1
|
Tang P, Wang J, Tang X, Li Y, Li S. Insulin‑like growth factor 2 in spermatogenesis dysfunction (Review). Mol Med Rep 2025; 31:129. [PMID: 40116127 PMCID: PMC11938415 DOI: 10.3892/mmr.2025.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Spermatogenesis dysfunction is characterized by abnormal morphology, destruction, atrophy of seminiferous tubules, blocked differentiation of spermatogenic cells, decreased sperm count and increased sperm abnormalities. Inflammation, oxidative stress, endoplasmic reticulum stress and obesity are important factors leading to spermatogenesis dysfunction. It has been demonstrated that insulin‑like growth factor 2 (IGF2) is closely related to the aforementioned factors. In the present review, the relationship between IGF2 and inflammation, oxidative stress, ER stress and obesity was investigated, providing theoretical and experimental evidence on the role of IGF2 in the prevention and treatment of spermatogenesis dysfunction of male infertility.
Collapse
Affiliation(s)
- Pingping Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jiale Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohan Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yichun Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Suyun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
2
|
Paganos P, Wolff C, Voronov D, Swartz SZ. Molecular evidence for pre-chordate origins of ovarian cell types and neuroendocrine control of reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644836. [PMID: 40196654 PMCID: PMC11974710 DOI: 10.1101/2025.03.24.644836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Sexual reproduction in animals requires the development of oocytes, or egg cells. This process, termed oogenesis, requires complex interactions amongst germline and somatic cell types in the ovary. How did these cell types and their signaling interactions evolve? Here we use the sea star Patiria miniata as a non-chordate deuterostome representative to define the ovarian cell type toolkit in echinoderms. Sea stars continuously produce millions of new oocytes throughout their lifespan, making them a practical system to understand the mechanisms that drive oogenesis from a biomedical and evolutionary perspective. We performed scRNA-seq combined with high-resolution 3D-imaging to reveal the ovarian cell types and their spatial organization. Our data support the presence of actively dividing oogonial stem cells and granulosa-like and theca-like cells, which display similarities and possible homology with their mammalian counterparts. Lastly, our data support the existence of an endocrine signaling system between oogonial stem cells and intrinsic ovarian neurons with striking similarities to the vertebrate hypothalamic-pituitary-gonadal axis. Overall, this study provides molecular evidence supporting the possible pre-chordate origins of conserved ovarian cell types, and the presence of an intrinsic neuroendocrine system which potentially controls oogenesis and predates the formation of the hypothalamic-pituitary-gonadal axis in vertebrates.
Collapse
Affiliation(s)
- Periklis Paganos
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts, 02543, United States of America
| | - Carsten Wolff
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts, 02543, United States of America
| | - Danila Voronov
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - S. Zachary Swartz
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts, 02543, United States of America
| |
Collapse
|
3
|
Lin Z, Rong B, Wu M, Yan J, Hong T, Hou L, Tang X, Liu Q, Peng X, Chen Y, Lan F, Tong MH. The KMT2 complex protein ASH2L is required for meiotic prophase progression but dispensable for mitosis in differentiated spermatogonia. Development 2025; 152:dev204630. [PMID: 39992154 DOI: 10.1242/dev.204630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
ASH2L is a core component of KMT2 complexes, crucial for H3K4 trimethylation. However, its role in spermatogenesis remains elusive. Here, we demonstrate an essential role of Ash2l for meiotic prophase but dispensable for mitosis in differentiated spermatogonia. Using a germ cell-specific Ash2l knockout mouse model, we reveal that Ash2l deficiency leads to meiotic arrest and sterility in both sexes. Ash2l-deficient spermatocytes exhibit failures in chromosomal synapsis associated with persistent DMC1 foci and γH2AX, resulting in meiocyte loss due to apoptosis. Conversely, Ash2l-deficient differentiated spermatogonia show normal development. Mechanistically, Ash2l deficiency results in a global loss of H3K4me3 in promoter regions and significantly decreases expression of thousands of genes. Among these are genes involved in epigenetic silencing pathways, such as H3K9 di-methylation, DNA methylation and piRNA pathways, that are crucial for transposon repression during meiotic prophase I progression. Supporting this, we observe that Ash2l mutant spermatocytes display ectopic expression of LINE1-ORF1P. Our findings therefore reveal the previously unappreciated role of ASH2L-dependent H3K4me3 modification in spermatogenesis and provide clues to the molecular mechanisms in epigenetic disorders underlying male infertility.
