1
|
Rock AQ, Srivastava M. The gain and loss of plasticity during development and evolution. Trends Cell Biol 2025:S0962-8924(25)00030-3. [PMID: 40037967 DOI: 10.1016/j.tcb.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
Studies of embryonic plasticity, which were foundational for developmental biology, revealed variation across species and patterns of association with cleavage programs and adult regenerative capacity. Modern molecular and genetic tools now enable a reexamination of these classical experiments in diverse species and have the potential to reveal mechanisms that regulate plasticity over developmental time. This review synthesizes previous work on plasticity in embryos and adults and associated genetic mechanisms, providing a framework to organize data from a wide range of species. Mechanisms that explain how plasticity is lost in mammalian embryos are highlighted and crystallize a proposal for future studies in new research organisms that could identify shared principles for embryonic plasticity and, potentially, its maintenance into adulthood.
Collapse
Affiliation(s)
- Amber Q Rock
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Vellutini BC, Martín-Durán JM, Børve A, Hejnol A. Combinatorial Wnt signaling landscape during brachiopod anteroposterior patterning. BMC Biol 2024; 22:212. [PMID: 39300453 PMCID: PMC11414264 DOI: 10.1186/s12915-024-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Wnt signaling pathways play crucial roles in animal development. They establish embryonic axes, specify cell fates, and regulate tissue morphogenesis from the early embryo to organogenesis. It is becoming increasingly recognized that these distinct developmental outcomes depend upon dynamic interactions between multiple ligands, receptors, antagonists, and other pathway modulators, consolidating the view that a combinatorial "code" controls the output of Wnt signaling. However, due to the lack of comprehensive analyses of Wnt components in several animal groups, it remains unclear if specific combinations always give rise to specific outcomes, and if these combinatorial patterns are conserved throughout evolution. RESULTS In this work, we investigate the combinatorial expression of Wnt signaling components during the axial patterning of the brachiopod Terebratalia transversa. We find that T. transversa has a conserved repertoire of ligands, receptors, and antagonists. These genes are expressed throughout embryogenesis but undergo significant upregulation during axial elongation. At this stage, Frizzled domains occupy broad regions across the body while Wnt domains are narrower and distributed in partially overlapping patches; antagonists are mostly restricted to the anterior end. Based on their combinatorial expression, we identify a series of unique transcriptional subregions along the anteroposterior axis that coincide with the different morphological subdivisions of the brachiopod larval body. When comparing these data across the animal phylogeny, we find that the expression of Frizzled genes is relatively conserved, whereas the expression of Wnt genes is more variable. CONCLUSIONS Our results suggest that the differential activation of Wnt signaling pathways may play a role in regionalizing the anteroposterior axis of brachiopod larvae. More generally, our analyses suggest that changes in the receptor context of Wnt ligands may act as a mechanism for the evolution and diversification of the metazoan body axis.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| | - José M Martín-Durán
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London, E1 4NS, UK
| | - Aina Børve
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | - Andreas Hejnol
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
3
|
Guynes K, Sarre LA, Carrillo-Baltodano AM, Davies BE, Xu L, Liang Y, Martín-Zamora FM, Hurd PJ, de Mendoza A, Martín-Durán JM. Annelid methylomes reveal ancestral developmental and aging-associated epigenetic erosion across Bilateria. Genome Biol 2024; 25:204. [PMID: 39090757 PMCID: PMC11292947 DOI: 10.1186/s13059-024-03346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as "mosaic". Yet, the role and developmental dynamics of 5mC and how these explain interspecies differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla. RESULTS Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, alongside a gradual and global, age-dependent demethylation in adult stages. Additionally, reducing 5mC levels with cytidine analogs during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis. CONCLUSIONS Our study indicates that global epigenetic erosion during development and aging is an ancestral feature of bilateral animals. However, the tight link between transcription and gene body methylation is likely more important in early embryonic stages, and 5mC-mediated TE silencing probably emerged convergently across animal lineages.
Collapse
Affiliation(s)
- Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Luke A Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Lan Xu
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Altos Labs, Cambridge, UK
| | - Paul J Hurd
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
4
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Huan P, Liu B. The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae. Evol Dev 2024; 26:e12456. [PMID: 37667429 DOI: 10.1111/ede.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing "typical" trochophore larvae. In recent years, we developed a potential model system using the patellogastropod Lottia peitaihoensis (= Lottia goshimai). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.
