1
|
Li Y, Sun XY, Zeng PM, Luo ZG. Neural Responses to Hypoxic Injury in a Vascularized Cerebral Organoid Model. Neurosci Bull 2025:10.1007/s12264-025-01396-2. [PMID: 40261528 DOI: 10.1007/s12264-025-01396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 04/24/2025] Open
Abstract
Hypoxic injury (HI) in the prenatal period often causes neonatal neurological disabilities. Due to the difficulty in obtaining clinical samples, the molecular and cellular mechanisms remain unclear. Here we use vascularized cerebral organoids to investigate the hypoxic injury phenotype and explore the intercellular interactions between vascular and neural tissues under hypoxic conditions. Our results indicate that fused vascularized cerebral organoids exhibit broader hypoxic responses and larger decreases in panels of neural development-related genes when exposed to low oxygen levels compared to single cerebral organoids. Interestingly, vessels also exhibit neural protective effects on T-box brain protein 2+ intermediate progenitors (IPs), which are markedly lost in HI cerebral organoids. Furthermore, we identify the role of bone morphogenic protein signaling in protecting IPs. Thus, this study has established an in vitro organoid system that can be used to study the contribution of vessels to brain injury under hypoxic conditions and provides a strategy for the identification of intervention targets.
Collapse
Affiliation(s)
- Yang Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Xin-Yao Sun
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Peng-Ming Zeng
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
2
|
Chen F, Li G, Fu S, Zhang J. Functional Landscape of hnRNPA3 in Disease Pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70010. [PMID: 40130711 DOI: 10.1002/wrna.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/16/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
The heterogeneous nuclear ribonucleic acid protein family participates in various intracellular reactions, such as RNA splicing, transport, DNA repair, cellular signal transduction, and gene expression regulation, and is involved in various disease processes. As a late-discovered member, heterogeneous nuclear ribonucleoprotein A3 has received increasing attention, but its main physiological functions and exact mechanisms involved in disease processes have not yet reached a consensus. In this review, we summarize the function of heterogeneous nuclear ribonucleoprotein A3 and the literature on its role in neurodegenerative and metabolic diseases, as well as in various tumors, to explore the applicability of heterogeneous nuclear ribonucleoprotein A3 as a therapeutic target and prognostic indicator.
Collapse
Affiliation(s)
- Fang Chen
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Genghan Li
- The First Clinical Department, China Medical University, Shenyang, China
| | - Shuang Fu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Yao F, Huang S, Liu J, Tan C, Xu M, Wang D, Huang M, Zhu Y, Huang X, He S. Deletion of ARGLU1 causes global defects in alternative splicing in vivo and mouse cortical malformations primarily via apoptosis. Cell Death Dis 2023; 14:543. [PMID: 37612280 PMCID: PMC10447433 DOI: 10.1038/s41419-023-06071-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Haploinsufficient mutation in arginine and glutamine-rich protein 1 (Arglu1), a newly identified pre-mRNA splicing regulator, may be linked to neural developmental disorders associated with mental retardation and epilepsy in human patients, but the underlying causes remain elusive. Here we show that ablation of Arglu1 promotes radial glial cell (RG) detachment from the ventricular zone (VZ), leading to ectopic localized RGs in the mouse embryonic cortex. Although they remain proliferative, ectopic progenitors, as well as progenitors in the VZ, exhibit prolonged mitosis, p53 upregulation and cell apoptosis, leading to reduced neuron production, neuronal loss and microcephaly. RNA seq analysis reveals widespread changes in alternative splicing in the mutant mouse embryonic cortex, preferentially affecting genes involved in neuronal functions. Mdm2 and Mdm4 are found to be alternatively spliced at the exon 3 and exon 5 respectively, leading to absence of the p53-binding domain and nonsense-mediated mRNA decay (NMD) and thus relieve inhibition of p53. Removal of p53 largely rescues the microcephaly caused by deletion of Arglu1. Our findings provide mechanistic insights into cortical malformations of human patients with Arglu1 haploinsufficient mutation.