Collapse
Affiliation(s)
- Zhen Lin
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bowen Rong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Meixia Wu
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junyi Yan
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tong Hong
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Linjun Hou
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinzhe Tang
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xiaozhong Peng
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yao Chen
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Lan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ming-Han Tong
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Bilmez Y, Talibova G, Tire B, Ozturk S. Histone lysine methyltransferases and their specific methylation marks show significant changes in mouse testes from young to older ages. Biogerontology 2025; 26:42. [PMID: 39832035 PMCID: PMC11753314 DOI: 10.1007/s10522-025-10187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Spermatogenesis is finely regulated by histone methylation, which is crucial for regulating gene expression and chromatin remodeling. Functional studies have demonstrated that the histone lysine methyltransferases (KMTs) SETD1B, CFP1, SETDB1, G9A, and SETD2 play pivotal roles in spermatogenesis through establishing the key histone methylation marks, H3K4me3, H3K9me2, H3K9me3, and H3K36me3, respectively. This study aimed to evaluate the spatiotemporal expression of these KMTs and methylation marks as well as senescence-associated β-galactosidase (β-GAL), transcriptional activity, and apoptosis rates in mouse testes during biological aging. In accordance with these purposes, the following groups of Balb/C mice were created: young (1- and 2-week-old), prepubertal (3- and 4-week-old), pubertal (5- and 6-week-old), postpubertal (16-, 18-, and 20-week-old), and aged (48-, 50-, and 52-week-old). The β-GAL staining gradually increased from the young to the aged groups (P < 0.01). The SETD1B, G9A, SETDB1, and SETD2 protein levels increased in spermatogonia, early and pachytene spermatocytes, and Sertoli cells of the aged group (P < 0.05). In contrast, CFP1 protein level decreased in spermatogonia, pachytene spermatocytes, round spermatids, and Sertoli cells towards the older ages (P < 0.05). Moreover, H3K4me3, H3K9me2, H3K9me3, and H3K36me3 levels increased in the aged group (P < 0.05). There was also a significant reduction in apoptosis rates in seminiferous tubules of the pubertal, postpubertal, and aged groups (P < 0.01). Consequently, accumulation of histone methylation marks due to increased expression of KMTs in spermatogenic and Sertoli cells during testicular aging may alter chromatin reprogramming and gene expression, contributing to age-related fertility loss.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye.
| |
Collapse
|
5
|
Zhang Y, Yang A, Zhao Z, Chen F, Yan X, Han Y, Wu D, Wu Y. Protein disulfide isomerase is essential for spermatogenesis in mice. JCI Insight 2024; 9:e177743. [PMID: 38912589 PMCID: PMC11383184 DOI: 10.1172/jci.insight.177743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Spermatogenesis requires precise posttranslational control in the endoplasmic reticulum (ER), but the mechanism remains largely unknown. The protein disulfide isomerase (PDI) family is a group of thiol oxidoreductases responsible for catalyzing the disulfide bond formation of nascent proteins. In this study, we generated 14 strains of KO mice lacking the PDI family enzymes and found that only PDI deficiency caused spermatogenesis defects. Both inducible whole-body PDI-KO (UBC-Cre/Pdifl/fl) mice and premeiotic PDI-KO (Stra8-Cre/Pdifl/fl) mice experienced a significant decrease in germ cells, testicular atrophy, oligospermia, and complete male infertility. Stra8-Cre/Pdifl/fl spermatocytes had significantly upregulated ER stress-related proteins (GRP78 and XBP1) and apoptosis-related proteins (Cleaved caspase-3 and BAX), together with cell apoptosis. PDI deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene spermatocytes. Quantitative mass spectrometry indicated that PDI deficiency downregulated vital proteins in spermatogenesis such as HSPA4L, SHCBP1L, and DDX4, consistent with the proteins' physical association with PDI in normal testes tissue. Furthermore, PDI served as a thiol oxidase for disulfide bond formation of SHCBP1L. Thus, PDI plays an essential role in protein quality control for spermatogenesis in mice.