Collapse
Affiliation(s)
- Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Tilic E, Bartolomaeus T, Seaver EC. Discovery and characterization of a transient chaetal gland during the development of Capitella teleta (Sedentaria: Annelida). J Morphol 2024; 285:e21742. [PMID: 38837266 DOI: 10.1002/jmor.21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Chaetae are among the most extensively studied structures in polychaetes, serving as a defining morphological trait for annelids. Capitella teleta stands out as one of the few established annelid models for developmental and morphological studies, thus receiving significant scholarly attention. In this study, we unveil a previously unnoticed glandular structure associated with chaetae within the larvae of C. teleta. Our investigations demonstrate the absence of comparable structures in the chaetal follicles of adults and juveniles (older than 1 week), as well as during active chaetogenesis, underscoring the transient nature of these glands. This indicates that larval chaetal follicles transform into a gland that later disappears. Utilizing histology and transmission electron microscopy, we characterized these glands. Our findings underscore the diversity of chaetal ultrastructure in annelids and show that, even in well-studied species, novel morphological details can be found. We emphasize the importance of examining various life-history stages to capture such transient morphological features. This work lays a crucial morphological foundation and deepens our understanding of chaetae and chaetogenesis in C. teleta, paving the way for more accurate interpretations of future experimental studies on chaetogenesis in this species.
Collapse
Affiliation(s)
- Ekin Tilic
- Marine Zoology Department, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany
- Bonn Institute of Organismic Biology (BIOB), Sec. II Animal Biodiversity, University of Bonn, Bonn, Germany
| | - Thomas Bartolomaeus
- Bonn Institute of Organismic Biology (BIOB), Sec. II Animal Biodiversity, University of Bonn, Bonn, Germany
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| |
Collapse
|
7
|
Miglioli A, Tredez M, Boosten M, Sant C, Carvalho JE, Dru P, Canesi L, Schubert M, Dumollard R. The Mediterranean mussel Mytilus galloprovincialis: a novel model for developmental studies in mollusks. Development 2024; 151:dev202256. [PMID: 38270401 DOI: 10.1242/dev.202256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased. Members of one of the largest animal lineages, the Spiralia, for example, have long been neglected. In order to remedy this shortcoming, we have produced a detailed developmental transcriptome for the bivalve mollusk Mytilus galloprovincialis, and have expanded the list of experimental protocols available for this species. Our high-quality transcriptome allowed us to identify transcriptomic signatures of developmental progression and to perform a first comparison with another bivalve mollusk: the Pacific oyster Crassostrea gigas. To allow co-labelling studies, we optimized and combined protocols for immunohistochemistry and hybridization chain reaction to create high-resolution co-expression maps of developmental genes. The resources and protocols described here represent an enormous boost for the establishment of Mytilus galloprovincialis as an alternative model system in developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Marion Tredez
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Manon Boosten
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Camille Sant
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Laura Canesi
- Università degli Studi di Genova, Dipartimento di Scienze della Terra dell Ambiente e della Vita (DISTAV), Genova 16132, Italy
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| |
Collapse
|
8
|
Martín-Zamora FM, Davies BE, Donnellan RD, Guynes K, Martín-Durán JM. Functional genomics in Spiralia. Brief Funct Genomics 2023; 22:487-497. [PMID: 37981859 PMCID: PMC10658182 DOI: 10.1093/bfgp/elad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 11/21/2023] Open
Abstract
Our understanding of the mechanisms that modulate gene expression in animals is strongly biased by studying a handful of model species that mainly belong to three groups: Insecta, Nematoda and Vertebrata. However, over half of the animal phyla belong to Spiralia, a morphologically and ecologically diverse animal clade with many species of economic and biomedical importance. Therefore, investigating genome regulation in this group is central to uncovering ancestral and derived features in genome functioning in animals, which can also be of significant societal impact. Here, we focus on five aspects of gene expression regulation to review our current knowledge of functional genomics in Spiralia. Although some fields, such as single-cell transcriptomics, are becoming more common, the study of chromatin accessibility, DNA methylation, histone post-translational modifications and genome architecture are still in their infancy. Recent efforts to generate chromosome-scale reference genome assemblies for greater species diversity and optimise state-of-the-art approaches for emerging spiralian research systems will address the existing knowledge gaps in functional genomics in this animal group.
