1
|
Sobah ML, Liongue C, Ward AC. Socs3a is Dispensable for Zebrafish Hematopoiesis and is Required for Neuromast Formation. FRONT BIOSCI-LANDMRK 2025; 30:36537. [PMID: 40302337 DOI: 10.31083/fbl36537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Suppressor of cytokine signaling (SOCS)3 is a regulatory protein that participates in an important negative feedback loop downstream of several critical cytokines, especially members of the interleukin-6 (IL-6) family. As a result, SOCS3 has been shown to impact the development and function of blood and immune cells. Zebrafish harbor duplicates of SOCS3, Socs3a and Socs3b, both of which possess conserved functional domains. METHODS This study explored the role of zebrafish Socs3a by creating a whole genome knockout using CRISPR/Cas9, with a focus on hematopoiesis and neuromast formation. RESULTS A zebrafish Socs3a knockout mutant was successfully generated. Characterization of this mutant revealed that normal hematopoiesis was not impacted nor was neutrophils lacking Socs3a displayed normal responses to injury or their production during emergency granulopoiesis. Neuromast formation was severely impacted in Socs3a knockout zebrafish. CONCLUSIONS Zebrafish Socs3a mutants display normal hematopoiesis and myeloid function, but the formation of the lateral line neuromast was affected by the absence of Socs3a.
Collapse
Affiliation(s)
- Mohamed Luban Sobah
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- IMPACT, Deakin University, Geelong, VIC 3220, Australia
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- IMPACT, Deakin University, Geelong, VIC 3220, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- IMPACT, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
2
|
Aman AJ, Parichy DM. Anatomy, development and regeneration of zebrafish elasmoid scales. Dev Biol 2024; 510:1-7. [PMID: 38458375 PMCID: PMC11015963 DOI: 10.1016/j.ydbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Vertebrate skin appendages - particularly avian feathers and mammalian hairs, glands and teeth - are perennially useful systems for investigating fundamental mechanisms of development. The most common type of skin appendage in teleost fishes is the elasmoid scale, yet this structure has received much less attention than the skin appendages of tetrapods. Elasmoid scales are thin, overlapping plates of partially mineralized extracellular matrices, deposited in the skin in a hexagonal pattern by a specialized population of dermal cells in cooperation with the overlying epidermis. Recent years have seen rapid progress in our understanding of elasmoid scale development and regeneration, driven by the deployment of developmental genetics, live imaging and transcriptomics in larval and adult zebrafish. These findings are reviewed together with histological and ultrastructural approaches to understanding scale development and regeneration.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Stein M, Elefteriou F, Busse B, Fiedler IA, Kwon RY, Farell E, Ahmad M, Ignatius A, Grover L, Geris L, Tuckermann J. Why Animal Experiments Are Still Indispensable in Bone Research: A Statement by the European Calcified Tissue Society. J Bone Miner Res 2023; 38:1045-1061. [PMID: 37314012 PMCID: PMC10962000 DOI: 10.1002/jbmr.4868] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Major achievements in bone research have always relied on animal models and in vitro systems derived from patient and animal material. However, the use of animals in research has drawn intense ethical debate and the complete abolition of animal experimentation is demanded by fractions of the population. This phenomenon is enhanced by the reproducibility crisis in science and the advance of in vitro and in silico techniques. 3D culture, organ-on-a-chip, and computer models have improved enormously over the last few years. Nevertheless, the overall complexity of bone tissue cross-talk and the systemic and local regulation of bone physiology can often only be addressed in entire vertebrates. Powerful genetic methods such as conditional mutagenesis, lineage tracing, and modeling of the diseases enhanced the understanding of the entire skeletal system. In this review endorsed by the European Calcified Tissue Society (ECTS), a working group of investigators from Europe and the US provides an overview of the strengths and limitations of experimental animal models, including rodents, fish, and large animals, as well the potential and shortcomings of in vitro and in silico technologies in skeletal research. We propose that the proper combination of the right animal model for a specific hypothesis and state-of-the-art in vitro and/or in silico technology is essential to solving remaining important questions in bone research. This is crucial for executing most efficiently the 3R principles to reduce, refine, and replace animal experimentation, for enhancing our knowledge of skeletal biology, and for the treatment of bone diseases that affect a large part of society. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Merle Stein