Collapse
Affiliation(s)
- Yaqiong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Aizhen Yang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zhenzhen Zhao
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Fengwu Chen
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaofeng Yan
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Lampitto M, Barchi M. Recent advances in mechanisms ensuring the pairing, synapsis and segregation of XY chromosomes in mice and humans. Cell Mol Life Sci 2024; 81:194. [PMID: 38653846 PMCID: PMC11039559 DOI: 10.1007/s00018-024-05216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosome aneuploidies are among the most common variations in human whole chromosome copy numbers, with an estimated prevalence in the general population of 1:400 to 1:1400 live births. Unlike whole-chromosome aneuploidies of autosomes, those of sex chromosomes, such as the 47, XXY aneuploidy that causes Klinefelter Syndrome (KS), often originate from the paternal side, caused by a lack of crossover (CO) formation between the X and Y chromosomes. COs must form between all chromosome pairs to pass meiotic checkpoints and are the product of meiotic recombination that occurs between homologous sequences of parental chromosomes. Recombination between male sex chromosomes is more challenging compared to both autosomes and sex chromosomes in females, as it is restricted within a short region of homology between X and Y, called the pseudo-autosomal region (PAR). However, in normal individuals, CO formation occurs in PAR with a higher frequency than in any other region, indicating the presence of mechanisms that promote the initiation and processing of recombination in each meiotic division. In recent years, research has made great strides in identifying genes and mechanisms that facilitate CO formation in the PAR. Here, we outline the most recent and relevant findings in this field. XY chromosome aneuploidy in humans has broad-reaching effects, contributing significantly also to Turner syndrome, spontaneous abortions, oligospermia, and even infertility. Thus, in the years to come, the identification of genes and mechanisms beyond XY aneuploidy is expected to have an impact on the genetic counseling of a wide number of families and adults affected by these disorders.
Collapse
Affiliation(s)
- Matteo Lampitto
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marco Barchi
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- Section of Anatomy, Department of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy.
| |
Collapse
|
7
|
Yang SC, Park M, Hong KH, La H, Park C, Wang P, Li G, Chen Q, Choi Y, DeMayo FJ, Lydon JP, Skalnik DG, Lim HJ, Hong SH, Park SH, Kim YS, Kim HR, Song H. CFP1 governs uterine epigenetic landscapes to intervene in progesterone responses for uterine physiology and suppression of endometriosis. Nat Commun 2023; 14:3220. [PMID: 37270588 DOI: 10.1038/s41467-023-39008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Progesterone (P4) is required for the preparation of the endometrium for a successful pregnancy. P4 resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P4-progesterone receptor (PGR) signaling networks in the mouse uterus. Cfp1f/f;Pgr-Cre (Cfp1d/d) mice showed impaired P4 responses, leading to complete failure of embryo implantation. mRNA and chromatin immunoprecipitation sequencing analyses showed that CFP1 regulates uterine mRNA profiles not only in H3K4me3-dependent but also in H3K4me3-independent manners. CFP1 directly regulates important P4 response genes, including Gata2, Sox17, and Ihh, which activate smoothened signaling pathway in the uterus. In a mouse model of endometriosis, Cfp1d/d ectopic lesions showed P4 resistance, which was rescued by a smoothened agonist. In human endometriosis, CFP1 was significantly downregulated, and expression levels between CFP1 and these P4 targets are positively related regardless of PGR levels. In brief, our study provides that CFP1 intervenes in the P4-epigenome-transcriptome networks for uterine receptivity for embryo implantation and the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Kwon-Ho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Peike Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qionghua Chen
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Francesco J DeMayo
- Department of Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 12233, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology and Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David G Skalnik
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Hyunjung J Lim
- Department of Veterinary Science, Konkuk University, Seoul, 05029, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24431, Korea
- KW-Bio Co., Ltd, Wonju, 26493, Korea
| | - So Hee Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea.
