1
|
Dai Y, Itai T, Pei G, Yan F, Chu Y, Jiang X, Weinberg SM, Mukhopadhyay N, Marazita ML, Simon LM, Jia P, Zhao Z. DeepFace: Deep-learning-based framework to contextualize orofacial-cleft-related variants during human embryonic craniofacial development. HGG ADVANCES 2024; 5:100312. [PMID: 38796699 PMCID: PMC11193024 DOI: 10.1016/j.xhgg.2024.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Orofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes have been highlighted, the "casual" variants are largely unknown. Here, we developed DeepFace, a convolutional neural network model, to assess the functional impact of variants by SNP activity difference (SAD) scores. The DeepFace model is trained with 204 epigenomic assays from crucial human embryonic craniofacial developmental stages of post-conception week (pcw) 4 to pcw 10. The Pearson correlation coefficient between the predicted and actual values for 12 epigenetic features achieved a median range of 0.50-0.83. Specifically, our model revealed that SNPs significantly associated with OFCs tended to exhibit higher SAD scores across various variant categories compared to less related groups, indicating a context-specific impact of OFC-related SNPs. Notably, we identified six SNPs with a significant linear relationship to SAD scores throughout developmental progression, suggesting that these SNPs could play a temporal regulatory role. Furthermore, our cell-type specificity analysis pinpointed the trophoblast cell as having the highest enrichment of risk signals associated with OFCs. Overall, DeepFace can harness distal regulatory signals from extensive epigenomic assays, offering new perspectives for prioritizing OFC variants using contextualized functional genomic features. We expect DeepFace to be instrumental in accessing and predicting the regulatory roles of variants associated with OFCs, and the model can be extended to study other complex diseases or traits.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Toshiyuki Itai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fangfang Yan
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yan Chu
- Center for Secure Artificial Intelligence for Healthcare, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seth M Weinberg
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nandita Mukhopadhyay
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Tsukiboshi Y, Mikami Y, Horita H, Ogata A, Noguchi A, Yokota S, Ogata K, Yoshioka H. Protective effect of Sasa veitchii extract against all-trans-retinoic acid-induced inhibition of proliferation of cultured human palate cells. NAGOYA JOURNAL OF MEDICAL SCIENCE 2024; 86:223-236. [PMID: 38962411 PMCID: PMC11219230 DOI: 10.18999/nagjms.86.2.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/01/2023] [Indexed: 07/05/2024]
Abstract
Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes ( ERBB2 and JADE1 ) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.
Collapse
Affiliation(s)
- Yosuke Tsukiboshi
- Department of Pharmacy, Gifu University of Medical Science, Kani, Japan
| | - Yurie Mikami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hanane Horita
- Department of Pharmacy, Gifu University of Medical Science, Kani, Japan
| | - Aya Ogata
- Department of Pharmacy, Gifu University of Medical Science, Kani, Japan
| | - Azumi Noguchi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy, Gifu University of Medical Science, Kani, Japan
| |
Collapse
|
3
|
Yan F, Suzuki A, Iwaya C, Pei G, Chen X, Yoshioka H, Yu M, Simon LM, Iwata J, Zhao Z. Single-cell multiomics decodes regulatory programs for mouse secondary palate development. Nat Commun 2024; 15:821. [PMID: 38280850 PMCID: PMC10821874 DOI: 10.1038/s41467-024-45199-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5. We construct five trajectories representing continuous differentiation of cranial neural crest-derived multipotent cells into distinct lineages. By linking open chromatin signals to gene expression changes, we characterize the underlying lineage-determining transcription factors. In silico perturbation analysis identifies transcription factors SHOX2 and MEOX2 as important regulators of the development of the anterior and posterior palate, respectively. In conclusion, our study charts epigenetic and transcriptional dynamics in palatogenesis, serving as a valuable resource for further cleft palate research.