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Imke A.K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, USA and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Eric Farell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Liam Grover
- Healthcare Technologies Institute, Institute of Translational MedicineHeritage Building Edgbaston, Birmingham
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Peterman E, Quitevis EJA, Black EC, Horton EC, Aelmore RL, White E, Sagasti A, Rasmussen JP. Zebrafish cutaneous injury models reveal that Langerhans cells engulf axonal debris in adult epidermis. Dis Model Mech 2023; 16:dmm049911. [PMID: 36876992 PMCID: PMC10110399 DOI: 10.1242/dmm.049911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Somatosensory neurons extend enormous peripheral axons to the skin, where they detect diverse environmental stimuli. Somatosensory peripheral axons are easily damaged due to their small caliber and superficial location. Axonal damage results in Wallerian degeneration, creating vast quantities of cellular debris that phagocytes must remove to maintain organ homeostasis. The cellular mechanisms that ensure efficient clearance of axon debris from stratified adult skin are unknown. Here, we established zebrafish scales as a tractable model to study axon degeneration in the adult epidermis. Using this system, we demonstrated that skin-resident immune cells known as Langerhans cells engulf the majority of axon debris. In contrast to immature skin, adult keratinocytes did not significantly contribute to debris removal, even in animals lacking Langerhans cells. Our study establishes a powerful new model for studying Wallerian degeneration and identifies a new function for Langerhans cells in maintenance of adult skin homeostasis following injury. These findings have important implications for pathologies that trigger somatosensory axon degeneration.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | - Erik C. Black
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Emma C. Horton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Rune L. Aelmore
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Ethan White
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Jeffrey P. Rasmussen
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Poudel S, Martins G, Cancela ML, Gavaia PJ. Resveratrol-Mediated Reversal of Doxorubicin-Induced Osteoclast Differentiation. Int J Mol Sci 2022; 23:ijms232315160. [PMID: 36499492 PMCID: PMC9738652 DOI: 10.3390/ijms232315160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Secondary osteoporosis has been associated with cancer patients undertaking Doxorubicin (DOX) chemotherapy. However, the molecular mechanisms behind DOX-induced bone loss have not been elucidated. Molecules that can protect against the adverse effects of DOX are still a challenge in chemotherapeutic treatments. We investigated the effect and mechanism of DOX in osteoclast differentiation and used the Sirt 1 activator resveratrol (RES) to counteract DOX-induced effects. RAW 264.7 cells were differentiated into osteoclasts under cotreatment with DOX and RES, alone or combined. RES treatment inhibited DOX-induced osteoclast differentiation, reduced the expression of osteoclast fusion marker Oc-stamp and osteoclast differentiation markers Rank, Trap, Ctsk and Nfatc1. Conversely, RES induced the upregulation of antioxidant genes Sod 1 and Nrf 2 while DOX significantly reduced the FoxM1 expression, resulting in oxidative stress. Treatment with the antioxidant MitoTEMPO did not influence DOX-induced osteoclast differentiation. DOX-induced osteoclastogenesis was studied using the cathepsin-K zebrafish reporter line (Tg[ctsk:DsRed]). DOX significantly increased ctsk signal, while RES cotreatment resulted in a significant reduction in ctsk positive cells. RES significantly rescued DOX-induced mucositis in this model. Additionally, DOX-exposed zebrafish displayed altered locomotor behavior and locomotory patterns, while RES significantly reversed these effects. Our research shows that RES prevents DOX-induced osteoclast fusion and activation in vitro and in vivo and reduces DOX-induced mucositis, while improving locomotion parameters.