| |
Collapse
|
8
|
Liu M, Liu S, Song C, Zhu H, Wu B, Zhang A, Zhao H, Wen Z, Gao J. Pre-meiotic deletion of PEX5 causes spermatogenesis failure and infertility in mice. Cell Prolif 2023; 56:e13365. [PMID: 36433756 PMCID: PMC9977671 DOI: 10.1111/cpr.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Peroxisomes are involved in the regulation of various pathological processes. Peroxisomal biogenesis factor 5 (PEX5), which plays an essential role in peroxisomal biogenesis, is critical for reactive oxygen species (ROS) accumulation. However, its underlying functions in spermatogenesis have not yet been identified. Pex5 was deleted by crossing Stra8-Cre mice with Pex5flox/flox mice before the onset of meiosis. The morphology of testes and epididymides, spermatogenesis function, and fertility in both wild type (WT) and Pex5-/- mice were analysed by haematoxylin and eosin (HE) and immunofluorescent staining. Mechanism of PEX5 affecting peroxisomes and spermatogenesis were validated by Western blot and transmission electron microscopy (TEM). Transcriptome RNA sequencing (RNA-seq) was used to profile the dysregulated genes in testes from WT and Pex5-/- mice on postnatal day (P) 35. The adult Pex5 knockout male mice were completely sterile with no mature sperm production. Loss of Pex5 in spermatocytes resulted in multinucleated giant cell formation, meiotic arrest, abnormal tubulin expression, and deformed acrosome formation. Furthermore, Pex5 deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene stage. Impaired peroxisome function in Pex5 knockout mice induced ROS redundancy, which in turn led to an increase in germ cell apoptosis and a decline in autophagy. Pex5 regulates ROS during meiosis and is essential for spermatogenesis and male fertility in mice.
Collapse
Affiliation(s)
- Min Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Shuangyuan Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Chenyang Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Hui Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiangang Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
9
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Ershov P, Yablokov E, Mezentsev Y, Ivanov A. Interactomics of CXXC proteins involved in epigenetic regulation of gene expression. BIOMEDITSINSKAYA KHIMIYA 2022; 68:339-351. [DOI: 10.18097/pbmc20226805339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regulation of gene expression is an extremely complex and multicomponent biological phenomenon. Proteins containing the CXXC-domain “zinc fingers” (CXXC-proteins) are master regulators of expression of many genes and have conserved functions of methylation of DNA bases and histone proteins. CXXC proteins function as a part of multiprotein complexes, which indicates the fundamental importance of studying post-translational regulation through modulation of the protein-protein interaction spectrum (PPI) in both normal and pathological conditions. In this paper we discuss general aspects of the involvement of CXXC proteins and their protein partners in neoplastic processes, both from the literature data and our own studies. Special attention is paid to recent data on the particular interactomics of the CFP1 protein encoded by the CXXC1 gene located on the human chromosome 18. CFP1 is devoid of enzymatic activity and implements epigenetic regulation of expression through binding to chromatin and a certain spectrum of PPIs.
