1
|
Hu X, Lu J, Ding C, Li J, Zou Q, Xia W, Qian C, Li H, Huang B. The N6-methyladenosine landscape of ovarian development and aging highlights the regulation by RNA stability and chromatin state. Aging Cell 2025; 24:e14376. [PMID: 39410722 PMCID: PMC11822672 DOI: 10.1111/acel.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 02/14/2025] Open
Abstract
The versatile epigenetic modification known as N6-methyladenosine (m6A) has been demonstrated to be pivotal in numerous physiological and pathological contexts. Nonetheless, the precise regulatory mechanisms linking m6A to histone modifications and the involvement of transposable elements (TEs) in ovarian development and aging are still not completely understood. First, we discovered that m6A modifications are highly expressed during ovarian aging (OA), with significant contributions from decreased m6A demethylase FTO and overexpressed m6A methyltransferase METTL16. Then, using FTO knockout mouse model and KGN cell line, we also observed that FTO deletion and METTL16 overexpression significantly increased m6A levels. This led to the downregulation of the methyltransferase SUV39H1, resulting in reduced H3K9me3 expression. The downregulation of SUV39H1 and H3K9me3 primarily activated LTR7 and LTR12, subsequently activating ERV1. This resulted in a decrease in cell proliferation, while the levels of apoptosis, cellular aging markers, and autophagy markers significantly increased in OA. In summary, our study offers intriguing insights into the role of m6A in regulating DNA epigenetics, including H3K9me3 and TEs, as well as autophagy, thereby accelerating OA.
Collapse
Affiliation(s)
- Xiujuan Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Chenyue Ding
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Jincheng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Qinyan Zou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Chunfeng Qian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Hong Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| |
Collapse
|
2
|
Castilho RM, Castilho LS, Palomares BH, Squarize CH. Determinants of Chromatin Organization in Aging and Cancer-Emerging Opportunities for Epigenetic Therapies and AI Technology. Genes (Basel) 2024; 15:710. [PMID: 38927646 PMCID: PMC11202709 DOI: 10.3390/genes15060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We discuss the pathological impacts of chromatin state misregulation, particularly in cancer and accelerated aging conditions such as progeroid syndromes, and highlight the innovative role of epigenetic therapies and artificial intelligence (AI) in comprehending and harnessing the histone code toward personalized medicine. In the context of aging, this review explores the use of AI and advanced machine learning (ML) algorithms to parse vast biological datasets, leading to the development of predictive models for epigenetic modifications and providing a framework for understanding complex regulatory mechanisms, such as those governing cell identity genes. It supports innovative platforms like CEFCIG for high-accuracy predictions and tools like GridGO for tailored ChIP-Seq analysis, which are vital for deciphering the epigenetic landscape. The review also casts a vision on the prospects of AI and ML in oncology, particularly in the personalization of cancer therapy, including early diagnostics and treatment optimization for diseases like head and neck and colorectal cancers by harnessing computational methods, AI advancements and integrated clinical data for a transformative impact on healthcare outcomes.
Collapse
Affiliation(s)
- Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Leonard S. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
| | - Bruna H. Palomares
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Sao Paulo, Brazil;
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
3
|
Zeng B, Wan R, Chang K, Li J, Zhang X, Shi G, Ye D, Xu F. Lysine methyltransferase 5C increases the proliferation and metastatic abilities of clear cell renal cell carcinoma via aerobic glycolysis. Int J Oncol 2024; 64:45. [PMID: 38426605 PMCID: PMC10919755 DOI: 10.3892/ijo.2024.5633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Among all types of renal cancer, clear cell renal cell carcinoma (ccRCC) is the most common and lethal subtype and is associated with a high risk of metastasis and recurrence. Histone modifications regulate several biological processes that are fundamental to the development of cancer. Lysine methyltransferase 5C (KMT5C; also known as SUV420H2) is an epigenetic modifier responsible for the trimethylation of H4K20, which drives critical cellular events, including genome integrity, cell growth and epithelial‑mesenchymal transition (EMT), in various types of cancer. However, the role of KMT5C in ccRCC remains unclear. As such, the expression and function of KMT5C in ccRCC were investigated in the present study. KMT5C expression was significantly increased in ccRCC tissues compared with normal tissues (P<0.0001), and it was closely associated with the overall survival rate of patients with ccRCC. By establishing ccRCC cell lines with KMT5C expression knockdown, the role of KMT5C in the maintenance of aerobic glycolysis in ccRCC cells via the regulation of several vital glycolytic genes was identified. Additionally, KMT5C promoted the proliferation and EMT of ccRCC cells by controlling crucial EMT transcriptional factors. Together, these data suggested that KMT5C may act as an oncoprotein, guide molecular diagnosis, and shed light on novel drug development and therapeutic strategies for patients with ccRCC.
