of floral organ formation and pollen maturation. However, the role of the MADS-box gene family in floral development of the alpine plant species Coptis teeta Wall, which is widely used in Traditional Chinese Medicine (TCM), is unknown. RESULTS Sixty-six MADS-box genes were identified in the C. teeta genome. These genes were shown to be unevenly distributed throughout the genome of C. teeta. The majority of which (49) were classified as type I MADS-box genes and were further subdivided into four groups (Mα, Mβ, Mγ and Mδ). The remainder were identified as belonging to the type II MADS-box gene category. It was observed that four pairs of segmental and tandem duplication had occurred in the C. teeta MADS-box gene family, and that the ratios of Ka/Ks were less than 1, suggesting that these genes may have experienced purifying selection during evolution. Gene expression profiling analysis revealed that 38 MADS-box genes displayed differential expression patterns between the M and F floral phenotypes. Sixteen of these MADS-box genes were further verified by RT-qPCR. The 3D structure of each subfamily gene was predicted, further indicating that MADS-box genes of the same type possess structural similarities to the known template. CONCLUSIONS These data provide new insights into the molecular mechanism of dichogamy and herkogamy formation in C. teeta and establish a solid foundation for future studies of the MADS-box genes family in this medicinal plant species.
Collapse
Affiliation(s)
- Shao-Feng Duan
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Ji-Chen Yu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Yuan Yuan
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Gui-Sheng Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, 650201, China
| | - Yan Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xin-Chun Mo
- Department of Applied Technology, Lijiang Normal University, Lijiang, Yunnan, 674100, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| | - Yan-Li Liang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| |
Collapse
|
4
|
Sun M, Jiang C, Gao G, An C, Wu W, Kan J, Zhang J, Li L, Yang P. A novel type of malformed floral organs mutant in barley was conferred by loss-of-function mutations of the MADS-box gene HvAGL6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2609-2621. [PMID: 39037746 DOI: 10.1111/tpj.16936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
The advanced model of floral morphogenesis is based largely on data from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but this process is less well understood in the Triticeae. Here, we investigated a sterile barley (Hordeum vulgare) mutant with malformed floral organs (designated mfo1), of which the paleae, lodicules, and stamens in each floret were all converted into lemma-like organs, and the ovary was abnormally shaped. Combining bulked-segregant analysis, whole-genome resequencing, and TILLING approaches, the mfo1 mutant was attributed to loss-of-function mutations in the MADS-box transcription factor gene HvAGL6, a key regulator in the ABCDE floral morphogenesis model. Through transcriptomic analysis between young inflorescences of wild-type and mfo1 plants, 380 genes were identified as differentially expressed, most of which function in DNA binding, protein dimerization, cell differentiation, or meristem determinacy. Regulatory pathway enrichment showed HvAGL6 associates with transcriptional abundance of many MADS-box genes, including the B-class gene HvMADS4. Mutants with deficiency in HvMADS4 exhibited the conversion of stamens into supernumerary pistils, producing multiple ovaries resembling the completely sterile multiple ovaries 3.h (mov3.h) mutant. These findings demonstrate that the regulatory model of floral morphogenesis is conserved across plant species and provides insights into the interactions between HvAGL6 and other MADS-box regulators.
Collapse
Affiliation(s)
- Man Sun
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 032699, China
| | - Congcong Jiang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangqi Gao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaodan An
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenxue Wu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinhong Kan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ping Yang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
5
|
Zhao J, Xu Y, Zhang Z, Zhao M, Li K, Wang F, Sun K. Genome-wide analysis of the MADS-box gene family of sea buckthorn ( Hippophae rhamnoides ssp. sinensis) and their potential role in floral organ development. FRONTIERS IN PLANT SCIENCE 2024; 15:1387613. [PMID: 38938643 PMCID: PMC11208494 DOI: 10.3389/fpls.2024.1387613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Abstract