Collapse
Affiliation(s)
- Sunil Poudel
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, FMCB, University of Algarve, 8005-139 Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, FMCB, University of Algarve, 8005-139 Faro, Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-800057 or +351-289-800900 (ext. 7057)
| |
Collapse
|
6
|
Fin ray branching is defined by TRAP + osteolytic tubules in zebrafish. Proc Natl Acad Sci U S A 2022; 119:e2209231119. [PMID: 36417434 PMCID: PMC9889879 DOI: 10.1073/pnas.2209231119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The shaping of bone structures relies on various cell types and signaling pathways. Here, we use the zebrafish bifurcating fin rays during regeneration to investigate bone patterning. We found that the regenerating fin rays form via two mineralization fronts that undergo an osteoblast-dependent fusion/stitching until the branchpoint, and that bifurcation is not simply the splitting of one unit into two. We identified tartrate-resistant acid phosphatase-positive osteolytic tubular structures at the branchpoints, hereafter named osteolytic tubules (OLTs). Chemical inhibition of their bone-resorbing activity strongly impairs ray bifurcation, indicating that OLTs counteract the stitching process. Furthermore, by testing different osteoactive compounds, we show that the position of the branchpoint depends on the balance between bone mineralization and resorption activities. Overall, these findings provide a unique perspective on fin ray formation and bifurcation, and reveal a key role for OLTs in defining the proximo-distal position of the branchpoint.
Collapse
|
7
|
Miao KZ, Cozzone A, Caetano-Lopes J, Harris MP, Fisher S. Osteoclast activity sculpts craniofacial form to permit sensorineural patterning in the zebrafish skull. Front Endocrinol (Lausanne) 2022; 13:969481. [PMID: 36387889 PMCID: PMC9664155 DOI: 10.3389/fendo.2022.969481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Efforts to understand the morphogenesis of complex craniofacial structures have largely focused on the role of chondrocytes and osteoblasts. Along with these bone-creating cells, bone-resorbing osteoclasts are critical in homeostasis of adult skeletal structures, but there is currently limited information on their role in the complex morphogenetic events of craniofacial development. Fundamental aspects of skull formation and general skeletal development are conserved from zebrafish to mammals. Using a cathepsinK reporter, we documented osteoclast location in the developing zebrafish skull over several weeks, from 5.18 mm to 9.6 mm standard length (approximately 15 to 34 days post fertilization). While broad distribution of osteoclasts is consistent across individuals, they are sparse and the exact locations vary among fish and across developmental time points. Interestingly, we observed osteoclasts concentrating at areas associated with neuromasts and their associated nerves, in particular the hyomandibular foramina and around the supraorbital lateral line. These are areas of active remodeling. In contrast, other areas of rapid bone growth, such as the osteogenic fronts of the frontal and parietal bones, show no particular concentration of osteoclasts, suggesting that they play a special role in shaping bone near neuromasts and nerves. In csf1ra mutants lacking functional osteoclasts, the morphology of the cranial bone was disrupted in both areas. The hyomandibular foramen is present in the initial cartilage template, but after the initiation of ossification, the diameter of the canal is significantly smaller in the absence of osteoclasts. The diameter of the supraorbital lateral line canals was also reduced in the mutants, as was the number of pores associated with neuromasts, which allow for the passage of associated nerves through the bone. Our findings define important and previously unappreciated roles for osteoclast activity in shaping craniofacial skeletal structures with a particular role in bone modeling around peripheral cranial nerves, providing a scaffold for wiring the sensioneural system during craniofacial development. This has important implications for the formation of the evolutionarily diverse lateral line system, as well understanding the mechanism of neurologic sequelae of congenital osteoclast dysfunction in human craniofacial development.