Collapse
Affiliation(s)
- Bohan Zeng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Department of Urology, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, P.R. China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Kun Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing 402260, P.R. China
| | - Xuanzhi Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fujiang Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
4
|
Barbachowska M, Arimondo PB. To target or not to target? The role of DNA and histone methylation in bacterial infections. Epigenetics 2023; 18:2242689. [PMID: 37731322 PMCID: PMC10515666 DOI: 10.1080/15592294.2023.2242689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/22/2023] Open
Abstract
Epigenetics describes chemical modifications of the genome that do not alter DNA sequence but participate in the regulation of gene expression and cellular processes such as proliferation, division, and differentiation of eukaryotic cell. Disruption of the epigenome pattern in a human cell is associated with different diseases, including infectious diseases. During infection pathogens induce epigenetic modifications in the host cell. This can occur by controlling expression of genes involved in immune response. That enables bacterial survival and replication within the host and evasion of the immune response. Methylation is an example of epigenetic modification that occurs on DNA and histones. Reasoning that DNA and histone methylation of human host cells plays a crucial role during pathogenesis, these modifications are promising targets for the development of alternative treatment strategies in infectious diseases. Here, we discuss the role of DNA and histone methyltransferases in human host cell upon bacterial infections. We further hypothesize that compounds targeting methyltransferases are tools to study epigenetics in the context of host-pathogen interactions and can open new avenues for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Magdalena Barbachowska
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
- Universite Paris Cité, Ecole Doctorale MTCI, Paris, France
- Institut Pasteur, Pasteur- Paris University (PPU)- Oxford International Doctoral Program, Paris, France
| | - Paola B. Arimondo
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
| |
Collapse
|
5
|
Agredo A, Kasinski AL. Histone 4 lysine 20 tri-methylation: a key epigenetic regulator in chromatin structure and disease. Front Genet 2023; 14:1243395. [PMID: 37671044 PMCID: PMC10475950 DOI: 10.3389/fgene.2023.1243395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Chromatin is a vital and dynamic structure that is carefully regulated to maintain proper cell homeostasis. A great deal of this regulation is dependent on histone proteins which have the ability to be dynamically modified on their tails via various post-translational modifications (PTMs). While multiple histone PTMs are studied and often work in concert to facilitate gene expression, here we focus on the tri-methylation of histone H4 on lysine 20 (H4K20me3) and its function in chromatin structure, cell cycle, DNA repair, and development. The recent studies evaluated in this review have shed light on how H4K20me3 is established and regulated by various interacting partners and how H4K20me3 and the proteins that interact with this PTM are involved in various diseases. Through analyzing the current literature on H4K20me3 function and regulation, we aim to summarize this knowledge and highlights gaps that remain in the field.