Collapse
Affiliation(s)
- Fenyong Yao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiahui Liu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Chunhua Tan
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Mengqi Xu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Dengkui Wang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Maoqing Huang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Yiyao Zhu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China.
| | - Shuijin He
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China.
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China.
| |
Collapse
|
4
|
Wang C, Tian Z, Wen D, Qu W, Xu R, Liu Y, Jia H, Tang X, Li J, Zha L, Liu Y. Preliminary study on genetic factors related to Demirjian's tooth age estimation method based on genome-wide association analysis. Int J Legal Med 2023:10.1007/s00414-023-03008-y. [PMID: 37133749 DOI: 10.1007/s00414-023-03008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
The age determination of individuals, especially minors, is critical in forensic research. In forensic practice, dental age estimation is one of the most commonly used methods for determining age as teeth are easy to preserve and relatively resistant to environmental factors. Tooth development is affected and regulated by genetic factors; however, these are not incorporated into current commonly used tooth age inference methods, leading to unreliable results. Here, we established a Demirjian and a Cameriere tooth age estimation-based methods suitable for use in children in southern China. By using the difference between the inferred age and the actual age (MD) as the phenotype, we identified 65 and 49 SNPs related to tooth age estimation from 743,722 loci among 171 children in southern China through a genome-wide association analysis (p<0.0001). We also conducted a genome-wide association study on dental development stage (DD) using the Demirjian tooth age estimation method and screened two sets of SNP sites (52 and 26) based on whether age difference was considered. The gene function enrichment analysis of these SNPs found that they were related to bone development and mineralization. Although SNP sites screened based on MD seem to improve the accuracy of tooth age estimation, there is little correlation between these SNPs and an individual's Demirjian morphological stage. In conclusion, we found that individual genotypes can affect tooth age estimation, and based on different phenotypic analysis models, we have identified some novel SNP sites related to tooth age inference and Demirjian's tooth development stage. These studies provide a reference for subsequent phenotypic selection based on tooth age inference analysis, and the results could possibly be used in the future to make forensic age estimation more accurate.
Collapse
Affiliation(s)
- Chudong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - ZhiKai Tian
- Department of Oral Implantology, Xiangya Hospital of Stomatology, Central South University, No. 72 Xiangya Road, Kaifu District, Changsha, Hunan Province, People's Republic of China
| | - Dan Wen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Weifeng Qu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Ruyi Xu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Yi Liu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Hongtao Jia
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China.
| | - Ying Liu
- Department of Oral Implantology, Xiangya Hospital of Stomatology, Central South University, No. 72 Xiangya Road, Kaifu District, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
5
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Wang J, Zhang L, Tao N, Wang X, Deng S, Li M, Zu Y, Xu C. Small Peptides Isolated from Enzymatic Hydrolyzate of Pneumatophorus japonicus Bone Promote Sleep by Regulating Circadian Rhythms. Foods 2023; 12:foods12030464. [PMID: 36765993 PMCID: PMC9914586 DOI: 10.3390/foods12030464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Due to the high addiction and side effects of medicines, people have increasingly inclined to natural and healthy peptides to improve sleep. Herein, we isolated novel peptides with sleep-promoting ability from Pneumatophorus japonicus bone peptides (PBPs) and constructed an insomniac zebrafish model as a demonstration, incorporating behavioral and transcriptomic approaches to reveal the sleep-promoting effect and mechanism of PBPs. Specifically, a sequential targeting isolation approach was developed to refine and identify a peptide with remarkable sleep-promoting activity, namely TG7 (Tyr-Gly-Asn-Pro-Trp-Glu-Lys). TG7 shows comparable effects and a similar action pathway to melatonin in improving sleep. TG7 restores abnormal behavior of insomnia zebrafish to normal levels by upregulating the hnrnpa3 gene. The peptide downregulates per1b gene but upregulates cry1b, cry1ba and per2, improving the circadian rhythm. Furthermore, TG7 upregulates the genes gnb3b, arr3b and opn1mw1 to regulate the visual function. The above results indicate that TG7 improves circadian rhythms and attenuated abnormal alterations in visual function and motility induced by light, allowing for effective sleep promotion. This study isolated sleep-promoting peptides from PBPs, which provides a theoretical basis for the development of subsequent sleep-promoting products based on protein peptides.