Collapse
Affiliation(s)
- Kelly Z. Miao
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Austin Cozzone
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Joana Caetano-Lopes
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Lin WY, Dharini KK, Peng CH, Lin CY, Yeh KT, Lee WC, Lin MD. Zebrafish models for glucocorticoid-induced osteoporosis. Tzu Chi Med J 2022; 34:373-380. [PMID: 36578638 PMCID: PMC9791848 DOI: 10.4103/tcmj.tcmj_80_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis due to excessive or long-term glucocorticoid administration, disturbing the homeostasis between bone formation and bone resorption. The bone biology of zebrafish shares a high degree of similarities with mammals. In terms of molecular level, genes and signaling pathways related to skeletogenesis are also highly correlated between zebrafish and humans. Therefore, zebrafish have been utilized to develop multiple GIOP models. Taking advantage of the transparency of zebrafish larvae, their skeletal development and bone mineralization can be readily visualized through in vivo staining without invasive experimental handlings. Moreover, the feasibility of using scales or fin rays to study bone remodeling makes adult zebrafish an ideal model for GIOP research. Here, we reviewed current zebrafish models for GIOP research, focused on the tools and methods established for examining bone homeostasis. As an in vivo, convenient, and robust model, zebrafish have an advantage in performing high-throughput drug screening and could be used to investigate the action mechanisms of therapeutic drugs.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Chih Lee
- Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Wen-Chih Lee, Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
Prof. Ming-Der Lin, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| | - Ming-Der Lin
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Wen-Chih Lee, Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
Prof. Ming-Der Lin, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
9
|
Dai Y, Wu S, Cao C, Xue R, Luo X, Wen Z, Xu J. Csf1rb regulates definitive hematopoiesis in zebrafish. Development 2022; 149:276084. [DOI: 10.1242/dev.200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In vertebrates, hematopoietic stem and progenitor cells (HSPCs) are capable of self-renewal and continuously replenishing all mature blood lineages throughout life. However, the molecular signaling regulating the maintenance and expansion of HSPCs remains incompletely understood. Colony-stimulating factor 1 receptor (CSF1R) is believed to be the primary regulator for the myeloid lineage but not HSPC development. Here, we show a surprising role of Csf1rb, a zebrafish homolog of mammalian CSF1R, in preserving the HSPC pool by maintaining the proliferation of HSPCs. Deficiency of csf1rb leads to a reduction in both HSPCs and their differentiated progenies, including myeloid, lymphoid and erythroid cells at early developmental stages. Likewise, the absence of csf1rb conferred similar defects upon HSPCs and leukocytes in adulthood. Furthermore, adult hematopoietic cells from csf1rb mutants failed to repopulate immunodeficient zebrafish. Interestingly, loss-of-function and gain-of-function assays suggested that the canonical ligands for Csf1r in zebrafish, including Csf1a, Csf1b and Il34, were unlikely to be ligands of Csf1rb. Thus, our data indicate a previously unappreciated role of Csf1r in maintaining HSPCs, independently of known ligands.
Collapse
Affiliation(s)
- Yimei Dai
- School of Medicine, South China University of Technology 1 Laboratory of Immunology & Regeneration , , Guangzhou 510006, China
| | - Shuting Wu
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology 2 Division of Life Science , , Clear Water Bay, Kowloon, Hong Kong , People's Republic of China
| | - Canran Cao
- School of Medicine, South China University of Technology 1 Laboratory of Immunology & Regeneration , , Guangzhou 510006, China
| | - Rongtao Xue
- Nanfang Hospital, Southern Medical University 3 Department of Hematology , , Guangzhou, Guangdong 510515 , China
| | - Xuefen Luo
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology 2 Division of Life Science , , Clear Water Bay, Kowloon, Hong Kong , People's Republic of China
| | - Zilong Wen
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology 2 Division of Life Science , , Clear Water Bay, Kowloon, Hong Kong , People's Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University−Hong Kong University of Science and Technology Medical Center 4 , Shenzhen 518055 , China
| | - Jin Xu
- School of Medicine, South China University of Technology 1 Laboratory of Immunology & Regeneration , , Guangzhou 510006, China
| |
Collapse
|
10
|
Nguyen SV, Lanni D, Xu Y, Michaelson JS, McMenamin SK. Dynamics of the Zebrafish Skeleton in Three Dimensions During Juvenile and Adult Development. Front Physiol 2022; 13:875866. [PMID: 35721557 PMCID: PMC9204358 DOI: 10.3389/fphys.2022.875866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Zebrafish are a valuable model for normal vertebrate skeletogenesis and the study of myriad bone disorders. Bones grow, ossify and change shape throughout the zebrafish lifetime, and 3D technologies allow us to examine skeletogenic processes in detail through late developmental stages. To facilitate analysis of shape, orientation and tissue density of skeletal elements throughout ontogeny and adulthood, we generated a high-resolution skeletal reference dataset of wild-type zebrafish development. Using microCT technology, we produced 3D models of the skeletons of individuals ranging from 12 to 25 mm standard length (SL). We analyzed the dynamics of skeletal density and volume as they increase during juvenile and adult growth. Our resource allows anatomical comparisons between meristic units within an individual-e.g., we show that the vertebral canal width increases posteriorly along the spine. Further, structures may be compared between individuals at different body sizes: we highlight the shape changes that the lower jaw undergoes as fish mature from juvenile to adult. We show that even reproductively mature adult zebrafish (17-25 mm SL) continue to undergo substantial changes in skeletal morphology and composition with continued adult growth. We provide a segmented model of the adult skull and a series of interactive 3D PDFs at a range of key stages. These resources allow changes in the skeleton to be assessed quantitatively and qualitatively through late stages of development, and can serve as anatomical references for both research and education.