Collapse
Affiliation(s)
- P.V. Ershov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - A.S. Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
12
|
Ki BS, Shim SH, Park C, Yoo H, La H, Lee OH, Kwon Y, Skalnik DG, Okada Y, Yoon HG, Kim JH, Hong K, Choi Y. Epigenetic regulator Cfp1 safeguards male meiotic progression by regulating meiotic gene expression. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1098-1108. [PMID: 35918532 PMCID: PMC9440128 DOI: 10.1038/s12276-022-00813-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Meiosis occurs specifically in germ cells to produce sperm and oocytes that are competent for sexual reproduction. Multiple factors are required for successful meiotic entry, progression, and termination. Among them, trimethylation of histone H3 on lysine 4 (H3K4me3), a mark of active transcription, has been implicated in spermatogenesis by forming double-strand breaks (DSBs). However, the role of H3K4me in transcriptional regulation during meiosis remains poorly understood. Here, we reveal that mouse CXXC finger protein 1 (Cfp1), a component of the H3K4 methyltransferase Setd1a/b, is dynamically expressed in differentiating male germ cells and safeguards meiosis by controlling gene expression. Genetic ablation of mouse CFP1 in male germ cells caused complete infertility with failure in prophase I of the 1st meiosis. Mechanistically, CFP1 binds to genes essential for spermatogenesis, and its loss leads to a reduction in H3K4me3 levels and gene expression. Importantly, CFP1 is highly enriched within the promoter/TSS of target genes to elevate H3K4me3 levels and gene expression at the pachytene stage of meiotic prophase I. The most enriched genes were associated with meiosis and homologous recombination during the differentiation of spermatocytes to round spermatids. Therefore, our study establishes a mechanistic link between CFP1-mediated transcriptional control and meiotic progression and might provide an unprecedented genetic basis for understanding human sterility. Details of the role of a protein in the development of sperm cells in mice could lead to new understanding of sterility in men. An international research team led by Youngsok Choi and Kwonho Hong at Konkuk University, Seoul, South Korea, investigated the role of protein Cfp1, which they found to be required for sperm formation in mice. The protein is a component of an enzyme complex that transfers methyl groups (CH3) onto other proteins involved in controlling gene activity. The researchers identified key aspects of the mechanism by which Cfp1 controls the activity of genes essential for sperm formation to proceed normally. Absence of Cfp1 specifically interferes with the process of meiosis, which generates sperm cells containing only one copy of each chromosome instead of the two copies found in other cells.
Collapse
Affiliation(s)
- Byeong Seong Ki
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyunjin Yoo
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - David G Skalnik
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
13
|
Song H, Shen R, Liu X, Yang X, Xie K, Guo Z, Wang D. Histone post-translational modification and the DNA damage response. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
14
|
Yang LQ, Hu HY, Han Y, Tang ZY, Gao J, Zhou QY, Liu YX, Chen HS, Xu TN, Ao L, Xu Y, Che X, Jiang YB, Xu CW, Zhang XC, Jiang YX, Heger M, Wang XM, Cheng SQ, Pan WW. CpG-binding protein CFP1 promotes ovarian cancer cell proliferation by regulating BST2 transcription. Cancer Gene Ther 2022; 29:1895-1907. [PMID: 35864225 PMCID: PMC9750859 DOI: 10.1038/s41417-022-00503-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Epigenetic alterations have been functionally linked to ovarian cancer development and occurrence. The CXXC zinc finger protein 1 (CFP1) is an epigenetic regulator involved in DNA methylation and histone modification in mammalian cells. However, its role in ovarian cancer cells is unknown. Here, we show that CFP1 protein is highly expressed in human ovarian cancer tissues. Loss of CFP1 inhibited the growth of human ovarian cancer cells, promoted apoptosis, and increased senescence. CFP1 knockdown resulted in reduced levels of SETD1 (a CFP1 partner) and histone H3 trimethylation at the fourth lysine residue (H3K4me3). RNA-sequencing revealed that deletion of CFP1 resulted in mRNA reduction of bone marrow stromal cell antigen 2 (BST2). Bioinformatics analysis and chromatin immunoprecipitation showed that CFP1 binds to the promoter of BST2 and regulates its transcription directly. Overexpression of BST2 rescued the growth inhibitory effect of CFP1 loss. Furthermore, depletion of cullin-RING ubiquitin ligases 4 (CRL4) components ROC1 or CUL4A had significantly inhibited the expression of CFP1 and BST2 similar to MLN4924 treatment that blocked cullin neddylation and inactivated CRL4s. In conclusion, CFP1 promotes ovarian cancer cell proliferation and apoptosis by regulating the transcription of BST2, and the expression of CFP1 was affected by CRL4 ubiquitin ligase complex.