Collapse
Affiliation(s)
- Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Rory D Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
9
|
Liao IJY, Lu TM, Chen ME, Luo YJ. Spiralian genomics and the evolution of animal genome architecture. Brief Funct Genomics 2023; 22:498-508. [PMID: 37507111 DOI: 10.1093/bfgp/elad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Recent developments in sequencing technologies have greatly improved our knowledge of phylogenetic relationships and genomic architectures throughout the tree of life. Spiralia, a diverse clade within Protostomia, is essential for understanding the evolutionary history of parasitism, gene conversion, nervous systems and animal body plans. In this review, we focus on the current hypotheses of spiralian phylogeny and investigate the impact of long-read sequencing on the quality of genome assemblies. We examine chromosome-level assemblies to highlight key genomic features that have driven spiralian evolution, including karyotype, synteny and the Hox gene organization. In addition, we show how chromosome rearrangement has influenced spiralian genomic structures. Although spiralian genomes have undergone substantial changes, they exhibit both conserved and lineage-specific features. We recommend increasing sequencing efforts and expanding functional genomics research to deepen insights into spiralian biology.
Collapse
|
10
|
Sleight VA. Cell type and gene regulatory network approaches in the evolution of spiralian biomineralisation. Brief Funct Genomics 2023; 22:509-516. [PMID: 37592885 PMCID: PMC10658180 DOI: 10.1093/bfgp/elad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Biomineralisation is the process by which living organisms produce hard structures such as shells and bone. There are multiple independent origins of biomineralised skeletons across the tree of life. This review gives a glimpse into the diversity of spiralian biominerals and what they can teach us about the evolution of novelty. It discusses different levels of biological organisation that may be informative to understand the evolution of biomineralisation and considers the relationship between skeletal and non-skeletal biominerals. More specifically, this review explores if cell type and gene regulatory network approaches could enhance our understanding of the evolutionary origins of biomineralisation.
Collapse
Affiliation(s)
- Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
11
|
Piovani L, Marlétaz F. Single-cell transcriptomics refuels the exploration of spiralian biology. Brief Funct Genomics 2023; 22:517-524. [PMID: 37609674 PMCID: PMC10658179 DOI: 10.1093/bfgp/elad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Spiralians represent the least studied superclade of bilaterian animals, despite exhibiting the widest diversity of organisms. Although spiralians include iconic organisms, such as octopus, earthworms and clams, a lot remains to be discovered regarding their phylogeny and biology. Here, we review recent attempts to apply single-cell transcriptomics, a new pioneering technology enabling the classification of cell types and the characterisation of their gene expression profiles, to several spiralian taxa. We discuss the methodological challenges and requirements for applying this approach to marine organisms and explore the insights that can be brought by such studies, both from a biomedical and evolutionary perspective. For instance, we show that single-cell sequencing might help solve the riddle of the homology of larval forms across spiralians, but also to better characterise and compare the processes of regeneration across taxa. We highlight the capacity of single-cell to investigate the origin of evolutionary novelties, as the mollusc shell or the cephalopod visual system, but also to interrogate the conservation of the molecular fingerprint of cell types at long evolutionary distances. We hope that single-cell sequencing will open a new window in understanding the biology of spiralians, and help renew the interest for these overlooked but captivating organisms.
Collapse
Affiliation(s)
- Laura Piovani
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution & Environment, University College London, Gower Street, London, UK
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution & Environment, University College London, Gower Street, London, UK
| |
Collapse
|
12
|
Tan S, Huan P, Liu B. Functional evidence that FGFR regulates MAPK signaling in organizer specification in the gastropod mollusk Lottia peitaihoensis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:455-466. [PMID: 38045550 PMCID: PMC10689715 DOI: 10.1007/s42995-023-00194-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
The D-quadrant organizer sets up the dorsal-ventral (DV) axis and regulates mesodermal development of spiralians. Studies have revealed an important role of mitogen-activated protein kinase (MAPK) signaling in organizer function, but the related molecules have not been fully revealed. The association between fibroblast growth factor receptor (FGFR) and MAPK signaling in regulating organizer specification has been established in the annelid Owenia fusiformis. Now, comparable studies in other spiralian phyla are required to decipher whether this organizer-inducing function of FGFR is prevalent in Spiralia. Here, we indicate that treatment with the FGFR inhibitor SU5402 resulted in deficiency of organizer specification in the mollusk Lottia peitaihoensis. Subsequently, the bone morphogenetic protein (BMP) signaling gradient and DV patterning were disrupted, suggesting the roles of FGFR in regulating organizer function. Changes in multiple aspects of organizer function (the morphology of vegetal blastomeres, BMP signaling gradient, expression of DV patterning markers, etc.) indicate that these developmental functions have different sensitivities to FGFR/MAPK signaling. Our results reveal a functional role of FGFR in organizer specification as well as DV patterning of Lottia embryos, which expands our knowledge of spiralian organizers. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00194-x.