Collapse
Affiliation(s)
- Junbao Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mingyou Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Zu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (Y.Z.); (C.X.)
| | - Changhua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
- Correspondence: (Y.Z.); (C.X.)
| |
Collapse
|
7
|
Sun XY, Ju XC, Li Y, Zeng PM, Wu J, Zhou YY, Shen LB, Dong J, Chen Y, Luo ZG. Generation of vascularized brain organoids to study neurovascular interactions. eLife 2022; 11:76707. [PMID: 35506651 PMCID: PMC9246368 DOI: 10.7554/elife.76707] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/01/2022] [Indexed: 12/05/2022] Open
Abstract
Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids, respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood–brain barrier-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, particularly the vasculature and microglia niche. Understanding how the organs form and how their cells behave is essential to finding the causes and treatment for developmental disorders, as well as understanding certain diseases. However, studying most organs in live animals or humans is technically difficult, expensive and invasive. To address this issue, scientists have developed models called ‘organoids’ that recapitulate the development of organs using stem cells in the lab. These models are easier to study and manipulate than the live organs. Brain organoids have been used to recapitulate brain formation as well as developmental, degenerative and psychiatric brain conditions such as microcephaly, autism and Alzheimer’s disease. However, these brain organoids lack the vasculature (the network of blood vessels) that supplies a live brain with nutrients and regulates its development, and which has important roles in brain disorders. Partly due to this lack of blood vessels, brain organoids also do not develop a blood brain barrier, the structure that prevents certain contents of the blood, including pathogens, toxins and even certain drugs from entering the brain. These characteristics limit the utility of existing brain organoids. To overcome these limitations, Sun, Ju et al. developed brain organoids and blood vessel organoids independently, and then fused them together to obtain vascularized brain organoids. These fusion organoids developed a robust network of blood vessels that was well integrated with the brain cells, and produced more neural cell precursors than brain organoids that had not been fused. This result is consistent with the idea that blood vessels can regulate brain development. Analyzing the fusion organoids revealed that they contain structures similar to the blood-brain barrier, as well as microglial cells (immune cells specific to the brain). When exposed to lipopolysaccharide – a component of the cell wall of certain bacteria – these cells responded by initiating an immune response in the fusion organoids. Notably, the microglial cells were also able to engulf connections between brain cells, a process necessary for the brain to develop the correct structures and work normally. Sun, Ju et al. have developed a new organoid system that will be of broad interest to researchers studying interactions between the brain and the circulatory system. The development of brain-blood-barrier-like structures in the fusion organoids could also facilitate the development of drugs that can cross this barrier, making it easier to treat certain conditions that affect the brain. Refining this model to allow the fusion organoids to grow for longer times in the lab, and adding blood flow to the system will be the next steps to establish this system.