Collapse
Affiliation(s)
- Alejandra Agredo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Life Sciences Interdisciplinary Program (PULSe), Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Angerilli A, Tait J, Berges J, Shcherbakova I, Pokrovsky D, Schauer T, Smialowski P, Hsam O, Mentele E, Nicetto D, Rupp RA. The histone H4K20 methyltransferase SUV4-20H1/KMT5B is required for multiciliated cell differentiation in Xenopus. Life Sci Alliance 2023; 6:e202302023. [PMID: 37116939 PMCID: PMC10147948 DOI: 10.26508/lsa.202302023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
H4 lysine 20 dimethylation (H4K20me2) is the most abundant histone modification in vertebrate chromatin. It arises from sequential methylation of unmodified histone H4 proteins by the mono-methylating enzyme PR-SET7/KMT5A, followed by conversion to the dimethylated state by SUV4-20H (KMT5B/C) enzymes. We have blocked the deposition of this mark by depleting Xenopus embryos of SUV4-20H1/H2 methyltransferases. In the larval epidermis, this results in a severe loss of cilia in multiciliated cells (MCC), a key component of mucociliary epithelia. MCC precursor cells are correctly specified, amplify centrioles, but ultimately fail in ciliogenesis because of the perturbation of cytoplasmic processes. Genome-wide transcriptome profiling reveals that SUV4-20H1/H2-depleted ectodermal explants preferentially down-regulate the expression of several hundred ciliogenic genes. Further analysis demonstrated that knockdown of SUV4-20H1 alone is sufficient to generate the MCC phenotype and that its catalytic activity is needed for axoneme formation. Overexpression of the H4K20me1-specific histone demethylase PHF8/KDM7B also rescues the ciliogenic defect in a significant manner. Taken together, this indicates that the conversion of H4K20me1 to H4K20me2 by SUV4-20H1 is critical for the formation of cilia tufts.
Collapse
Affiliation(s)
- Alessandro Angerilli
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Janet Tait
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Julian Berges
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Sektion Pädiatrische Pneumologie und Allergologie und Mukoviszidose-Zentrum, Universitäts-Klinikum Heidelberg, Heidelberg, Germany
| | - Irina Shcherbakova
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Daniil Pokrovsky
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tamas Schauer
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Pawel Smialowski
- Institute for Stem Cell Research, Helmholtz Centre Munich, Neuherberg, Germany
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ohnmar Hsam
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Klinik und Poliklinik für Neurologie der Universität Regensburg, Regensburg, Germany
| | - Edith Mentele
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Nicetto
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Ambys Medicines, South San Francisco, CA, USA
| | - Ralph Aw Rupp
- Department of Molecular Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
7
|
The influence of high-order chromatin state in the regulation of stem cell fate. Biochem Soc Trans 2022; 50:1809-1822. [DOI: 10.1042/bst20220763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genomic DNA is hierarchically compacted by histones into chromatin, which is initially assembled by the nucleosome and further folded into orderly and flexible structures that include chromatin fiber, chromatin looping, topologically associated domains (TADs), chromosome compartments, and chromosome territories. These distinct structures and motifs build the three-dimensional (3D) genome architecture, which precisely controls spatial and temporal gene expression in the nucleus. Given that each type of cell is characterized by its own unique gene expression profile, the state of high-order chromatin plays an essential role in the cell fate decision. Accumulating evidence suggests that the plasticity of high-order chromatin is closely associated with stem cell fate. In this review, we summarize the biological roles of the state of high-order chromatin in embryogenesis, stem cell differentiation, the maintenance of stem cell identity, and somatic cell reprogramming. In addition, we highlight the roles of epigenetic factors and pioneer transcription factors (TFs) involved in regulating the state of high-order chromatin during the determination of stem cell fate and discuss how H3K9me3-heterochromatin restricts stem cell fate. In summary, we review the most recent progress in research on the regulatory functions of high-order chromatin dynamics in the determination and maintenance of stem cell fate.