Collapse
Affiliation(s)
- Stacy V Nguyen
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Dominic Lanni
- Biology Department, Vassar College, Poughkeepsie, NY, United States
| | - Yongqi Xu
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - James S Michaelson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Sarah K McMenamin
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
11
|
Iwasaki M, Kawakami K, Wada H. Remodeling of the hyomandibular skeleton and facial nerve positioning during embryonic and postembryonic development of teleost fish. Dev Biol 2022; 489:134-145. [PMID: 35750208 DOI: 10.1016/j.ydbio.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate skeleton changes its shape during development through the activities of chondrocytes, osteoblasts and osteoclasts. Although much is known about the mechanisms for differentiation in these cells, it is less understood how they behave in a region-specific manner to acquire unique bone shapes. To address this question, we investigated the development of the hyomandibular (Hm) system in zebrafish. The Hm originates as cartilage carrying a single foramen (the Hm foramen), through which the facial (VII) nerve passes. We reveal that Schwann cells, which myelinate the VII nerve, regulate rearrangement of the chondrocytes to enlarge the Hm foramen. The Hm cartilage then becomes ossified in the perichondrium, where the marrow chondrocytes are replaced by adipocytes. Then, the bone matrix along the VII nerve is resorbed by osteoclasts, generating a gateway to the bone marrow. Subsequent movement of the VII nerve into the marrow, followed by deposition of new bone matrix, isolates the nerve from the jaw muscle insertion. Genetic ablation of osteoblasts and osteoclasts reveals specific roles of these cells during remodeling processes. Interestingly, the VII nerve relocation does not occur in medaka; instead, bone deposition distinct from those in zebrafish separates the VII nerve from the muscle insertion. Our results define novel mechanisms for skeletal remodeling, by which the bone shapes in a region- and species-specific manner.
Collapse
Affiliation(s)
- Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Koichi Kawakami
- National Institute of Genetics; Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
12
|
Genetic basis of orange spot formation in the guppy (Poecilia reticulata). BMC Ecol Evol 2021; 21:211. [PMID: 34823475 PMCID: PMC8613973 DOI: 10.1186/s12862-021-01942-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background To understand the evolutionary significance of female mate choice for colorful male ornamentation, the underlying regulatory mechanisms of such ornamentation must be understood for examining how the ornaments are associated with “male qualities” that increase the fitness or sexual attractiveness of offspring. In the guppy (Poecilia reticulata), an established model system for research on sexual selection, females prefer males possessing larger and more highly saturated orange spots as potential mates. Although previous studies have identified some chromosome regions and genes associated with orange spot formation, the regulation and involvement of these genetic elements in orange spot formation have not been elucidated. In this study, the expression patterns of genes specific to orange spots and certain color developmental stages were investigated using RNA-seq to reveal the genetic basis of orange spot formation. Results Comparing the gene expression levels of male guppy skin with orange spots (orange skin) with those without any color spots (dull skin) from the same individuals identified 1102 differentially expressed genes (DEGs), including 630 upregulated genes and 472 downregulated genes in the orange skin. Additionally, the gene expression levels of the whole trunk skin were compared among the three developmental stages and 2247 genes were identified as DEGs according to color development. These analyses indicated that secondary differentiation of xanthophores may affect orange spot formation. Conclusions The results suggested that orange spots might be formed by secondary differentiation, rather than de novo generation, of xanthophores, which is induced by Csf1 and thyroid hormone signaling pathways. Furthermore, we suggested candidate genes associated with the areas and saturation levels of orange spots, which are both believed to be important for female mate choice and independently regulated. This study provides insights into the genetic and cellular regulatory mechanisms underlying orange spot formation, which would help to elucidate how these processes are evolutionarily maintained as ornamental traits relevant to sexual selection. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01942-2.
