1
|
Wang W, Xing J, Zhang X, Liu H, Liu X, Jiang H, Xu C, Zhao X, Hu Z. Control of ciliary transcriptional programs during spermatogenesis by antagonistic transcription factors. eLife 2025; 13:RP94754. [PMID: 40009443 PMCID: PMC11864758 DOI: 10.7554/elife.94754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.
Collapse
Affiliation(s)
- Weihua Wang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Junqiao Xing
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xiqi Zhang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Hongni Liu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xingyu Liu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- No.1 Middle School Affiliated to Central China Normal UniversityWuhanChina
| | - Haochen Jiang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Cheng Xu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xue Zhao
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Zhangfeng Hu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan UniversityWuhanChina
| |
Collapse
|
2
|
Parrilla I, Cambra JM, Cuello C, Rodriguez-Martinez H, Gil MA, Martinez EA. Cryopreservation of highly extended pig spermatozoa remodels its proteome and counteracts polyspermic fertilization in vitro. Andrology 2024; 12:1356-1372. [PMID: 38131448 DOI: 10.1111/andr.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Currently, high polyspermy remains a significant obstacle to achieving optimal efficiency in in vitro fertilization (IVF) and in vitro embryo production (IVP) systems in pigs. Developing strategies that would prevent polyspermy is essential in overcoming this challenge and maximizing the potential of this reproductive biotechnology. Previous results have demonstrated that using boar spermatozoa subjected to a high-extension and reconcentration procedure and then cryopreserved resulted in significant improvements in IVF/IVP systems with high rates of monospermy and penetration. OBJECTIVE The aim of the present study was to unveil the molecular mechanisms that may underlie the changes in fertilization patterns exhibited by highly extended and cryopreserved boar spermatozoa. MATERIALS AND METHODS To achieve this goal, we used quantitative proteomic analysis (LC‒ESI‒MS/MS SWATH) to identify differentially abundant proteins (DAPs) between highly extended (HE) and conventionally (control; CT) cryopreserved boar spermatozoa. Prior to the analysis, we evaluated the in vitro post-thawing fertilizing ability of the sperm samples. The results demonstrated a remarkable improvement in monospermy and IVF efficiency when using HE spermatozoa in IVF compared with CT spermatozoa. RESULTS At the proteomic level, the combination of high-extension and cryopreservation had a significant impact on the frozen-thawed sperm proteome. A total of 45 proteins (24 downregulated and 21 upregulated) were identified as DAPs (FC > 1 or ≤1; p < 0.05) when compared with CT spermatozoa. Some of these proteins were primarily linked to metabolic processes and the structural composition of sperm cells. The dysregulation of these proteins may have a direct or indirect effect on essential sperm functions and significantly affect spermatozoa-oocyte interaction and, therefore, the sperm fertilization profile under in vitro conditions. While these findings are promising, further research is necessary to comprehend how the disturbance of specific proteins affects sperm fertilization ability.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Technical University of Munich, Munich, Germany
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Linköping University, Linköping, Sweden
| | - Maria A Gil
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
3
|
Vahedi SM, Salek Ardestani S, Banabazi MH, Clark KF. Strong selection signatures for Aleutian disease tolerance acting on novel candidate genes linked to immune and cellular responses in American mink (Neogale vison). Sci Rep 2024; 14:1035. [PMID: 38200094 PMCID: PMC10781757 DOI: 10.1038/s41598-023-51039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Aleutian disease (AD) is a multi-systemic infectious disease in American mink (Neogale vison) caused by Aleutian mink disease virus (AMDV). This study aimed to identify candidate regions and genes underlying selection for response against AMDV using whole-genome sequence (WGS) data. Three case-control selection signatures studies were conducted between animals (N = 85) producing high versus low antibody levels against AMDV, grouped by counter immunoelectrophoresis (CIEP) test and two enzyme-linked immunosorbent assays (ELISA). Within each study, selection signals were detected using fixation index (FST) and nucleotide diversity (θπ ratios), and validated by cross-population extended haplotype homozygosity (XP-EHH) test. Within- and between-studies overlapping results were then evaluated. Within-studies overlapping results indicated novel candidate genes related to immune and cellular responses (e.g., TAP2, RAB32), respiratory system function (e.g., SPEF2, R3HCC1L), and reproduction system function (e.g., HSF2, CFAP206) in other species. Between-studies overlapping results identified three large segments under strong selection pressure, including two on chromosome 1 (chr1:88,770-98,281 kb and chr1:114,133-120,473) and one on chromosome 6 (chr6:37,953-44,279 kb). Within regions with strong signals, we found novel candidate genes involved in immune and cellular responses (e.g., homologous MHC class II genes, ITPR3, VPS52) in other species. Our study brings new insights into candidate regions and genes controlling AD response.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS, B2N5E3, Canada
| | | | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden.
- Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI),, Agricultural Research, Education & Extension Organization (AREEO), Karaj, 3146618361, Iran.
| | - K Fraser Clark
- Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS, B2N5E3, Canada.
| |
Collapse
|
4
|
Jin HJ, Wang JL, Geng XY, Wang CY, Wang BB, Chen SR. CFAP70 is a solid and valuable target for the genetic diagnosis of oligo-astheno-teratozoospermia in infertile men. EBioMedicine 2023; 93:104675. [PMID: 37352829 DOI: 10.1016/j.ebiom.2023.104675] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Male infertility is a worldwide population health concern, but its aetiology remains largely understood. Although CFAP70 variants have already been reported in two oligo-astheno-teratozoospermia (OAT) individuals by sequencing, animal evidence to support CFAP70 as a credible OAT-pathogenic gene is lacking. METHOD Cfap70-KO mice were generated to explore the physiological role of CFAP70. CFAP70 variants were detected in infertile men with OAT by whole exome sequencing and Sanger sequencing confirmation. Cfap70-truncated mice were further generated to explore the pathogenicity of the nonsense variant of CFAP70 identified in the proband. FINDINGS Here, we demonstrate that Cfap70-KO mice are sterile mainly due to OAT and further identify a Chinese infertile man carrying a homozygous nonsense variant (c.2962C > T/p.R988X) of CFAP70. Cfap70-truncated mice lacking 5-8 tetratricopeptide repeats (TPRs) mimic the patient's symptoms. CFAP70 is required for the biogenesis of spermatid flagella partially by regulating the expression of OAT-associated proteins (e.g., QRICH2), assisting the cytoplasmic preassembly of the calmodulin- and radial spoke-associated complex (CSC), and controlling the manchette localization of axoneme-related proteins. Moreover, we suggest that CFAP70-associated male infertility could be overcome by intracytoplasmic sperm injection (ICSI) treatment. INTERPRETATION Overall, we demonstrate that CFAP70 is necessary to assemble spermatid flagella and that CFAP70 gene could be used as a diagnostic target for male infertility with OAT in the clinic. FUNDING This study was supported by the National Key Research and Development Project (2019YFA0802101 to S.C), Open Fund of Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education (to S.C), Central Government to Guide Local Scientific and Technological Development (ZY21195023 to B.W), and Basic Research Projects of Central Scientific Research Institutes (to B.W).
Collapse
Affiliation(s)
- Hui-Juan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun-Li Wang
- Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China; Environmental Health Risk Assessment and Prevention Engineering Center of Ecological Aluminum Industry Base of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xin-Yan Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chun-Yan Wang
- Center for Genetics, National Research Institute of Family Planning, Beijing, 100081, China; Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Bin-Bin Wang
- Center for Genetics, National Research Institute of Family Planning, Beijing, 100081, China; Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100005, China; NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, 100081 Beijing, China.
| | - Su-Ren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
6
|
Elango K, Karuthadurai T, Kumaresan A, Sinha MK, Ebenezer Samuel King JP, Nag P, Sharma A, Raval K, Paul N, Talluri TR. High-throughput proteomic characterization of seminal plasma from bulls with contrasting semen quality. 3 Biotech 2023; 13:60. [PMID: 36714547 PMCID: PMC9877259 DOI: 10.1007/s13205-023-03474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Seminal plasma proteins are the major extrinsic factors that can modulate the sperm quality and functions. The present study was carried out to compare the proteomic profiles of seminal plasma from breeding bulls producing good and poor quality semen in an effort to understand the possible proteins associated with semen quality. A total of 910 and 715 proteins were detected in the seminal plasma of poor and good quality semen producing bulls, respectively. A total of 705 proteins were common to both the groups, in which 380 proteins were upregulated and 89 proteins were downregulated in the seminal plasma of poor quality semen, while 236 proteins were co-expressed. The proteins negatively influencing sperm functions such as CCL2, UQCRC2, and SAA1 were among the top ten upregulated proteins in the seminal plasma of poor quality semen. Proteins having a positive role in sperm functions (NGF, EEF1A2, COL1A2, IZUMO4, PRSS1, COL1A1, WFDC2) were among the top ten downregulated proteins in the seminal plasma of poor quality semen. The upregulation of oxidation-reduction process-related proteins, histone proteins (HIST3H2A, H2AFJ, H2AFZ, H2AFX, HIST2H2AB, H2AFV, HIST1H2AC, HIST2H2AC, LOC104975684, LOC524236, LOC614970, LOC529277), and ubiquinol-cytochrome-c reductase proteins (UQCRB, UQCRFS1, UQCRQ, UQCRC1, UQCRC2) indicate deranged oxidation-reduction equilibrium, chromatin condensation and spermatogenesis in poor quality semen producing bulls. The expression of proteins essential for motile cilium (CCDC114, CFAP206, TEKT4), chromatin integrity (PRM2), gamete fusion (IZUMO4, EQTN), hyperactivation, tyrosine phosphorylation, and capacitation [PI3K-Akt signalling pathway-related proteins (COL1A1, COL2A1, COL1A2, SPP1, PDGFA, NGF)] were down regulated in poor quality semen producing bulls. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03474-6.