Collapse
|
8
|
Khateb M, Perovanovic J, Ko KD, Jiang K, Feng X, Acevedo-Luna N, Chal J, Ciuffoli V, Genzor P, Simone J, Haase AD, Pourquié O, Dell'Orso S, Sartorelli V. Transcriptomics, regulatory syntax, and enhancer identification in mesoderm-induced ESCs at single-cell resolution. Cell Rep 2022; 40:111219. [PMID: 35977485 DOI: 10.1016/j.celrep.2022.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022] Open
Abstract
Embryonic stem cells (ESCs) can adopt lineage-specific gene-expression programs by stepwise exposure to defined factors, resulting in the generation of functional cell types. Bulk and single-cell-based assays were employed to catalog gene expression, histone modifications, chromatin conformation, and accessibility transitions in ESC populations and individual cells acquiring a presomitic mesoderm fate and undergoing further specification toward myogenic and neurogenic lineages. These assays identified cis-regulatory regions and transcription factors presiding over gene-expression programs occurring at defined ESC transitions and revealed the presence of heterogeneous cell populations within discrete ESC developmental stages. The datasets were employed to identify previously unappreciated genomic elements directing the initial activation of Pax7 and myogenic and neurogenic gene-expression programs. This study provides a resource for the discovery of genomic and transcriptional features of pluripotent, mesoderm-induced ESCs and ESC-derived cell lineages.
Collapse
Affiliation(s)
- Mamduh Khateb
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Jelena Perovanovic
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Natalia Acevedo-Luna
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Jérome Chal
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Boston, MA, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Pavol Genzor
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - James Simone
- FlowCytometry Section, NIAMS, NIH, Bethesda, MD, USA
| | - Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Boston, MA, USA
| | | | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Di Stefano L. All Quiet on the TE Front? The Role of Chromatin in Transposable Element Silencing. Cells 2022; 11:cells11162501. [PMID: 36010577 PMCID: PMC9406493 DOI: 10.3390/cells11162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute a sizeable portion of many eukaryotic genomes. Through their mobility, they represent a major source of genetic variation, and their activation can cause genetic instability and has been linked to aging, cancer and neurodegenerative diseases. Accordingly, tight regulation of TE transcription is necessary for normal development. Chromatin is at the heart of TE regulation; however, we still lack a comprehensive understanding of the precise role of chromatin marks in TE silencing and how chromatin marks are established and maintained at TE loci. In this review, I discuss evidence documenting the contribution of chromatin-associated proteins and histone marks in TE regulation across different species with an emphasis on Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Luisa Di Stefano
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
10
|
Gabellini D, Pedrotti S. The SUV4-20H Histone Methyltransferases in Health and Disease. Int J Mol Sci 2022; 23:ijms23094736. [PMID: 35563127 PMCID: PMC9102147 DOI: 10.3390/ijms23094736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
The post-translational modification of histone tails is a dynamic process that provides chromatin with high plasticity. Histone modifications occur through the recruitment of nonhistone proteins to chromatin and have the potential to influence fundamental biological processes. Many recent studies have been directed at understanding the role of methylated lysine 20 of histone H4 (H4K20) in physiological and pathological processes. In this review, we will focus on the function and regulation of the histone methyltransferases SUV4-20H1 and SUV4-20H2, which catalyze the di- and tri-methylation of H4K20 at H4K20me2 and H4K20me3, respectively. We will highlight recent studies that have elucidated the functions of these enzymes in various biological processes, including DNA repair, cell cycle regulation, and DNA replication. We will also provide an overview of the pathological conditions associated with H4K20me2/3 misregulation as a result of mutations or the aberrant expression of SUV4-20H1 or SUV4-20H2. Finally, we will critically analyze the data supporting these functions and outline questions for future research.