Collapse
Affiliation(s)
- Sujian Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
13
|
Noda T, Satoh N, Gittenberger E, Asami T. Left-Right Reversal Recurrently Evolved Regardless of Diaphanous-Related Formin Gene Duplication or Loss in Snails. J Mol Evol 2023; 91:721-729. [PMID: 37747557 PMCID: PMC10598177 DOI: 10.1007/s00239-023-10130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 09/26/2023]
Abstract
Bilateria exhibit whole-body handedness in internal structure. This left-right polarity is evolutionarily conserved with virtually no reversed extant lineage, except in molluscan Gastropoda. Phylogenetically independent snail groups contain both clockwise-coiled (dextral) and counterclockwise-coiled (sinistral) taxa that are reversed from each other in bilateral handedness as well as in coiling direction. Within freshwater Hygrophila, Lymnaea with derived dextrality have diaphanous related formin (diaph) gene duplicates, while basal sinistral groups possess one diaph gene. In terrestrial Stylommatophora, dextral Bradybaena also have diaph duplicates. Defective maternal expression of one of those duplicates gives rise to sinistral hatchlings in Lymnaea and handedness-mixed broods in Bradybaena, through polarity change in spiral cleavage of embryos. These findings led to the hypothesis that diaph duplication was crucial for the evolution of dextrality by reversal. The present study discovered that diaph duplication independently occurred four times and its duplicate became lost twice in gastropods. The dextrality of Bradybaena represents the ancestral handedness conserved across gastropods, unlike the derived dextrality of Lymnaea. Sinistral lineages recurrently evolved by reversal regardless of whether diaph had been duplicated. Amongst the seven formin gene subfamilies, diaph has most thoroughly been conserved across eukaryotes of the 14 metazoan phyla and choanoflagellate. Severe embryonic mortalities resulting from insufficient expression of the duplicate in both of Bradybaena and Lymnaea also support that diaph duplicates bare general roles for cytoskeletal dynamics other than controlling spiralian handedness. Our study rules out the possibility that diaph duplication or loss played a primary role for reversal evolution.
Collapse
Affiliation(s)
- Takeshi Noda
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Japan.
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Edmund Gittenberger
- Naturalis Biodiversity Center, Leiden, Netherlands
- GiMaRIS, Sassenheim, Netherlands
| | - Takahiro Asami
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Japan
| |
Collapse
|
14
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
15
|
Sun D, Huan P, Liu B. Early mesodermal development in the patellogastropod Lottia goshimai. Evol Appl 2023; 16:250-261. [PMID: 36793691 PMCID: PMC9923484 DOI: 10.1111/eva.13373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022] Open
Abstract
Mesodermal development is essential to explore the interlineage variations in the development of spiralians. Compared with model mollusks such as Tritia and Crepidula, knowledge about the mesodermal development of other molluscan lineages is limited. Here, we investigated early mesodermal development in the patellogastropod Lottia goshimai, which shows equal cleavage and has a trochophore larva. The endomesoderm derived from the 4d blastomere, that is, the mesodermal bandlets, was situated dorsally and showed a characteristic morphology. Investigations of the potential mesodermal patterning genes revealed that twist1 and snail1 were expressed in a proportion of these endomesodermal tissues, while all of the five genes we investigated (twist1, twist2, snail1, snail2, and mox) were expressed in ventrally located ectomesodermal tissues. Relatively dynamic snail2 expression suggests additional roles in various internalization processes. By tracing snail2 expression in early gastrulae, the 3a211 and 3b211 blastomeres were suggested to be the precursors of the ectomesoderm, which elongated to become internalized before division. These results help to understand the variations in the mesodermal development of different spiralians and explore the different mechanisms by which ectomesodermal cells are internalized, which has important evolutionary implications.