Collapse
Affiliation(s)
- Liu-Qing Yang
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Han-Yin Hu
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Yao Han
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Ze-Yi Tang
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Jie Gao
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Qi-Yin Zhou
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Yi-Xuan Liu
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Hao-Sa Chen
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Tu-Nan Xu
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Lei Ao
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Ying Xu
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Xuan Che
- grid.411870.b0000 0001 0063 8301Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, 314001 Zhejiang Province China
| | - Ya-Bo Jiang
- grid.73113.370000 0004 0369 1660Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438 China
| | - Chun-Wei Xu
- grid.256112.30000 0004 1797 9307Department of Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, 350014 Fuzhou, Fujian China
| | - Xian-Chao Zhang
- grid.411870.b0000 0001 0063 8301Institute of Information Network and Artificial Intelligence, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Yu-Xin Jiang
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Michal Heger
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China ,grid.5477.10000000120346234Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands ,grid.5645.2000000040459992XLaboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Xiao-Min Wang
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Shu-Qun Cheng
- grid.73113.370000 0004 0369 1660Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438 China ,grid.411870.b0000 0001 0063 8301G60 STI Valley Industry & Innovation Institute, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| | - Wei-Wei Pan
- grid.411870.b0000 0001 0063 8301Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China ,grid.411870.b0000 0001 0063 8301G60 STI Valley Industry & Innovation Institute, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001 China
| |
Collapse
|
15
|
Liu Q, Guo Q, Guo W, Song S, Wang N, Chen X, Sun A, Yan L, Qiao J. Loss of CEP70 function affects acrosome biogenesis and flagella formation during spermiogenesis. Cell Death Dis 2021; 12:478. [PMID: 33980814 PMCID: PMC8116340 DOI: 10.1038/s41419-021-03755-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
The spermatogenesis process is complex and delicate, and any error in a step may cause spermatogenesis arrest and even male infertility. According to our previous transcriptomic data, CEP70 is highly expressed throughout various stages of human spermatogenesis, especially during the meiosis and deformation stages. CEP70 is present in sperm tails and that it exists in centrosomes as revealed by human centrosome proteomics. However, the specific mechanism of this protein in spermatogenesis is still unknown. In this study, we found a heterozygous site of the same mutation on CEP70 through mutation screening of patients with clinical azoospermia. To further verify, we deleted CEP70 in mice and found that it caused abnormal spermatogenesis, leading to male sterility. We found that the knockout of CEP70 did not affect the prophase of meiosis I, but led to male germ-cell apoptosis and abnormal spermiogenesis. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis, we found that the deletion of CEP70 resulted in the abnormal formation of flagella and acrosomes during spermiogenesis. Tandem mass tag (TMT)-labeled quantitative proteomic analysis revealed that the absence of CEP70 led to a significant decrease in the proteins associated with the formation of the flagella, head, and acrosome of sperm, and the microtubule cytoskeleton. Taken together, our results show that CEP70 is essential for acrosome biogenesis and flagella formation during spermiogenesis.
