1
|
Dinwoodie OM, Tucker AS, Fons JM. Tracking cell layer contribution during repair of the tympanic membrane. Dis Model Mech 2024; 17:dmm050466. [PMID: 38390727 PMCID: PMC10985735 DOI: 10.1242/dmm.050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
The tympanic membrane (i.e. eardrum) sits at the interface between the middle and external ear. The tympanic membrane is composed of three layers: an outer ectoderm-derived layer, a middle neural crest-derived fibroblast layer with contribution from the mesoderm-derived vasculature, and an inner endoderm-derived mucosal layer. These layers form a thin sandwich that is often perforated following trauma, pressure changes or middle ear inflammation. During healing, cells need to bridge the perforation in the absence of an initial scaffold. Here, we assessed the contribution, timing and interaction of the different layers during membrane repair by using markers and reporter mice. We showed that the ectodermal layer is retracted after perforation, before proliferating away from the wound edge, with keratin 5 basal cells migrating over the hole to bridge the gap. The mesenchymal and mucosal layers then used this scaffold to complete the repair, followed by advancement of the vasculature. Finally, differentiation of the epithelium led to formation of a scab. Our results reveal the dynamics and interconnections between the embryonic germ layers during repair and highlight how defects might occur.
Collapse
Affiliation(s)
- Olivia M. Dinwoodie
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Juan M. Fons
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
2
|
Anthwal N, Urban DJ, Sadier A, Takenaka R, Spiro S, Simmons N, Behringer RR, Cretekos CJ, Rasweiler JJ, Sears KE. Insights into the formation and diversification of a novel chiropteran wing membrane from embryonic development. BMC Biol 2023; 21:101. [PMID: 37143038 PMCID: PMC10161559 DOI: 10.1186/s12915-023-01598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Through the evolution of novel wing structures, bats (Order Chiroptera) became the only mammalian group to achieve powered flight. This achievement preceded the massive adaptive radiation of bats into diverse ecological niches. We investigate some of the developmental processes that underlie the origin and subsequent diversification of one of the novel membranes of the bat wing: the plagiopatagium, which connects the fore- and hind limb in all bat species. RESULTS Our results suggest that the plagiopatagium initially arises through novel outgrowths from the body flank that subsequently merge with the limbs to generate the wing airfoil. Our findings further suggest that this merging process, which is highly conserved across bats, occurs through modulation of the programs controlling the development of the periderm of the epidermal epithelium. Finally, our results suggest that the shape of the plagiopatagium begins to diversify in bats only after this merging has occurred. CONCLUSIONS This study demonstrates how focusing on the evolution of cellular processes can inform an understanding of the developmental factors shaping the evolution of novel, highly adaptive structures.
Collapse
Affiliation(s)
- Neal Anthwal
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Daniel J Urban
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
- Department of Mammalogy, Division of Vertebrate Biology, American Museum of Natural History, New York, USA
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, USA
| | - Risa Takenaka
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | | | - Nancy Simmons
- Department of Mammalogy, Division of Vertebrate Biology, American Museum of Natural History, New York, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - John J Rasweiler
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, New York, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, USA.
| |
Collapse
|
3
|
Qiu T, Tucker AS. Mechanisms driving vestibular lamina formation and opening in the mouse. J Anat 2022; 242:224-234. [PMID: 36181694 PMCID: PMC9877475 DOI: 10.1111/joa.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023] Open
Abstract
The vestibular lamina (VL) forms as an epithelial outgrowth parallel to the dental lamina (DL) in the oral cavity. During late development, it opens to create a furrow that divides the dental tissue from the cheeks and lips and is known as the vestibule. Defects in this process lead to failure in the separation of the teeth from the lips and cheeks, including the presence of multiple frenula. In this paper, the development of the VL is followed in the mouse, from epithelial placode in the embryo to postnatal opening and vestibule formation. During early outgrowth, differential proliferation controls the curvature of the VL as it extends under the forming incisors. Apoptosis plays a role in thinning the deepest part of the lamina, while terminal differentiation of the epithelium, highlighted by the expression of loricrin and flattening of the nuclei, predates the division of the VL into two to create the vestibule. Development in the mouse is compared to the human VL, with respect to the relationship of the VL to the DL, VL morphology and mechanisms of opening. Overall, this paper provides insight into an understudied part of the oral anatomy, shedding light on how defects could form in this region.