Collapse
Affiliation(s)
- Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Ankur Sharma
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Kathan Raval
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| |
Collapse
|
7
|
Wang J, Wang W, Shen L, Zheng A, Meng Q, Li H, Yang S. Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella: A review of literature. Front Genet 2022; 13:1034951. [PMID: 36425067 PMCID: PMC9679630 DOI: 10.3389/fgene.2022.1034951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
Sperm carries male genetic information, and flagella help move the sperm to reach oocytes. When the ultrastructure of the flagella is abnormal, the sperm is unable to reach the oocyte and achieve insemination. Multiple morphological abnormalities of sperm flagella (MMAF) is a relatively rare idiopathic condition that is mainly characterized by multiple defects in sperm flagella. In the last decade, with the development of high-throughput DNA sequencing approaches, many genes have been revealed to be related to MMAF. However, the differences in sperm phenotypes and reproductive outcomes in many cases are attributed to different pathogenic genes or different pathogenic mutations in the same gene. Here, we will review information about the various phenotypes resulting from different pathogenic genes, including sperm ultrastructure and encoding proteins with their location and functions as well as assisted reproductive technology (ART) outcomes. We will share our clinical detection and diagnosis experience to provide additional clinical views and broaden the understanding of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
8
|
Juhler M, Hansen TS, Novrup HVG, MacAulay N, Munch TN. Hydrocephalus Study Design: Testing New Hypotheses in Clinical Studies and Bench-to-Bedside Research. World Neurosurg 2022; 161:424-431. [PMID: 35505563 DOI: 10.1016/j.wneu.2021.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 10/18/2022]
Abstract
In this article, we aimed to describe some of the currently most challenging problems in neurosurgical management of hydrocephalus and how these can be reasons for inspiration for and development of research. We chose 4 areas of focus: 2 dedicated to improvement of current treatments (shunt implant surgery and endoscopic hydrocephalus surgery) and 2 dedicated to emerging future treatment principles (molecular mechanisms of cerebrospinal fluid secretion and hydrocephalus genetics).
Collapse
Affiliation(s)
- Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans V G Novrup
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Tina Nørgaard Munch
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
9
|
Zhang X, Sun J, Lu Y, Zhang J, Shimada K, Noda T, Zhao S, Koyano T, Matsuyama M, Zhou S, Wu J, Ikawa M, Liu M. LRRC23 is a conserved component of the radial spoke that is necessary for sperm motility and male fertility in mice. J Cell Sci 2021; 134:jcs259381. [PMID: 34585727 PMCID: PMC10658914 DOI: 10.1242/jcs.259381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023] Open
Abstract
Cilia and flagella are ancient structures that achieve controlled motor functions through the coordinated interaction based on microtubules and some attached projections. Radial spokes (RSs) facilitate the beating motion of these organelles by mediating signal transduction between dyneins and a central pair (CP) of singlet microtubules. RS complex isolation from Chlamydomonas axonemes enabled the detection of 23 radial spoke proteins (RSP1-RSP23), although the roles of some radial spoke proteins remain unknown. Recently, RSP15 has been reported to be bound to the stalk of RS2, but its homolog in mammals has not been identified. Herein, we show that Lrrc23 is an evolutionarily conserved testis-enriched gene encoding an RSP15 homolog in mice. We found that LRRC23 localizes to the RS complex within murine sperm flagella and interacts with RSPH3A and RSPH3B. The knockout of Lrrc23 resulted in male infertility due to RS disorganization and impaired motility in murine spermatozoa, whereas the ciliary beating was not significantly affected. These data indicate that LRRC23 is a key regulator that underpins the integrity of the RS complex within the flagella of mammalian spermatozoa, whereas it is dispensable in cilia. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jiang Sun
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Yonggang Lu
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 701-0202 Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 701-0202 Okayama, Japan
| | - Shushu Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jiayan Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, 565-0871 Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
10
|
Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat Commun 2021; 12:5970. [PMID: 34645830 PMCID: PMC8514520 DOI: 10.1038/s41467-021-26233-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.