Collapse
Affiliation(s)
- Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying-Ying Zhou
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Li-Bing Shen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jian Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuejun Chen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
8
|
Guo Y, Zhang Q, Hu X, Pang C, Li J, Huang J. Mating Stimulates the Immune Response and Sperm Storage-Related Genes Expression in Spermathecae of Bumblebee ( Bombus terrestris) Queen. Front Genet 2021; 12:795669. [PMID: 34899871 PMCID: PMC8661091 DOI: 10.3389/fgene.2021.795669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bumblebee queens have remarkable spermathecae that store sperm for year-round reproduction. The spermathecal gland is regarded as a secretory organ that could benefit sperm storage. Queen mating provokes substantial physiological, behavioral, and gene expression changes. Here, the transcriptomes of spermathecae were compared between virgins and mated queens of the bumblebee, Bombus terrestris L., at 24 h post mating. Differentially expressed genes were further validated by real time quantitative PCR and immunofluorescence assay. In total, the expression of 11, 069 and 10, 862 genes were identified in virgins and mated queens, respectively. We identified that 176 differentially expressed genes between virgin and mated queen spermathecae: 110 (62.5%) genes were upregulated, and 66 (37.5%) genes were downregulated in mated queens. Most of the differentially expressed genes validated by RT-qPCR were concentrated on immune response [i.e., leucine-rich repeat-containing protein 70 (35.8-fold), phenoloxidase 2 (41.9-fold), and defensin (4.9-fold)] and sperm storage [i.e., chymotrypsin inhibitor (6.2-fold), trehalose transporter Tret1 (1.7-, 1.9-, 2.4-, and 2.4-fold), and heterogeneous nuclear ribonucleoprotein A3 (1.2-, and 2.6-fold)] functions in the spermathecae of mated queens. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) was hypothesized to promote the mating behavior according to RT-qPCR and immunofluorescence assay. The expression levels of most upregulated immune genes were decreased significantly at 3 days post mating. In conclusion, the external sperm transfer into spermathecae led to the significantly upregulated immune response genes in bumblebees. These gene expression differences in queen spermathecae contribute to understanding the bumblebee post mating regulatory network.
Collapse
Affiliation(s)
- Yueqin Guo
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiao Hu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxiu Pang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jilian Li
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Tan C, Xiao Y, Huang X, Wu L, Huang Y. Alterations of Asymmetric Dimethylarginine (ADMA)-Containing Protein Profiles Associated with Chronic Pancreatitis Pathogenesis. J Inflamm Res 2021; 14:7381-7392. [PMID: 34992424 PMCID: PMC8714020 DOI: 10.2147/jir.s346575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The pathophysiological mechanisms of chronic pancreatitis (CP) still remain poorly understood. In this study, we aimed to characterize asymmetric dimethylarginine (ADMA)-containing proteins in pancreatic tissues and its relationship with CP pathogenesis. Methods Totally 36 patients with CP were enrolled in this study. Seven other cholangiocarcinoma patients without pancreas involvements or patients with benign pancreatic tumors were included as the control group. Total proteins in human pancreatic tissues were digested by trypsin, and ADMA-containing peptides were enriched via immunoaffinity purification. The LC-MS/MS was performed to characterize ADMA-containing peptides and their modification sites in CP tissues. Relative asymmetric arginine dimethylation levels of HNRNPA3 proteins in human pancreatic tissues were detected by the immunoprecipitation combined with Western blot. The serum inflammatory factors were determined via the ELISA method. Results A total of 134 ADMA sites in the control group and 137 ADMA sites in CP tissues were characterized by mass spectrometry, which belong to 93 and 94 ADMA-containing proteins in the control group and CP tissues, respectively. Glycine and proline residues were significantly overrepresented in the flanking sequences of ADMA sites. ADMA-containing proteins in the CP tissues were associated with various biological processes, especially the RNA metabolism and splicing pathways. Multiple protein members of the spliceosome pathway such as HNRNPA3 possess ADMA sites in the CP tissues. HNRNPA3 dimethylation levels were greatly increased in CP tissues, which were positively correlated with inflammatory factors. Conclusion The pathogenesis of CP is associated with alterations of asymmetric arginine dimethylation in pancreatic tissues.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Yan Xiao
- Intensive Care Unit, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Xiangping Huang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ling Wu
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
- Correspondence: Ying Huang Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), 61 Jiefang Road, Changsha, Hunan, 410005, People’s Republic of ChinaTel +8613974858993 Email
| |
Collapse
|
10
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|