Collapse
Affiliation(s)
- Dehui Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| |
Collapse
|
16
|
Seudre O, Carrillo-Baltodano AM, Liang Y, Martín-Durán JM. ERK1/2 is an ancestral organising signal in spiral cleavage. Nat Commun 2022; 13:2286. [PMID: 35484126 PMCID: PMC9050690 DOI: 10.1038/s41467-022-30004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Animal development is classified as conditional or autonomous based on whether cell fates are specified through inductive signals or maternal determinants, respectively. Yet how these two major developmental modes evolved remains unclear. During spiral cleavage-a stereotypic embryogenesis ancestral to 15 invertebrate groups, including molluscs and annelids-most lineages specify cell fates conditionally, while some define the primary axial fates autonomously. To identify the mechanisms driving this change, we study Owenia fusiformis, an early-branching, conditional annelid. In Owenia, ERK1/2-mediated FGF receptor signalling specifies the endomesodermal progenitor. This cell likely acts as an organiser, inducing mesodermal and posterodorsal fates in neighbouring cells and repressing anteriorising signals. The organising role of ERK1/2 in Owenia is shared with molluscs, but not with autonomous annelids. Together, these findings suggest that conditional specification of an ERK1/2+ embryonic organiser is ancestral in spiral cleavage and was repeatedly lost in annelid lineages with autonomous development.
Collapse
Affiliation(s)
- Océane Seudre
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Yan Liang
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
17
|
Srivastava M. Studying development, regeneration, stem cells, and more in the acoel Hofstenia miamia. Curr Top Dev Biol 2022; 147:153-172. [PMID: 35337448 DOI: 10.1016/bs.ctdb.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acoel worms represent an enigmatic lineage of animals (Acoelomorpha) that has danced around the tree of animal life. Morphology-based classification placed them as flatworms (Phylum Platyhelminthes), with much of their biology being interpreted as a variation on what is observed in better-studied members of that phylum. However, molecular phylogenies suggest that acoels belong to a clade (Xenacoelomorpha) that could be a sister group to other animals with bilateral symmetry (Bilateria) or could belong within deuterostomes, closely related to a group that includes sea stars (Ambulacraria). This change in phylogenetic position has led to renewed interest in the biology of acoels, which can now offer insights into the evolution of many bilaterian traits. The acoel Hofstenia miamia has emerged as a powerful new research organism that enables mechanistic studies of xenacoelomorph biology, especially of developmental and regenerative processes. This article explains the motivation for developing Hofstenia as a new model system, describes Hofstenia biology, highlights the tools and resources that make Hofstenia a good research organism, and considers the questions that Hofstenia is well-positioned to answer. Finally, looking to the future, this article serves as an invitation to new and established scientists to join the growing community of researchers studying this exciting model system.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States.
| |
Collapse
|
18
|
Slipper snail tales: How Crepidula fornicata and Crepidula atrasolea became model molluscs. Curr Top Dev Biol 2022; 147:375-399. [PMID: 35337456 DOI: 10.1016/bs.ctdb.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the great abundance and diversity of molluscs, only a few have attained "model research organism" status. One of those species is the slipper snail Crepidula fornicata. Its embryos were first used for classical lineage tracing studies in the late 19th century, and over a 100 years later they were "re-discovered" by our labs and used for modern fate mapping, gene perturbation, in vivo imaging, transcriptomics, and the first application of CRISPR/Cas9-mediated genome editing among the Spiralia/Lophotrochozoa. Simultaneously, other labs made extensive examinations of taxonomy, phylogeny, ecology, life-history, mode of development, larval feeding behavior, and responses to the environment in members of the family Calyptraeidae, which includes the genus Crepidula. Recently, we developed tools, resources, and husbandry protocols for another, direct-developing species, Crepidula atrasolea. This species is an ideal "lab rat" among molluscs. Together these species will be valuable for probing the cellular and molecular mechanisms underlying molluscan biology and evolution.
