1
|
Cao X, Xie Y, Yang H, Sun P, Xue B, Garcia LR, Zhang L. EAT-2 attenuates C. elegans development via metabolic remodeling in a chemically defined food environment. Cell Mol Life Sci 2023; 80:205. [PMID: 37450052 PMCID: PMC11072272 DOI: 10.1007/s00018-023-04849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Dietary intake and nutrient composition regulate animal growth and development; however, the underlying mechanisms remain elusive. Our previous study has shown that either the mammalian deafness homolog gene tmc-1 or its downstream acetylcholine receptor gene eat-2 attenuates Caenorhabditis elegans development in a chemically defined food CeMM (C. elegans maintenance medium) environment, but the underpinning mechanisms are not well-understood. Here, we found that, in CeMM food environment, for both eat-2 and tmc-1 fast-growing mutants, several fatty acid synthesis and elongation genes were highly expressed, while many fatty acid β-oxidation genes were repressed. Accordingly, dietary supplementation of individual fatty acids, such as monomethyl branch chain fatty acid C17ISO, palmitic acid and stearic acid significantly promoted wild-type animal development on CeMM, and mutations in either C17ISO synthesis gene elo-5 or elo-6 slowed the rapid growth of eat-2 mutant. Tissue-specific rescue experiments showed that elo-6 promoted animal development mainly in the intestine. Furthermore, transcriptome and metabolome analyses revealed that elo-6/C17ISO regulation of C. elegans development may be correlated with up-regulating expression of cuticle synthetic and hedgehog signaling genes, as well as promoting biosynthesis of amino acids, amino acid derivatives and vitamins. Correspondingly, we found that amino acid derivative S-adenosylmethionine and its upstream metabolite methionine sulfoxide significantly promoted C. elegans development on CeMM. This study demonstrated that C17ISO, palmitic acid, stearic acid, S-adenosylmethionine and methionine sulfoxide inhibited or bypassed the TMC-1 and EAT-2-mediated attenuation of development via metabolic remodeling, and allowed the animals to adapt to the new nutritional niche.
Collapse
Affiliation(s)
- Xuwen Cao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, 266237, Qingdao, China
| | - Yusu Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China
| | - Hanwen Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China
| | - Peiqi Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Beining Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - L Rene Garcia
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China.
| |
Collapse
|
2
|
Shi J, Li W, Liu A, Ren L, Zhang P, Jiang T, Han Y, Liu L. MiRNA sequencing of Embryonic Myogenesis in Chengkou Mountain Chicken. BMC Genomics 2022; 23:571. [PMID: 35948880 PMCID: PMC9364561 DOI: 10.1186/s12864-022-08795-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Skeletal muscle tissue is among the largest organ systems in mammals, essential for survival and movement. Embryonic muscle development determines the quantity and quality of muscles after the birth of an individual. MicroRNAs (miRNAs) are a significant class of non-coding RNAs that bind to the 3'UTR region of mRNA to regulate gene function. Total RNA was extracted from the leg muscles of chicken embryos in different developmental stages of Chengkou Mountain Chicken and used to generate 171,407,341 clean small RNA reads. Target prediction, GO, and KEGG enrichment analyses determined the significantly enriched genes and pathways. Differential analysis determined the significantly different miRNAs between chicken embryo leg muscles at different developmental stages. Meanwhile, the weighted correlation network analysis (WGCNA) identified key modules in different developmental stages, and the hub miRNAs were screened following the KME value. RESULTS The clean reads contained 2047 miRNAs, including 721 existing miRNAs, 1059 known miRNAs, and 267 novel miRNAs. Many genes and pathways related to muscle development were identified, including ERBB4, MEF2C, FZD4, the Wnt, Notch, and MAPK signaling pathways. The WGCNA established the greenyellow module and gga-miR-130b-5p for E12, magenta module and gga-miR-1643-5p for E16, purple module and gga-miR-12218-5p for E19, cyan module and gga-miR-132b-5p for E21. CONCLUSION These results lay a foundation for further research on the molecular regulatory mechanism of embryonic muscle development in Chengkou mountain chicken and provide a reference for other poultry and livestock muscle development studies.