Collapse
Affiliation(s)
- Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri - Kansas City, Kansas City, Missouri, 64108, USA
| | - Chihiro Iwaya
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xian Chen
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Meifang Yu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Zhao X, Peng X, Wang Z, Zheng X, Wang X, Wang Y, Chen J, Yuan D, Liu Y, Du J. MicroRNAs in Small Extracellular Vesicles from Amniotic Fluid and Maternal Plasma Associated with Fetal Palate Development in Mice. Int J Mol Sci 2023; 24:17173. [PMID: 38139002 PMCID: PMC10743272 DOI: 10.3390/ijms242417173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cleft palate (CP) is a common congenital birth defect. Cellular and morphological processes change dynamically during palatogenesis, and any disturbance in this process could result in CP. However, the molecular mechanisms steering this fundamental phase remain unclear. One study suggesting a role for miRNAs in palate development via maternal small extracellular vesicles (SEVs) drew our attention to their potential involvement in palatogenesis. In this study, we used an in vitro model to determine how SEVs derived from amniotic fluid (ASVs) and maternal plasma (MSVs) influence the biological behaviors of mouse embryonic palatal mesenchyme (MEPM) cells and medial edge epithelial (MEE) cells; we also compared time-dependent differential expression (DE) miRNAs in ASVs and MSVs with the DE mRNAs in palate tissue from E13.5 to E15.5 to study the dynamic co-regulation of miRNAs and mRNAs during palatogenesis in vivo. Our results demonstrate that some pivotal biological activities, such as MEPM proliferation, migration, osteogenesis, and MEE apoptosis, might be directed, in part, by stage-specific MSVs and ASVs. We further identified interconnected networks and key miRNAs such as miR-744-5p, miR-323-5p, and miR-3102-5p, offering a roadmap for mechanistic investigations and the identification of early CP biomarkers.
Collapse
Affiliation(s)
- Xige Zhao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Zhiwei Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Xiaoyu Zheng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Dong Yuan
- Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China;
| | - Ying Liu
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
- Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China;
| |
Collapse
|
5
|
Merkuryeva E, Markova T, Tyurin A, Valeeva D, Kenis V, Sumina M, Sorokin I, Shchagina O, Skoblov M, Nefedova M, Khusainova R, Zakharova E, Dadali E, Kutsev S. Clinical and Genetic Characteristics of Calvarial Doughnut Lesions with Bone Fragility in Three Families with a Reccurent SGMS2 Gene Variant. Int J Mol Sci 2023; 24:8021. [PMID: 37175737 PMCID: PMC10178575 DOI: 10.3390/ijms24098021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Calvarial doughnut lesions (CDL) with bone fragility with or without spondylometaphyseal dysplasia (MIM: #126550) is a rare autosomal dominant skeletal disorder characterized by low bone mineral density, spinal and peripheral fractures, and specific sclerotic lesions of the cranial bones. In the current classification of skeletal disorders, the disease is included in the group of bone fragility disorders along with osteogenesis imperfecta. The disease is caused by pathogenic variants in the SGMS2 gene, the protein product of which is sphingomyelin synthase 2, which primarily contributes to sphingomyelin (SM) synthesis-the main lipid component of the plasma membrane essential for bone mineralization. To date, 15 patients from eight families with CDL with bone fragility have been described in the literature, and a recurrent variant c.148C>T (p.Arg50Ter) in the SGMS2 gene has been identified, which was found in patients from six families. We diagnosed the disease in 11 more patients from three unrelated families, caused by the same heterozygous nonsense variant c.148C>T (p.Arg50Ter) in the SGMS2 gene. Our results show wide interfamilial and intrafamilial phenotypic variability in patients with a detected recurrent variant in the SGMS2 gene, the presence of which must be taken into consideration in the diagnosis of the disease. The primary analysis of this variant will contribute to optimal molecular genetic diagnostics, which can reduce diagnostic costs and time.
Collapse
Affiliation(s)
- Elena Merkuryeva
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.M.)
| | - Tatiana Markova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.M.)
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia
| | - Diana Valeeva
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia
| | - Vladimir Kenis
- The Turner Scientific Research Institute for Children’s Orthopedics, 196603 Saint Petersburg, Russia
| | - Maria Sumina
- State Healthcare Institution of Sverdlovsk Region “Clinical and Diagnostic Center “Mother’s and Child Health Protection”, 620067 Ekaterinburg, Russia
| | - Igor Sorokin
- Faculty of Dentistry, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Olga Shchagina
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.M.)
| | - Mikhail Skoblov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.M.)
| | - Maria Nefedova
- Independent Clinical Bioinformatics Laboratory, 123181 Moscow, Russia
| | - Rita Khusainova
- Laboratory of Human Molecular Genetics, Institute of Biochemistry and Genetics, 450000 Ufa, Russia
- Healthy Longevity Center, Ufa University of Science and Technology, 450008 Ufa, Russia
- Medical Genetics Department, Bashkir State Medical University, 450008 Ufa, Russia
| | | | - Elena Dadali
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.M.)
| | - Sergey Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.M.)