Collapse
Affiliation(s)
- Qiang Liu
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qianying Guo
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Wei Guo
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Shi Song
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Nan Wang
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Andi Sun
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Liying Yan
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China ,grid.506261.60000 0001 0706 7839Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Sha QQ, Zhu YZ, Xiang Y, Yu JL, Fan XY, Li YC, Wu YW, Shen L, Fan HY. Role of CxxC-finger protein 1 in establishing mouse oocyte epigenetic landscapes. Nucleic Acids Res 2021; 49:2569-2582. [PMID: 33621320 PMCID: PMC7969028 DOI: 10.1093/nar/gkab107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
During oogenesis, oocytes gain competence and subsequently undergo meiotic maturation and prepare for embryonic development; trimethylated histone H3 on lysine-4 (H3K4me3) mediates a wide range of nuclear events during these processes. Oocyte-specific knockout of CxxC-finger protein 1 (CXXC1, also known as CFP1) impairs H3K4me3 accumulation and causes changes in chromatin configurations. This study investigated the changes in genomic H3K4me3 landscapes in oocytes with Cxxc1 knockout and the effects on other epigenetic factors such as the DNA methylation, H3K27me3, H2AK119ub1 and H3K36me3. H3K4me3 is overall decreased after knocking out Cxxc1, including both the promoter region and the gene body. CXXC1 and MLL2, which is another histone H3 methyltransferase, have nonoverlapping roles in mediating H3K4 trimethylation during oogenesis. Cxxc1 deletion caused a decrease in DNA methylation levels and affected H3K27me3 and H2AK119ub1 distributions, particularly at regions with high DNA methylation levels. The changes in epigenetic networks implicated by Cxxc1 deletion were correlated with the transcriptional changes in genes in the corresponding genomic regions. This study elucidates the epigenetic changes underlying the phenotypes and molecular defects in oocytes with deleted Cxxc1 and highlights the role of CXXC1 in orchestrating multiple factors that are involved in establishing the appropriate epigenetic states of maternal genome.
Collapse
Affiliation(s)
- Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Ye-Zhang Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia-Li Yu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Yan-Chu Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Wen Wu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Li Y, Wu YF, Jiang HW, Khan R, Han QQ, Iqbal F, Jiang XH, Shi QH. The molecular control of meiotic double-strand break (DSB) formation and its significance in human infertility. Asian J Androl 2021; 23:555-561. [PMID: 33586697 PMCID: PMC8577252 DOI: 10.4103/aja.aja_5_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Meiosis is an essential step in gametogenesis which is the key process in sexually reproducing organisms as meiotic aberrations may result in infertility. In meiosis, programmed DNA double-strand break (DSB) formation is one of the fundamental processes that are essential for maintaining homolog interactions and correcting segregation of chromosomes. Although the number and distribution of meiotic DSBs are tightly regulated, still abnormalities in DSB formation are known to cause meiotic arrest and infertility. This review is a detailed account of molecular bases of meiotic DSB formation, its evolutionary conservation, and variations in different species. We further reviewed the mutations of DSB formation genes in association with human infertility and also proposed the future directions and strategies about the study of meiotic DSB formation.
Collapse
Affiliation(s)
- Yang Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Yu-Fan Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Han-Wei Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ranjha Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Qi-Qi Han
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Xiao-Hua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Qing-Hua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
18
|
Sha QQ, Zhang J, Fan HY. Function and Regulation of Histone H3 Lysine-4 Methylation During Oocyte Meiosis and Maternal-to-Zygotic Transition. Front Cell Dev Biol 2020; 8:597498. [PMID: 33163498 PMCID: PMC7581939 DOI: 10.3389/fcell.2020.597498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
During oogenesis and fertilization, histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs) tightly regulate the methylation of histone H3 on lysine-4 (H3K4me) by adding and removing methyl groups, respectively. Female germline-specific conditional knockout approaches that abolish the maternal store of target mRNAs and proteins are used to examine the functions of H3K4 KMTs and KDMs during oogenesis and early embryogenesis. In this review, we discuss the recent advances in information regarding the deposition and removal of histone H3K4 methylations, as well as their functional roles in sculpting and poising the oocytic and zygotic genomes. We start by describing the role of KMTs in establishing H3K4 methylation patterns in oocytes and the impact of H3K4 methylation on oocyte maturation and competence to undergo MZT. We then introduce the latest information regarding H3K4 demethylases that account for the dynamic changes in H3K4 modification levels during development and finish the review by specifying important unanswered questions in this research field along with promising future directions for H3K4-related epigenetic studies.
Collapse
Affiliation(s)
- Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|