Collapse
Affiliation(s)
- Jun'an Shi
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Wendong Li
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Anfang Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingtong Ren
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Pusen Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Ting Jiang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Yuqing Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingbin Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China.
| |
Collapse
|
3
|
Gu L, Jiang Q, Chen Y, Zheng X, Zhou H, Xu T. Transcriptome-wide study revealed m6A and miRNA regulation of embryonic breast muscle development in Wenchang chickens. Front Vet Sci 2022; 9:934728. [PMID: 35958303 PMCID: PMC9360417 DOI: 10.3389/fvets.2022.934728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
N6-Methyladenosine (m6A) modification has been shown to play important role in skeletal muscle development. Wenchang chickens are commonly used as a high-quality animal model in researching meat quality. However, there have been no previous reports regarding the profile of m6A and its function in the embryonic breast muscle development of Wenchang chickens. In this paper, we identified different developmental stages of breast muscle in Wenchang chickens and performed m6A sequencing and miRNA sequencing in the breast muscle of embryos. Embryo breast muscles were weighed and stained with hematoxylin–eosin after hatching. We found that myofibers grew fast on the 10th day after hatching (E10) and seldom proliferated beyond the 19th day after hatching (E19). A total of 6,774 differentially methylated genes (DMGs) were identified between E10 and E19. For RNA-seq data, we found 5,586 differentially expressed genes (DEGs). After overlapping DEGs and DMGs, we recorded 651 shared genes (DEMGs). Subsequently, we performed miRNA-seq analysis and obtained 495 differentially expressed miRNAs (DEMs). Then, we overlapped DEMGs and the target genes of DEMs and obtained 72 overlapped genes (called miRNA-m6A-genes in this study). GO and KEGG results showed DEMGs enriched in many muscle development-related pathways. Furthermore, we chose WNT7B, a key regulator of skeletal muscle development, to perform IGV visualization analysis and found that the m6A levels on the WNT7B gene between E10 and E19 were significantly different. In conclusion, we found that miRNAs, in conjunction with m6A modification, played a key role in the embryonic breast muscle development of Wenchang chickens. The results of this paper offer a theoretical basis for the study of m6A function in muscle development and fat deposition of Wenchang chickens.
Collapse
Affiliation(s)
- Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Qicheng Jiang
- School of Life Science, Hainan University, Haikou, China
| | - Youyi Chen
- Wuzhishan Animal Science and Veterinary Medicine and Fishery Service Center, Wuzhishan Agricultural and Rural Bureau, Wuzhishan, China
| | - Xinli Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Hailong Zhou
- School of Life Science, Hainan University, Haikou, China
- *Correspondence: Hailong Zhou
| | - Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Tieshan Xu
| |
Collapse
|
4
|
Yang ZL, Chen JN, Lu YY, Lu M, Wan QL, Wu GS, Luo HR. Inositol polyphosphate multikinase IPMK-1 regulates development through IP3/calcium signaling in Caenorhabditis elegans. Cell Calcium 2020; 93:102327. [PMID: 33316585 DOI: 10.1016/j.ceca.2020.102327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023]
Abstract
Inositol polyphosphate multikinase (IPMK) is a conserved protein that initiates the production of inositol phosphate intracellular messengers and is critical for regulating a variety of cellular processes. Here, we report that the C. elegans IPMK-1, which is homologous to the mammalian inositol polyphosphate multikinase, plays a crucial role in regulating rhythmic behavior and development. The deletion mutant ipmk-1(tm2687) displays a long defecation cycle period and retarded postembryonic growth. The expression of functional ipmk-1::GFP was detected in the pharyngeal muscles, amphid sheath cells, the intestine, excretory (canal) cells, proximal gonad, and spermatheca. The expression of IPMK-1 in the intestine was sufficient for the wild-type phenotype. The IP3-kinase activity of IPMK-1 is required for defecation rhythms and postembryonic development. The defective phenotypes of ipmk-1(tm2687) could be rescued by a loss-of-function mutation in type I inositol 5-phosphatase homolog (IPP-5) and improved by a supplemental Ca2+ in the medium. Our work demonstrates that IPMK-1 and the signaling molecule inositol triphosphate (IP3) pathway modulate rhythmic behaviors and development by dynamically regulating the concentration of intracellular Ca2+ in C. elegans. Advances in understanding the molecular regulation of Ca2+ homeostasis and regulation of organism development may lead to therapeutic strategies that modulate Ca2+ signaling to enhance function and counteract disease processes. Unraveling the physiological role of IPMK and the underlying functional mechanism in C. elegans would contribute to understanding the role of IPMK in other species, especially in mammals, and benefit further research on the involvement of IPMK in disease.
Collapse
Affiliation(s)
- Zhong-Lin Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Graduate University of the Chinese Academy of Science, Beijing, 100049, China
| | - Jian-Ning Chen
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yu-Yang Lu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Min Lu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qin-Li Wan
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Graduate University of the Chinese Academy of Science, Beijing, 100049, China; Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|