| |
Collapse
|
6
|
Costantini A, Mäkitie RE, Hartmann MA, Fratzl-Zelman N, Zillikens MC, Kornak U, Søe K, Mäkitie O. Early-Onset Osteoporosis: Rare Monogenic Forms Elucidate the Complexity of Disease Pathogenesis Beyond Type I Collagen. J Bone Miner Res 2022; 37:1623-1641. [PMID: 35949115 PMCID: PMC9542053 DOI: 10.1002/jbmr.4668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022]
Abstract
Early-onset osteoporosis (EOOP), characterized by low bone mineral density (BMD) and fractures, affects children, premenopausal women and men aged <50 years. EOOP may be secondary to a chronic illness, long-term medication, nutritional deficiencies, etc. If no such cause is identified, EOOP is regarded primary and may then be related to rare variants in genes playing a pivotal role in bone homeostasis. If the cause remains unknown, EOOP is considered idiopathic. The scope of this review is to guide through clinical and genetic diagnostics of EOOP, summarize the present knowledge on rare monogenic forms of EOOP, and describe how analysis of bone biopsy samples can lead to a better understanding of the disease pathogenesis. The diagnostic pathway of EOOP is often complicated and extensive assessments may be needed to reliably exclude secondary causes. Due to the genetic heterogeneity and overlapping features in the various genetic forms of EOOP and other bone fragility disorders, the genetic diagnosis usually requires the use of next-generation sequencing to investigate several genes simultaneously. Recent discoveries have elucidated the complexity of disease pathogenesis both regarding genetic architecture and bone tissue-level pathology. Two rare monogenic forms of EOOP are due to defects in genes partaking in the canonical WNT pathway: LRP5 and WNT1. Variants in the genes encoding plastin-3 (PLS3) and sphingomyelin synthase 2 (SGMS2) have also been found in children and young adults with skeletal fragility. The molecular mechanisms leading from gene defects to clinical manifestations are often not fully understood. Detailed analysis of patient-derived transiliac bone biopsies gives valuable information to understand disease pathogenesis, distinguishes EOOP from other bone fragility disorders, and guides in patient management, but is not widely available in clinical settings. Despite the great advances in this field, EOOP remains an insufficiently explored entity and further research is needed to optimize diagnostic and therapeutic approaches. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Paris Cité University, INSERM UMR1163, Institut Imagine, Paris, France
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Sheep IGFBP2 and IGFBP4 promoter methylation regulates gene expression and hair follicle development. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Yoshioka H, Suzuki A, Iwaya C, Iwata J. Suppression of microRNA 124-3p and microRNA 340-5p ameliorates retinoic acid-induced cleft palate in mice. Development 2022; 149:275062. [PMID: 35420127 PMCID: PMC9148563 DOI: 10.1242/dev.200476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The etiology of cleft lip with or without cleft palate (CL/P), a common congenital birth defect, is complex, with genetic and epigenetic, as well as environmental, contributing factors. Recent studies suggest that fetal development is affected by maternal conditions through microRNAs (miRNAs), a group of short noncoding RNAs. Here, we show that miR-129-5p and miR-340-5p suppress cell proliferation in both primary mouse embryonic palatal mesenchymal cells and O9-1 cells, a neural crest cell line, through the regulation of Sox5 and Trp53 by miR-129-5p, and the regulation of Chd7, Fign and Tgfbr1 by miR-340-5p. Notably, miR-340-5p, but not miR-129-5p, was upregulated following all-trans retinoic acid (atRA; tretinoin) administration, and a miR-340-5p inhibitor rescued the cleft palate (CP) phenotype in 47% of atRA-induced CP mice. We have previously reported that a miR-124-3p inhibitor can also partially rescue the CP phenotype in atRA-induced CP mouse model. In this study, we found that a cocktail of miR-124-3p and miR-340-5p inhibitors rescued atRA-induced CP with almost complete penetrance. Taken together, our results suggest that normalization of pathological miRNA expression can be a preventive intervention for CP.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
9
|
Fu J, Zhu W, Wang L, Luo M, Jiang B, Dong Z. Dynamic Expression and Gene Regulation of MicroRNAs During Bighead Carp (Hypophthalmichthys nobilis) Early Development. Front Genet 2022; 12:821403. [PMID: 35126475 PMCID: PMC8809360 DOI: 10.3389/fgene.2021.821403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
The early development of fish is regulated through dynamic and complex mechanisms involving the regulation of various genes. Many genes are subjected to post-transcriptional regulation by microRNAs (miRNAs). In the Chinese aquaculture industry, the native species bighead carp (Hypophthalmichthys nobilis) is important. However, the genetic regulation related to the early development of bighead carp is unknown. Here, we generated developmental profiles by miRNA sequencing to study the dynamic regulation of miRNAs during bighead carp early development. This study identified 1 046 miRNAs, comprising 312 known miRNAs and 734 uncharacterized miRNAs. Changes in miRNA expression were identified in the six early development stages. An obviously increased expression trend was detected during the development process, with the main burst of activity occurring after the earliest stage (early blastula, DS1). Investigations revealed that several miRNAs were dominantly expressed during the development process, especially in the later stages (e.g., miR-10b-5p, miR-21, miR-92a-3p, miR-206-3p, and miR-430a-3p), suggesting that these miRNAs exerted important functions during embryonic development. The differentially expressed miRNAs (DEMs) and time-serial analysis (profiles) of DEMs were analyzed. A total of 372 miRNAs were identified as DEMs (fold-change >2, and false discovery rate <0.05), and three expression profiles of the DEMs were detected to have co-expression patterns (r > 0.7, and p < 0.05). The broad negative regulation of target genes by miRNAs was speculated, and many development-related biological processes and pathways were enriched for the targets of the DEMs, which might be associated with maternal genome degradation and embryogenesis processes. In conclusion, we revealed the repertoire of miRNAs that are active during early development of bighead carp. These findings will increase our understanding of the regulatory mechanisms of early development of fish.