Sea buckthorn (Hippophae rhamnoides ssp. sinensis) is a deciduous shrub or small tree in the Elaeagnaceae family. It is dioecious, featuring distinct structures in female and male flowers. The MADS-box gene family plays a crucial role in flower development and differentiation of floral organs in plants. However, systematic information on the MADS-box family in sea buckthorn is currently lacking. This study presents a genome-wide survey and expression profile of the MADS-box family of sea buckthorn. We identified 92 MADS-box genes in the H. rhamnoides ssp. Sinensis genome. These genes are distributed across 12 chromosomes and classified into Type I (42 genes) and Type II (50 genes). Based on the FPKM values in the transcriptome data, the expression profiles of HrMADS genes in male and female flowers of sea buckthorn showed that most Type II genes had higher expression levels than Type I genes. This suggesting that Type II HrMADS may play a more significant role in sea buckthorn flower development. Using the phylogenetic relationship between sea buckthorn and Arabidopsis thaliana, the ABCDE model genes of sea buckthorn were identified and some ABCDE model-related genes were selected for qRT-PCR analysis in sea buckthorn flowers and floral organs. Four B-type genes may be involved in the identity determination of floral organs in male flowers, and D-type genes may be involved in pistil development. It is hypothesized that ABCDE model genes may play an important role in the identity of sea buckthorn floral organs. This study analyzed the role of MADS-box gene family in the development of flower organs in sea buckthorn, which provides an important theoretical basis for understanding the regulatory mechanism of sex differentiation in sea buckthorn.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kun Sun
- College of Life Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
6
|
Chai S, Li K, Deng X, Wang L, Jiang Y, Liao J, Yang R, Zhang L. Genome-Wide Analysis of the MADS-box Gene Family and Expression Analysis during Anther Development in Salvia miltiorrhiza. Int J Mol Sci 2023; 24:10937. [PMID: 37446115 DOI: 10.3390/ijms241310937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
MADS-box genes constitute a large family of transcription factors that play important roles in plant growth and development. However, our understanding of MADS-box genes involved in anther development and male sterility in Salvia miltiorrhiza is still limited. In this study, 63 MADS-box genes were identified from the genome of the male sterility ecotype Sichuan S. miltiorrhiza (S. miltiorrhiza_SC) unevenly distributed among eight chromosomes. Phylogenetic analysis classified them into two types and 17 subfamilies. They contained 1 to 12 exons and 10 conserved motifs. Evolution analysis showed that segmental duplication was the main force for the expansion of the SmMADS gene family, and duplication gene pairs were under purifying selection. Cis-acting elements analysis demonstrated that the promoter of SmMADS genes contain numerous elements associated with plant growth and development, plant hormones, and stress response. RNA-seq showed that the expression levels of B-class and C-class SmMADS genes were highly expressed during anther development, with SmMADS11 likely playing an important role in regulating anther development and male fertility in S. miltiorrhiza_SC. Overall, this study provides a comprehensive analysis of the MADS-box gene family in S. miltiorrhiza, shedding light on their potential role in anther development and male sterility.
Collapse
Affiliation(s)
- Songyue Chai
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Kexin Li
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuexue Deng
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Long Wang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanyuan Jiang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
7
|
Wang L, Song J, Han X, Yu Y, Wu Q, Qi S, Xu Z. Functional Divergence Analysis of AGL6 Genes in Prunus mume. PLANTS (BASEL, SWITZERLAND) 2022; 12:158. [PMID: 36616287 PMCID: PMC9824310 DOI: 10.3390/plants12010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The AGAMOUS-LIKE6 (AGL6) lineage is an important clade of MADS-box transcription factors that play essential roles in floral organ development. The genome of Prunus mume contains two homoeologous AGL6 genes that are replicated as gene fragments. In this study, two AGL6 homologs, PmAGL6-1 and PmAGL6-2, were cloned from P. mume and then functionally characterized. Sequence alignment and phylogenetic analyses grouped both genes into the AGL6 lineage. The expression patterns and protein-protein interaction patterns showed significant differences between the two genes. However, the ectopic expression of the two genes in Arabidopsis thaliana resulted in similar phenotypes, including the promotion of flowering, alteration of floral organ structure, participation in the formation of the floral meristem and promotion of pod bending. Therefore, gene duplication has led to some functional divergence of PmAGL6-1 and PmAGL6-2 but their functions are similar. We thus speculated that AGL6 genes play a crucial role in flower development in P. mume.