Collapse
|
13
|
Ansai S, Mochida K, Fujimoto S, Mokodongan DF, Sumarto BKA, Masengi KWA, Hadiaty RK, Nagano AJ, Toyoda A, Naruse K, Yamahira K, Kitano J. Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nat Commun 2021; 12:1350. [PMID: 33649298 PMCID: PMC7921647 DOI: 10.1038/s41467-021-21697-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Sexual selection drives rapid phenotypic diversification of mating traits. However, we know little about the causative genes underlying divergence in sexually selected traits. Here, we investigate the genetic basis of male mating trait diversification in the medaka fishes (genus Oryzias) from Sulawesi, Indonesia. Using linkage mapping, transcriptome analysis, and genome editing, we identify csf1 as a causative gene for red pectoral fins that are unique to male Oryzias woworae. A cis-regulatory mutation enables androgen-induced expression of csf1 in male fins. csf1-knockout males have reduced red coloration and require longer for mating, suggesting that coloration can contribute to male reproductive success. Contrary to expectations, non-red males are more attractive to a predatory fish than are red males. Our results demonstrate that integrating genomics with genome editing enables us to identify causative genes underlying sexually selected traits and provides a new avenue for testing theories of sexual selection.
Collapse
Affiliation(s)
- Satoshi Ansai
- grid.288127.60000 0004 0466 9350Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan ,grid.419396.00000 0004 0618 8593Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan ,grid.69566.3a0000 0001 2248 6943Present Address: Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi Japan
| | - Koji Mochida
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ,grid.26091.3c0000 0004 1936 9959Department of Biology, Keio University, Yokohama, Kanagawa, Japan
| | - Shingo Fujimoto
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ,grid.267625.20000 0001 0685 5104Present Address: Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa Japan
| | - Daniel F. Mokodongan
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ,grid.249566.a0000 0004 0644 6054Present Address: Museum Zoologicum Bogoriense (MZB), Zoology Division of Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Bayu Kreshna Adhitya Sumarto
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Kawilarang W. A. Masengi
- grid.412381.d0000 0001 0702 3254Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Renny K. Hadiaty
- grid.249566.a0000 0004 0644 6054Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Atsushi J. Nagano
- grid.440926.d0000 0001 0744 5780Faculty of Agriculture, Ryukoku University, Ohtsu, Shiga, Japan
| | - Atsushi Toyoda
- grid.288127.60000 0004 0466 9350Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kiyoshi Naruse
- grid.419396.00000 0004 0618 8593Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazunori Yamahira
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Jun Kitano
- grid.288127.60000 0004 0466 9350Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
14
|
Ferrero G, Miserocchi M, Di Ruggiero E, Wittamer V. A c sf1rb mutation uncouples two waves of microglia development in zebrafish. Development 2021; 148:dev.194241. [PMID: 33298459 DOI: 10.1242/dev.194241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
In vertebrates, the ontogeny of microglia, the resident macrophages of the central nervous system, initiates early during development from primitive macrophages. Although murine embryonic microglia then persist through life, in zebrafish these cells are transient, as they are fully replaced by an adult population originating from larval hematopoietic stem cell (HSC)-derived progenitors. Colony-stimulating factor 1 receptor (Csf1r) is a fundamental regulator of microglia ontogeny in vertebrates, including zebrafish, which possess two paralogous genes: csf1ra and csf1rb Although previous work has shown that mutation in both genes completely abrogates microglia development, the specific contribution of each paralog remains largely unknown. Here, using a fate-mapping strategy to discriminate between the two microglial waves, we uncover non-overlapping roles for csf1ra and csf1rb in hematopoiesis, and identified csf1rb as an essential regulator of adult microglia development. Notably, we demonstrate that csf1rb positively regulates HSC-derived myelopoiesis, resulting in macrophage deficiency, including microglia, in adult mutant animals. Overall, this study contributes to new insights into evolutionary aspects of Csf1r signaling and provides an unprecedented framework for the functional dissection of embryonic versus adult microglia in vivo.