Collapse
Affiliation(s)
- Tengyang Qiu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| |
Collapse
|
4
|
Mozaffari M, Nash R, Tucker AS. Anatomy and Development of the Mammalian External Auditory Canal: Implications for Understanding Canal Disease and Deformity. Front Cell Dev Biol 2021; 8:617354. [PMID: 33553153 PMCID: PMC7857502 DOI: 10.3389/fcell.2020.617354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
The mammalian ear is made up of three parts (the outer, middle, and inner ear), which work together to transmit sound waves into neuronal signals perceived by our auditory cortex as sound. This review focuses on the often-neglected outer ear, specifically the external auditory meatus (EAM), or ear canal. Within our complex hearing pathway, the ear canal is responsible for funneling sound waves toward the tympanic membrane (ear drum) and into the middle ear, and as such is a physical link between the tympanic membrane and the outside world. Unique anatomical adaptations, such as its migrating epithelium and cerumen glands, equip the ear canal for its function as both a conduit and a cul-de-sac. Defects in development, or later blockages in the canal, lead to congenital or acquired conductive hearing loss. Recent studies have built on decades-old knowledge of ear canal development and suggest a novel multi-stage, complex and integrated system of development, helping to explain the mechanisms underlying congenital canal atresia and stenosis. Here we review our current understanding of ear canal development; how this biological lumen is made; what determines its location; and how its structure is maintained throughout life. Together this knowledge allows clinical questions to be approached from a developmental biology perspective.
Collapse
Affiliation(s)
- Mona Mozaffari
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Robert Nash
- Department of Paediatric Otolaryngology, Cochlear Implants, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
5
|
Zhang Y, Fons JM, Hajihosseini MK, Zhang T, Tucker AS. An Essential Requirement for Fgf10 in Pinna Extension Sheds Light on Auricle Defects in LADD Syndrome. Front Cell Dev Biol 2020; 8:609643. [PMID: 33363172 PMCID: PMC7758485 DOI: 10.3389/fcell.2020.609643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
The pinna (or auricle) is part of the external ear, acting to capture and funnel sound toward the middle ear. The pinna is defective in a number of craniofacial syndromes, including Lacrimo-auriculo-dento-digital (LADD) syndrome, which is caused by mutations in FGF10 or its receptor FGFR2b. Here we study pinna defects in the Fgf10 knockout mouse. We show that Fgf10 is expressed in both the muscles and forming cartilage of the developing external ear, with loss of signaling leading to a failure in the normal extension of the pinna over the ear canal. Conditional knockout of Fgf10 in the neural crest fails to recapitulate this phenotype, suggesting that the defect is due to loss of Fgf10 from the muscles, or that this source of Fgf10 can compensate for loss in the forming cartilage. The defect in the Fgf10 null mouse is driven by a reduction in proliferation, rather than an increase in cell death, which can be partially phenocopied by inhibiting cell proliferation in explant culture. Overall, we highlight the mechanisms that could lead to the phenotype observed in LADD syndrome patients and potentially explain the formation of similar low-set and cup shaped ears observed in other syndromes.
Collapse
Affiliation(s)
- Yang Zhang
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Ear Nasal and Throat (ENT) Institute, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Juan M. Fons
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | | | - Tianyu Zhang
- Ear Nasal and Throat (ENT) Institute, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Facial Plastic and Reconstructive Surgery, Eye & Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| |
Collapse
|