Collapse
Affiliation(s)
- Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Zaijie Dong, ,
| |
Collapse
|
10
|
Xu H, Yan F, Hu R, Suzuki A, Iwaya C, Jia P, Iwata J, Zhao Z. CleftGeneDB: a resource for annotating genes associated with cleft lip and cleft palate. Sci Bull (Beijing) 2021; 66:2340-2342. [PMID: 36654117 DOI: 10.1016/j.scib.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Haodong Xu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston TX 77054, USA
| | - Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston TX 77054, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston TX 77054, USA; Pediatric Research Center, The University of Texas Health Science Center at Houston, School of Medicine, Houston TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston TX 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston TX 77030, USA; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston TX 77030, USA.
| |
Collapse
|
11
|
Mutations in SIX1 Associated with Branchio-oto-Renal Syndrome (BOR) Differentially Affect Otic Expression of Putative Target Genes. J Dev Biol 2021; 9:jdb9030025. [PMID: 34208995 PMCID: PMC8293042 DOI: 10.3390/jdb9030025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Several single-nucleotide mutations in SIX1 underlie branchio-otic/branchio-oto-renal (BOR) syndrome, but the clinical literature has not been able to correlate different variants with specific phenotypes. We previously assessed whether variants in either the cofactor binding domain (V17E, R110W) or the DNA binding domain (W122R, Y129C) might differentially affect early embryonic gene expression, and found that each variant had a different combination of effects on neural crest and placode gene expression. Since the otic vesicle gives rise to the inner ear, which is consistently affected in BOR, herein we focused on whether the variants differentially affected the otic expression of genes previously found to be likely Six1 targets. We found that V17E, which does not bind Eya cofactors, was as effective as wild-type Six1 in reducing most otic target genes, whereas R110W, W122R and Y129C, which bind Eya, were significantly less effective. Notably, V17E reduced the otic expression of prdm1, whereas R110W, W122R and Y129C expanded it. Since each mutant has defective transcriptional activity but differs in their ability to interact with Eya cofactors, we propose that altered cofactor interactions at the mutated sites differentially interfere with their ability to drive otic gene expression, and these differences may contribute to patient phenotype variability.
Collapse
|
12
|
Analysis of Facial Skeletal Morphology: Nasal Bone, Maxilla, and Mandible. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5599949. [PMID: 34124250 PMCID: PMC8169245 DOI: 10.1155/2021/5599949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022]
Abstract
The growth and development of facial bones are closely related to each other. The present study investigated the differences in the nasomaxillary and mandibular morphology among different skeletal patterns. Cephalograms of 240 participants were divided into 3 groups based on the skeletal pattern (Class I, Class II, and Class III). The dimensions of nasomaxilla (nasal bone length, nasal ridge length, nasal depth, palatal length, and maxillary height) and mandible (condylar length, ramus length, body length, symphysis length, and entire mandibular length) were measured. One-way analysis of variance and Pearson's correlation test were used for statistical analysis. No significant differences were observed among the skeletal patterns in terms of nasal bone length, palatal length, maxillary height, or condylar length. Class II had a significantly shorter ramus, mandibular body, and entire mandibular length compared with those of Class I and Class III. Nasal ridge length exhibited a significant moderate correlated with nasal bone length (correlation coefficient: 0.433) and maxillary height (correlation coefficient: 0.535). The entire mandibular length exhibited a significant moderate correlated with ramus length (correlation coefficient: 0.485) and body length (correlation coefficient: 0.536). In conclusion, nasal and maxillary dimensions exhibited no significant difference among the 3 skeletal patterns. Mandibular body and entire mandibular lengths were significantly positively correlations with Class III skeletal patterns.
Collapse
|