Collapse
|
8
|
Chen Z, Liao M, Yang Z, Chen W, Wei S, Zou J, Peng Z. Co-expression network analysis of genes and networks associated with wheat pistillody. PeerJ 2022; 10:e13902. [PMID: 36039368 PMCID: PMC9419718 DOI: 10.7717/peerj.13902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/24/2022] [Indexed: 01/19/2023] Open
Abstract
Crop male sterility has great value in theoretical research and breeding application. HTS-1, whose stamens transformed into pistils or pistil-like structures, is an important male sterility material selecting from Chinese Spring three-pistil (CSTP) wheat. However the molecular mechanism of pistillody development in HTS-1 remains a mystery. RNA-seq data of 11 wheat tissues were obtained from the National Center for Biotechnology Information (NCBI), including the stamens of CSTP and the pistils and pistillodic stamen of HTS-1. The Salmon program was utilized to quantify the gene expression levels of the 11 wheat tissues; and gene quantification results were normalized by transcripts per million (TPM). In total, 58,576 genes were used to construct block-wise network by co-expression networks analysis (WGCNA) R package. We obtained all of modules significantly associated with the 11 wheat tissues. AgriGO V2.0 was used to do Gene Ontology (GO) enrichment analysis; and genes and transcription factors (TFs) in these significant modules about wheat pistillody development were identified from GO enrichment results. Basic local alignment search tool (BLAST) was used to align HTS-1 proteins with the published pistillody-related proteins and TFs. Genes about wheat pistillody development were analyzed and validated by qRT-PCR. The MEturquoise, MEsaddlebrown, MEplum, MEcoral1, MElightsteelblue1, and MEdarkslateblue modules were significantly corelated to pistillodic stamen (correlation p < 0.05). Moreover, 206 genes related to carpel development (GO:0048440) or gynoecium development (GO:0048467) were identified only in the MEturquoise module by Gene Ontology (GO) analysis, and 42 of 206 genes were hub genes in MEturquoise module. qRT-PCR results showed that 38 of the 42 hub genes had highly expressed in pistils and pistillodic stamens than in stamens. A total of 15 pistillody development-related proteins were validated by BLAST. Transcription factors (TFs) were also analyzed in the MEturquoise module, and 618 TFs were identified. In total, 56 TFs from 11 families were considered to regulate the development of pistillodic stamen. The co-expression network showed that six of HB and three of BES1 genes were identified in 42 hub genes. This indicated that TFs played important roles in wheat pistillody development. In addition, there were 11 of ethylene-related genes connected with TFs or hub genes, suggesting the important roles of ethylene-related genes in pistillody development. These results provide important insights into the molecular interactions underlying pistillody development.
Collapse
Affiliation(s)
- Zhenyong Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Mingli Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Weiying Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Shuhong Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Jian Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Zhengsong Peng
- School of Agricultural Science, Xichang University, Xichang, Sichuan, People’s Republic of China
| |
Collapse
|
9
|
Nan GL, Teng C, Fernandes J, O'Connor L, Meyers BC, Walbot V. A cascade of bHLH-regulated pathways programs maize anther development. THE PLANT CELL 2022; 34:1207-1225. [PMID: 35018475 PMCID: PMC8972316 DOI: 10.1093/plcell/koac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
The spatiotemporal development of somatic tissues of the anther lobe is necessary for successful fertile pollen production. This process is mediated by many transcription factors acting through complex, multi-layered networks. Here, our analysis of functional knockout mutants of interacting basic helix-loop-helix genes Ms23, Ms32, basic helix-loop-helix 122 (bHLH122), and bHLH51 in maize (Zea mays) established that male fertility requires all four genes, expressed sequentially in the tapetum (TP). Not only do they regulate each other, but also they encode proteins that form heterodimers that act collaboratively to guide many cellular processes at specific developmental stages. MS23 is confirmed to be the master factor, as the ms23 mutant showed the earliest developmental defect, cytologically visible in the TP, with the most drastic alterations in premeiotic gene expression observed in ms23 anthers. Notably, the male-sterile ms23, ms32, and bhlh122-1 mutants lack 24-nt phased secondary small interfering RNAs (phasiRNAs) and the precursor transcripts from the corresponding 24-PHAS loci, while the bhlh51-1 mutant has wild-type levels of both precursors and small RNA products. Multiple lines of evidence suggest that 24-nt phasiRNA biogenesis primarily occurs downstream of MS23 and MS32, both of which directly activate Dcl5 and are required for most 24-PHAS transcription, with bHLH122 playing a distinct role in 24-PHAS transcription.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - John Fernandes
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Lily O'Connor
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- The Division of Plant Science and Technology, University of Missouri–Columbia, Columbia, Missouri 65211, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| |
Collapse
|
10
|
Kong X, Wang F, Geng S, Guan J, Tao S, Jia M, Sun G, Wang Z, Wang K, Ye X, Ma J, Liu D, Wei Y, Zheng Y, Fu X, Mao L, Lan X, Li A. The wheat AGL6-like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:75-88. [PMID: 34487615 PMCID: PMC8710900 DOI: 10.1111/pbi.13696] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/22/2021] [Indexed: 05/13/2023]
Abstract
The AGAMOUS-LIKE6 (AGL6)-like genes are ancient MADS-box genes and are functionally studied in a few model plants. The knowledge of these genes in wheat remains limited. Here, by studying a 'double homoeolog mutant' of the AGL6 gene in tetraploid wheat, we showed that AGL6 was required for the development of all four whorls of floral organs with dosage-dependent effect on floret fertility. Yeast two-hybrid analyses detected interactions of AGL6 with all classes of MADS-box proteins in the ABCDE model for floral organ development. AGL6 was found to interact with several additional proteins, including the G protein β and γ (DEP1) subunits. Analysis of the DEP1-B mutant showed a significant reduction in spikelet number per spike in tetraploid wheat, while overexpression of AGL6 in common wheat increased the spikelet number per spike and hence the grain number per spike. RNA-seq analysis identified the regulation of several meristem activity genes by AGL6, such as FUL2 and TaMADS55. Our work therefore extensively updated the wheat ABCDE model and proposed an alternative approach to improve wheat grain yield by manipulating the AGL6 gene.