Collapse
|
11
|
Shen Q, Martinez G, Liu H, Beurois J, Wu H, Amiri-Yekta A, Liang D, Kherraf ZE, Bidart M, Cazin C, Celse T, Satre V, Thierry-Mieg N, Whitfield M, Touré A, Song B, Lv M, Li K, Liu C, Tao F, He X, Zhang F, Arnoult C, Ray PF, Cao Y, Coutton C. Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse. Hum Genet 2021; 140:1367-1377. [PMID: 34255152 DOI: 10.1007/s00439-021-02313-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022]
Abstract
Spermatozoa are polarized cells with a head and a flagellum joined together by the connecting piece. Flagellum integrity is critical for normal sperm function, and flagellum defects consistently lead to male infertility. Multiple morphological abnormalities of the flagella (MMAF) is a distinct sperm phenotype consistently leading to male infertility due to a reduced or absent sperm motility associated with severe morphological and ultrastructural flagellum defects. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analyzed remain unresolved, suggesting that many yet uncharacterized gene defects account for this phenotype. By performing a retrospective exome analysis of the unsolved cases from our initial cohort of 167 infertile men with a MMAF phenotype, we identified one individual carrying a homozygous frameshift variant in CFAP206, a gene encoding a microtubule-docking adapter for radial spoke and inner dynein arm. Immunostaining experiments in the patient's sperm cells demonstrated the absence of WDR66 and RSPH1 proteins suggesting severe radial spokes and calmodulin and spoke-associated complex defects. Using the CRISPR-Cas9 technique, we generated homozygous Cfap206 knockout (KO) mice which presented with male infertility due to functional, structural and ultrastructural sperm flagellum defects associated with a very low rate of embryo development using ICSI. Overall, we showed that CFAP206 is essential for normal sperm flagellum structure and function in human and mouse and that bi-allelic mutations in CFAP206 cause male infertility in man and mouse by inducing morphological and functional defects of the sperm flagellum that may also cause ICSI failures.
Collapse
Affiliation(s)
- Qunshan Shen
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Guillaume Martinez
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Julie Beurois
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Huan Wu
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Dan Liang
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Marie Bidart
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,Unité Médicale de Génétique Moléculaire: Maladies Héréditaires et Oncologie, Pôle Biologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Caroline Cazin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Tristan Celse
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Véronique Satre
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Nicolas Thierry-Mieg
- Université Grenoble Alpes, CNRS UMR 5525, TIMC-IMAG/BCM, 38000, Grenoble, France
| | - Marjorie Whitfield
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Aminata Touré
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Bing Song
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Mingrong Lv
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Kuokuo Li
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Fangbiao Tao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Christophe Arnoult
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Yunxia Cao
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China. .,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Charles Coutton
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France. .,Laboratoire de Génétique Chromosomique, Hôpital Couple-Enfant, CHU de Grenoble, 38043, Grenoble, France.
| |
Collapse
|
12
|
Beckers A, Fuhl F, Ott T, Boldt K, Brislinger MM, Walentek P, Schuster-Gossler K, Hegermann J, Alten L, Kremmer E, Przykopanski A, Serth K, Ueffing M, Blum M, Gossler A. The highly conserved FOXJ1 target CFAP161 is dispensable for motile ciliary function in mouse and Xenopus. Sci Rep 2021; 11:13333. [PMID: 34172766 PMCID: PMC8233316 DOI: 10.1038/s41598-021-92495-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia are protrusions of the cell surface and composed of hundreds of proteins many of which are evolutionary and functionally well conserved. In cells assembling motile cilia the expression of numerous ciliary components is under the control of the transcription factor FOXJ1. Here, we analyse the evolutionary conserved FOXJ1 target CFAP161 in Xenopus and mouse. In both species Cfap161 expression correlates with the presence of motile cilia and depends on FOXJ1. Tagged CFAP161 localises to the basal bodies of multiciliated cells of the Xenopus larval epidermis, and in mice CFAP161 protein localises to the axoneme. Surprisingly, disruption of the Cfap161 gene in both species did not lead to motile cilia-related phenotypes, which contrasts with the conserved expression in cells carrying motile cilia and high sequence conservation. In mice mutation of Cfap161 stabilised the mutant mRNA making genetic compensation triggered by mRNA decay unlikely. However, genes related to microtubules and cilia, microtubule motor activity and inner dyneins were dysregulated, which might buffer the Cfap161 mutation.