Collapse
|
19
|
Seaver EC. Sifting through the mud: A tale of building the annelid Capitella teleta for EvoDevo studies. Curr Top Dev Biol 2022; 147:401-432. [PMID: 35337457 DOI: 10.1016/bs.ctdb.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last few decades, the annelid Capitella teleta has been used increasingly as a study system for investigations of development and regeneration. Its favorable properties include an ability to continuously maintain a laboratory culture, availability of a sequenced genome, a stereotypic cleavage program of early development, substantial regeneration abilities, and established experimental and functional genomics techniques. With this review I tell of my adventure of establishing the Capitella teleta as an emerging model and share examples of a few of the contributions our work has made to the fields of evo-devo and developmental biology. I highlight examples of conservation in developmental programs as well as surprising deviations from existing paradigms that highlight the importance of leveraging biological diversity to shift thinking in the field. The story for each study system is unique, and every animal has its own advantages and disadvantages as an experimental system. Just like most progress in science, it takes strategy, hard work and determination to develop tools and resources for a less studied animal, but luck and serendipity also play a role. I include a few narratives to personalize the science, share details of the story that are not included in typical publications, and provide perspective for investigators who are interested in developing their own study organism.
Collapse
Affiliation(s)
- Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States.
| |
Collapse
|
20
|
Seaver EC, de Jong DM. Regeneration in the Segmented Annelid Capitella teleta. Genes (Basel) 2021; 12:genes12111769. [PMID: 34828375 PMCID: PMC8623021 DOI: 10.3390/genes12111769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
The segmented worms, or annelids, are a clade within the Lophotrochozoa, one of the three bilaterian superclades. Annelids have long been models for regeneration studies due to their impressive regenerative abilities. Furthermore, the group exhibits variation in adult regeneration abilities with some species able to replace anterior segments, posterior segments, both or neither. Successful regeneration includes regrowth of complex organ systems, including the centralized nervous system, gut, musculature, nephridia and gonads. Here, regenerative capabilities of the annelid Capitella teleta are reviewed. C. teleta exhibits robust posterior regeneration and benefits from having an available sequenced genome and functional genomic tools available to study the molecular and cellular control of the regeneration response. The highly stereotypic developmental program of C. teleta provides opportunities to study adult regeneration and generate robust comparisons between development and regeneration.
Collapse
|
21
|
Özpolat BD, Randel N, Williams EA, Bezares-Calderón LA, Andreatta G, Balavoine G, Bertucci PY, Ferrier DEK, Gambi MC, Gazave E, Handberg-Thorsager M, Hardege J, Hird C, Hsieh YW, Hui J, Mutemi KN, Schneider SQ, Simakov O, Vergara HM, Vervoort M, Jékely G, Tessmar-Raible K, Raible F, Arendt D. The Nereid on the rise: Platynereis as a model system. EvoDevo 2021; 12:10. [PMID: 34579780 PMCID: PMC8477482 DOI: 10.1186/s13227-021-00180-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.
Collapse
Affiliation(s)
- B. Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Nadine Randel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Elizabeth A. Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Guillaume Balavoine
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Paola Y. Bertucci
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David E. K. Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| | | | - Eve Gazave
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Mette Handberg-Thorsager
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jörg Hardege
- Department of Biological & Marine Sciences, Hull University, Cottingham Road, Hull, HU67RX UK
| | - Cameron Hird
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Yu-Wen Hsieh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Nzumbi Mutemi
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Q. Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 11529 Taiwan
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Hernando M. Vergara
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, Howland Street 25, London, W1T 4JG UK
| | - Michel Vervoort
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | | | - Florian Raible
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
von Döhren J. Diversity in the Development of the Neuromuscular System of Nemertean Larvae (Nemertea, Spiralia). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.654846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In studies on the development of nervous systems and musculature, fluorescent labeling of neuroactive substances and filamentous actin (f-actin) of muscle cells and the subsequent analysis with confocal laser scanning microscopy (CLSM), has led to a broad comparative data set for the majority of the clades of the superphylum Spiralia. However, a number of clades remain understudied, which results in gaps in our knowledge that drastically hamper the formulation of broad-scale hypotheses on the evolutionary developmental biology (EvoDevo) of the structures in question. Regarding comparative data on the development of the peptidergic nervous system and the musculature of species belonging to the spiralian clade Nemertea (ribbon worms), such considerable knowledge gaps are manifest. This paper presents first findings on fluorescent labeling of the FMRFamide-like component of the nervous system and contributes additional data on the muscle development in the presently still underrepresented larvae of palaeo- and hoplonemertean species. Whereas the architecture of the FMRFamide-like nervous system is comparably uniform between the studied representatives, the formation of the musculature differs considerably, exhibiting developmental modes yet undescribed for any spiralian species. The presented results fill a significant gap in the spiralian EvoDevo data set and thus allow for further elaboration of hypotheses on the ancestral pattern of the musculature and a prominent component of the nervous system in Nemertea. However, with respect to the variety observed, it is expected that the true diversity of the developmental pathways is still to be discovered when more detailed data on other nemertean species will be available.