Collapse
Affiliation(s)
- Xingchen Kong
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiantao Guan
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shu Tao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Guoliang Sun
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Ke Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xingguo Ye
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jian Ma
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiujin Lan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
11
|
Maren N, Zhao F, Aryal R, Touchell D, Liu W, Ranney T, Ashrafi H. Reproductive developmental transcriptome analysis of Tripidium ravennae (Poaceae). BMC Genomics 2021; 22:483. [PMID: 34182921 PMCID: PMC8237498 DOI: 10.1186/s12864-021-07641-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tripidium ravennae is a cold-hardy, diploid species in the sugarcane complex (Poaceae subtribe Saccharinae) with considerable potential as a genetic resource for developing improved bioenergy and ornamental grasses. An improved understanding of the genetic regulation of reproductive processes (e.g., floral induction, inflorescence development, and seed development) will enable future applications of precision breeding and gene editing of floral and seed development. In particular, the ability to silence reproductive processes would allow for developing seedless forms of valuable but potentially invasive plants. The objective of this research was to characterize the gene expression environment of reproductive development in T. ravennae. RESULTS During the early phases of inflorescence development, multiple key canonical floral integrators and pathways were identified. Annotations of type II subfamily of MADS-box transcription factors, in particular, were over-represented in the GO enrichment analyses and tests for differential expression (FDR p-value < 0.05). The differential expression of floral integrators observed in the early phases of inflorescence development diminished prior to inflorescence determinacy regulation. Differential expression analysis did not identify many unique genes at mid-inflorescence development stages, though typical biological processes involved in plant growth and development expressed abundantly. The increase in inflorescence determinacy regulatory elements and putative homeotic floral development unigenes at mid-inflorescence development coincided with the expression of multiple meiosis annotations and multicellular organism developmental processes. Analysis of seed development identified multiple unigenes involved in oxidative-reductive processes. CONCLUSION Reproduction in grasses is a dynamic system involving the sequential coordination of complex gene regulatory networks and developmental processes. This research identified differentially expressed transcripts associated with floral induction, inflorescence development, and seed development in T. ravennae. These results provide insights into the molecular regulation of reproductive development and provide a foundation for future investigations and analyses, including genome annotation, functional genomics characterization, gene family evolutionary studies, comparative genomics, and precision breeding.
Collapse
Affiliation(s)
- Nathan Maren
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| | - Fangzhou Zhao
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Darren Touchell
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Thomas Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| |
Collapse
|
12
|
Li J, Zhang J, Li H, Niu H, Xu Q, Jiao Z, An J, Jiang Y, Li Q, Niu J. The Major Factors Causing the Microspore Abortion of Genic Male Sterile Mutant NWMS1 in Wheat ( Triticum aestivum L.). Int J Mol Sci 2019; 20:ijms20246252. [PMID: 31835796 PMCID: PMC6940770 DOI: 10.3390/ijms20246252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 11/17/2022] Open
Abstract
Male sterility is a valuable trait for genetic research and production application of wheat (Triticum aestivum L.). NWMS1, a novel typical genic male sterility mutant, was obtained from Shengnong 1, mutagenized with ethyl methane sulfonate (EMS). Microstructure and ultrastructure observations of the anthers and microspores indicated that the pollen abortion of NWMS1 started at the early uninucleate microspore stage. Pollen grain collapse, plasmolysis, and absent starch grains were the three typical characteristics of the abnormal microspores. The anther transcriptomes of NWMS1 and its wild type Shengnong 1 were compared at the early anther development stage, pollen mother cell meiotic stage, and binucleate microspore stage. Several biological pathways clearly involved in abnormal anther development were identified, including protein processing in endoplasmic reticulum, starch and sucrose metabolism, lipid metabolism, and plant hormone signal transduction. There were 20 key genes involved in the abnormal anther development, screened out by weighted gene co-expression network analysis (WGCNA), including SKP1B, BIP5, KCS11, ADH3, BGLU6, and TIFY10B. The results indicated that the defect in starch and sucrose metabolism was the most important factor causing male sterility in NWMS1. Based on the experimental data, a primary molecular regulation model of abnormal anther and pollen developments in mutant NWMS1 was established. These results laid a solid foundation for further research on the molecular mechanism of wheat male sterility.
Collapse
Affiliation(s)
- Junchang Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Jing Zhang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Huijuan Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Hao Niu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Qiaoqiao Xu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Junhang An
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
- Correspondence: ; Tel.: +86-0371-56990186
| |
Collapse
|