Collapse
|
11
|
Peral-Sanchez I, Hojeij B, Ojeda DA, Steegers-Theunissen RPM, Willaime-Morawek S. Epigenetics in the Uterine Environment: How Maternal Diet and ART May Influence the Epigenome in the Offspring with Long-Term Health Consequences. Genes (Basel) 2021; 13:31. [PMID: 35052371 PMCID: PMC8774448 DOI: 10.3390/genes13010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The societal burden of non-communicable disease is closely linked with environmental exposures and lifestyle behaviours, including the adherence to a poor maternal diet from the earliest preimplantation period of the life course onwards. Epigenetic variations caused by a compromised maternal nutritional status can affect embryonic development. This review summarises the main epigenetic modifications in mammals, especially DNA methylation, histone modifications, and ncRNA. These epigenetic changes can compromise the health of the offspring later in life. We discuss different types of nutritional stressors in human and animal models, such as maternal undernutrition, seasonal diets, low-protein diet, high-fat diet, and synthetic folic acid supplement use, and how these nutritional exposures epigenetically affect target genes and their outcomes. In addition, we review the concept of thrifty genes during the preimplantation period, and some examples that relate to epigenetic change and diet. Finally, we discuss different examples of maternal diets, their effect on outcomes, and their relationship with assisted reproductive technology (ART), including their implications on epigenetic modifications.
Collapse
Affiliation(s)
- Irene Peral-Sanchez
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Batoul Hojeij
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | - Diego A. Ojeda
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Régine P. M. Steegers-Theunissen
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | | |
Collapse
|
12
|
Pachano T, Sánchez-Gaya V, Ealo T, Mariner-Faulí M, Bleckwehl T, Asenjo HG, Respuela P, Cruz-Molina S, Muñoz-San Martín M, Haro E, van IJcken WFJ, Landeira D, Rada-Iglesias A. Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness. Nat Genet 2021; 53:1036-1049. [PMID: 34183853 PMCID: PMC7611182 DOI: 10.1038/s41588-021-00888-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
CpG islands (CGIs) represent a widespread feature of vertebrate genomes, being associated with ~70% of all gene promoters. CGIs control transcription initiation by conferring nearby promoters with unique chromatin properties. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance is barely known. Here we show that oCGIs are an essential component of poised enhancers that augment their long-range regulatory activity and control the responsiveness of their target genes. Using a knock-in strategy in mouse embryonic stem cells, we introduced poised enhancers with or without oCGIs within topologically associating domains harboring genes with different types of promoters. Analysis of the resulting cell lines revealed that oCGIs act as tethering elements that promote the physical and functional communication between poised enhancers and distally located genes, particularly those with large CGI clusters in their promoters. Therefore, by acting as genetic determinants of gene-enhancer compatibility, CGIs can contribute to gene expression control under both physiological and potentially pathological conditions.
Collapse
Affiliation(s)
- Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Thais Ealo
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Maria Mariner-Faulí
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Helena G Asenjo
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Virgen de las Nieves, Granada, Spain
| | - Patricia Respuela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Sara Cruz-Molina
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - María Muñoz-San Martín
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | | | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Virgen de las Nieves, Granada, Spain
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Gong H, Yang Y, Zhang S, Li M, Zhang X. Application of Hi-C and other omics data analysis in human cancer and cell differentiation research. Comput Struct Biotechnol J 2021; 19:2070-2083. [PMID: 33995903 PMCID: PMC8086027 DOI: 10.1016/j.csbj.2021.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
With the development of 3C (chromosome conformation capture) and its derivative technology Hi-C (High-throughput chromosome conformation capture) research, the study of the spatial structure of the genomic sequence in the nucleus helps researchers understand the functions of biological processes such as gene transcription, replication, repair, and regulation. In this paper, we first introduce the research background and purpose of Hi-C data visualization analysis. After that, we discuss the Hi-C data analysis methods from genome 3D structure, A/B compartment, TADs (topologically associated domain), and loop detection. We also discuss how to apply genome visualization technologies to the identification of chromosome feature structures. We continue with a review of correlation analysis differences among multi-omics data, and how to apply Hi-C and other omics data analysis into cancer and cell differentiation research. Finally, we summarize the various problems in joint analyses based on Hi-C and other multi-omics data. We believe this review can help researchers better understand the progress and applications of 3D genome technology.
Collapse
Affiliation(s)
- Haiyan Gong
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan 528000, China
| | - Yi Yang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Sichen Zhang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Minghong Li
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaotong Zhang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan 528000, China
| |
Collapse
|