Collapse
|
23
|
Carrillo-Baltodano AM, Seudre O, Guynes K, Martín-Durán JM. Early embryogenesis and organogenesis in the annelid Owenia fusiformis. EvoDevo 2021; 12:5. [PMID: 33971947 PMCID: PMC8111721 DOI: 10.1186/s13227-021-00176-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored. RESULTS Owenia fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately 5 h post-fertilization (hpf) at 19 °C. Gastrulation occurs via invagination and completes 4 h later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorso-posterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin-1) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide+ neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ~ 3 weeks post-fertilization at 15 °C, when a conspicuous juvenile rudiment has formed ventrally. CONCLUSIONS Owenia fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more elaborated than previously recognized and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.
Collapse
Affiliation(s)
| | - Océane Seudre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Kero Guynes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - José María Martín-Durán
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
24
|
Wu L, Lambert JD. A serpin is required for ectomesoderm, a hallmark of spiralian development. Dev Biol 2021; 469:172-181. [PMID: 33148394 DOI: 10.1016/j.ydbio.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
Among animals, diploblasts contain two germ layers, endoderm and ectoderm, while triploblasts have a distinct third germ layer called the mesoderm. Spiralians are a group of triploblast animals that have highly conserved development: they share the distinctive spiralian cleavage pattern as well as a unique source of mesoderm, the ectomesoderm. This population of mesoderm is distinct from endomesoderm and is considered a hallmark of spiralian development, but the regulatory network that drives its development is unknown. Here we identified ectomesoderm-specific genes in the mollusc Tritia (aka Ilyanassa) obsoleta through differential gene expression analyses comparing control and ectomesoderm-ablated embryos, followed by in situ hybridization of identified transcripts. We identified a Tritia serpin gene (ToSerpin1) that appears to be specifically expressed in the ectomesoderm of the posterior and head. Ablation of the 3a and 3b cells, which make most of the ectomesoderm, abolishes ToSerpin1 expression, consistent with its expression in these cells. Morpholino knockdown of ToSerpin1 causes ectomesoderm defects, most prominently in the muscle system of the larval head. This is the first gene identified that is specifically implicated in spiralian ectomesoderm development.
Collapse
Affiliation(s)
- Longjun Wu
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
25
|
Abstract
The freshwater snail Lymnaea stagnalis has a long research history, but only relatively recently has it emerged as an attractive model organism to study molecular mechanisms in the areas of developmental biology and translational medicine such as learning/memory and neurodegenerative diseases. The species has the advantage of being a hermaphrodite and can both cross- and self-mate, which greatly facilitates genetic approaches. The establishment of body-handedness, or chiromorphogenesis, is a major topic of study, since chirality is evident in the shell coiling. Chirality is maternally inherited, and only recently a gene-editing approach identified the actin-related gene Lsdia1 as the key handedness determinant. This short article reviews the natural habitat, life cycle, major research questions and interests, and experimental approaches.
Collapse
Affiliation(s)
- Reiko Kuroda
- Frontier Research Institute, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan.
| | - Masanori Abe
- Frontier Research Institute, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
26
|
Davison A. Flipping Shells! Unwinding LR Asymmetry in Mirror-Image Molluscs. Trends Genet 2020; 36:189-202. [PMID: 31952839 DOI: 10.1016/j.tig.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
In seeking to understand the establishment of left-right (LR) asymmetry, a limiting factor is that most animals are ordinarily invariant in their asymmetry, except when manipulated or mutated. It is therefore surprising that the wider scientific field does not appear to fully appreciate the remarkable fact that normal development in molluscs, especially snails, can flip between two chiral types without pathology. Here, I describe recent progress in understanding the evolution, development, and genetics of chiral variation in snails, and place it in context with other animals. I argue that the natural variation of snails is a crucial resource towards understanding the invariance in other animal groups and, ultimately, will be key in revealing the common factors that define cellular and organismal LR asymmetry.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|