Collapse
Affiliation(s)
- Giuliano Ferrero
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Magali Miserocchi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Elodie Di Ruggiero
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium .,ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,WELBIO, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| |
Collapse
|
15
|
Samuels BD, Aho R, Brinkley JF, Bugacov A, Feingold E, Fisher S, Gonzalez-Reiche AS, Hacia JG, Hallgrimsson B, Hansen K, Harris MP, Ho TV, Holmes G, Hooper JE, Jabs EW, Jones KL, Kesselman C, Klein OD, Leslie EJ, Li H, Liao EC, Long H, Lu N, Maas RL, Marazita ML, Mohammed J, Prescott S, Schuler R, Selleri L, Spritz RA, Swigut T, van Bakel H, Visel A, Welsh I, Williams C, Williams TJ, Wysocka J, Yuan Y, Chai Y. FaceBase 3: analytical tools and FAIR resources for craniofacial and dental research. Development 2020; 147:dev191213. [PMID: 32958507 PMCID: PMC7522026 DOI: 10.1242/dev.191213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.
Collapse
Affiliation(s)
- Bridget D Samuels
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Aho
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - James F Brinkley
- Structural Informatics Group, Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Alejandro Bugacov
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Alberta, Canada
| | - Karissa Hansen
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew P Harris
- Department of Orthopedic Research, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan E Hooper
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Carl Kesselman
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Pediatrics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Hong Li
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Eric C Liao
- Massachusetts General Hospital, Plastic and Reconstructive Surgery, Boston, MA 02114, USA
| | - Hannah Long
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard L Maas
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Clinical and Translational Science, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jaaved Mohammed
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sara Prescott
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Robert Schuler
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Tomek Swigut
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| | - Ian Welsh
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Cristina Williams
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Joanna Wysocka
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Kuil LE, Oosterhof N, Ferrero G, Mikulášová T, Hason M, Dekker J, Rovira M, van der Linde HC, van Strien PMH, de Pater E, Schaaf G, Bindels EMJ, Wittamer V, van Ham TJ. Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes. eLife 2020; 9:e53403. [PMID: 32367800 PMCID: PMC7237208 DOI: 10.7554/elife.53403] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophages derive from multiple sources of hematopoietic progenitors. Most macrophages require colony-stimulating factor 1 receptor (CSF1R), but some macrophages persist in the absence of CSF1R. Here, we analyzed mpeg1:GFP-expressing macrophages in csf1r-deficient zebrafish and report that embryonic macrophages emerge followed by their developmental arrest. In larvae, mpeg1+ cell numbers then increased showing two distinct types in the skin: branched, putative Langerhans cells, and amoeboid cells. In contrast, although numbers also increased in csf1r-mutants, exclusively amoeboid mpeg1+ cells were present, which we showed by genetic lineage tracing to have a non-hematopoietic origin. They expressed macrophage-associated genes, but also showed decreased phagocytic gene expression and increased epithelial-associated gene expression, characteristic of metaphocytes, recently discovered ectoderm-derived cells. We further demonstrated that juvenile csf1r-deficient zebrafish exhibit systemic macrophage depletion. Thus, csf1r deficiency disrupts embryonic to adult macrophage development. Zebrafish deficient for csf1r are viable and permit analyzing the consequences of macrophage loss throughout life.
Collapse
Affiliation(s)
- Laura E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | - Nynke Oosterhof
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | - Giuliano Ferrero
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB)BrusselsBelgium
| | - Tereza Mikulášová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Martina Hason
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jordy Dekker
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | - Mireia Rovira
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB)BrusselsBelgium
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | | | - Emma de Pater
- Department of Hematology, Erasmus University Medical CenterRotterdamNetherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| | - Erik MJ Bindels
- Department of Hematology, Erasmus University Medical CenterRotterdamNetherlands
| | - Valerie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB)BrusselsBelgium
- WELBIO, ULBBrusselsBelgium
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus University Medical Center RotterdamRotterdamNetherlands
| |
Collapse
|