Collapse
Affiliation(s)
- Anja Beckers
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Franziska Fuhl
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Tim Ott
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Karsten Boldt
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Magdalena Maria Brislinger
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.,Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine & CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Habsburger Str. 49, 79104, Freiburg, Germany
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine & CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg, Habsburger Str. 49, 79104, Freiburg, Germany
| | - Karin Schuster-Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, OE8840, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Leonie Alten
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Twist Bioscience, 681 Gateway Blvd South, South San Francisco, CA, 94080, USA
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Core Facility Monoclonal Antibodies, Marchioninistr. 25, 81377, München, Germany.,Department of Biology II, Ludwig-Maximilians University, Großhaderner Straße 2, 82152, Martinsried, Germany
| | - Adina Przykopanski
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Institute for Toxicology, OE 5340, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Katrin Serth
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Marius Ueffing
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Martin Blum
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Achim Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
13
|
Keep RF, Jones HC, Drewes LR. Brain Barriers and brain fluids research in 2020 and the fluids and barriers of the CNS thematic series on advances in in vitro modeling of the blood-brain barrier and neurovascular unit. Fluids Barriers CNS 2021; 18:24. [PMID: 34020685 PMCID: PMC8138848 DOI: 10.1186/s12987-021-00258-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This editorial discusses advances in brain barrier and brain fluid research in 2020. Topics include: the cerebral endothelium and the neurovascular unit; the choroid plexus; the meninges; cerebrospinal fluid and the glymphatic system; disease states impacting the brain barriers and brain fluids; drug delivery to the brain. This editorial also highlights the recently completed Fluids Barriers CNS thematic series entitled, Advances in in vitro modeling of the bloodbrain barrier and neurovascular unit. Such in vitro modeling is progressing rapidly.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48105, USA. .,Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, R5018 BSRB, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
14
|
Cerván-Martín M, Bossini-Castillo L, Rivera-Egea R, Garrido N, Luján S, Romeu G, Santos-Ribeiro S, IVIRMA Group, Lisbon Clinical Group, Castilla JA, Gonzalvo MC, Clavero A, Vicente FJ, Guzmán-Jiménez A, Costa C, Llinares-Burguet I, Khantham C, Burgos M, Barrionuevo FJ, Jiménez R, Sánchez-Curbelo J, López-Rodrigo O, Peraza MF, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Palomino-Morales RJ, Carmona FD. Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment. J Pers Med 2020; 11:22. [PMID: 33383876 PMCID: PMC7823507 DOI: 10.3390/jpm11010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Infertility is a growing concern in developed societies. Two extreme phenotypes of male infertility are non-obstructive azoospermia (NOA) and severe oligospermia (SO), which are characterized by severe spermatogenic failure (SpF). We designed a genetic association study comprising 725 Iberian infertile men as a consequence of SpF and 1058 unaffected controls to evaluate whether five single-nucleotide polymorphisms (SNPs), previously associated with reduced fertility in Hutterites, are also involved in the genetic susceptibility to idiopathic SpF and specific clinical entities. A significant difference in the allele frequencies of USP8-rs7174015 was observed under the recessive model between the NOA group and both the control group (p = 0.0226, OR = 1.33) and the SO group (p = 0.0048, OR = 1.78). Other genetic associations for EPSTI1-rs12870438 and PSAT1-rs7867029 with SO and between TUSC1-rs10966811 and testicular sperm extraction (TESE) success in the context of NOA were observed. In silico analysis of functional annotations demonstrated cis-eQTL effects of such SNPs likely due to the modification of binding motif sites for relevant transcription factors of the spermatogenic process. The findings reported here shed light on the molecular mechanisms leading to severe phenotypes of idiopathic male infertility, and may help to better understand the contribution of the common genetic variation to the development of these conditions.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, 46015 Valencia, Spain;
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain;
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain;
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (S.L.); (G.R.)
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (S.L.); (G.R.)
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (S.L.); (G.R.)
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, 1800-282 Lisbon, Portugal;
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | | | | | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, 18014 Granada, Spain
- CEIFER Biobanco—NextClinics, 18004 Granada, Spain
| | - M. Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, 18014 Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, 18014 Granada, Spain
| | - F. Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- UGC de Urología, HU Virgen de las Nieves, 18014 Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Cláudia Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Inés Llinares-Burguet
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Francisco J. Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - M. Fernanda Peraza
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (I.P.-C.); (J.G.)
| | - Patricia I. Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (I.P.-C.); (J.G.)
- ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, 1169-056 Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, 18071 Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
| |
Collapse
|
15
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|