1
|
Zhang J, Kwan HLR, Chan CB, Lee CW. Localized release of muscle-generated BDNF regulates the initial formation of postsynaptic apparatus at neuromuscular synapses. Cell Death Differ 2025; 32:546-560. [PMID: 39511403 PMCID: PMC11893767 DOI: 10.1038/s41418-024-01404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Growing evidence indicates that brain-derived neurotrophic factor (BDNF) is produced in contracting skeletal muscles and is secreted as a myokine that plays an important role in muscle metabolism. However, the involvement of muscle-generated BDNF and the regulation of its vesicular trafficking, localization, proteolytic processing, and spatially restricted release during the development of vertebrate neuromuscular junctions (NMJs) remain largely unknown. In this study, we first reported that BDNF is spatially associated with the actin-rich core domain of podosome-like structures (PLSs) at topologically complex acetylcholine receptor (AChR) clusters in cultured Xenopus muscle cells. The release of spatially localized BDNF is tightly controlled by activity-regulated mechanisms in a calcium-dependent manner. Live-cell time-lapse imaging further showed that BDNF-containing vesicles are transported to and captured at PLSs in both aneural and synaptic AChR clusters for spatially restricted release. Functionally, BDNF knockdown or furin-mediated endoproteolytic activity inhibition significantly suppresses aneural AChR cluster formation, which in turn affects synaptic AChR clustering induced by nerve innervation or agrin-coated beads. Lastly, skeletal muscle-specific BDNF knockout (MBKO) mice exhibit structural defects in the formation of aneural AChR clusters and their subsequent recruitment to nerve-induced synaptic AChR clusters during the initial stages of NMJ development in vivo. Together, this study demonstrated the regulatory roles of PLSs in the intracellular trafficking, spatial localization, and activity-dependent release of BDNF in muscle cells and revealed the involvement of muscle-generated BDNF and its proteolytic conversion in regulating the initial formation of aneural and synaptic AChR clusters during early NMJ development in vitro and in vivo.
Collapse
Affiliation(s)
- Jinkai Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Lee
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China.
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
2
|
Li X, Xu Y, Si JX, Gu F, Ma YY. Role of Agrin in tissue repair and regeneration: From mechanisms to therapeutic opportunities (Review). Int J Mol Med 2024; 54:98. [PMID: 39301653 PMCID: PMC11410309 DOI: 10.3892/ijmm.2024.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
Tissue regeneration is a complex process that involves the recruitment of various types of cells for healing after injury; it is mediated by numerous precise interactions. However, the identification of effective targets for improving tissue regeneration remains a challenge. As an extracellular matrix protein, Agrin plays a critical role in neuromuscular junction formation. Furthermore, recent studies have revealed the role of Agrin in regulating tissue proliferation and regeneration, which contributes to the repair process of injured tissues. An in‑depth understanding of the role of Agrin will therefore be of value. Given that repair and regeneration processes occur in various parts of the human body, the present systematic review focuses on the role of Agrin in typical tissue and highlights the potential signaling pathways that are involved in Agrin‑induced repair and regeneration. This review offers important insight into novel strategies for the future clinical applications of Agrin‑based therapies, which may represent a feasible treatment option for patients who require organ replacement or repair.
Collapse
Affiliation(s)
- Xiang Li
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan Xu
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315048, P.R. China
| | - Jing-Xing Si
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Gu
- Department of Paediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying-Yu Ma
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
3
|
Kwan HLR, Chan ZCK, Bi X, Kutkowska J, Prószyński TJ, Chan CB, Lee CW. Nerve-independent formation of membrane infoldings at topologically complex postsynaptic apparatus by caveolin-3. SCIENCE ADVANCES 2023; 9:eadg0183. [PMID: 37327338 PMCID: PMC10275590 DOI: 10.1126/sciadv.adg0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Junctional folds are unique membrane specializations developed progressively during the postnatal maturation of vertebrate neuromuscular junctions (NMJs), but how they are formed remains elusive. Previous studies suggested that topologically complex acetylcholine receptor (AChR) clusters in muscle cultures undergo a series of transformations, resembling the postnatal maturation of NMJs in vivo. We first demonstrated the presence of membrane infoldings at AChR clusters in cultured muscles. Live-cell super-resolution imaging further revealed that AChRs are gradually redistributed to the crest regions and spatially segregated from acetylcholinesterase along the elongating membrane infoldings over time. Mechanistically, lipid raft disruption or caveolin-3 knockdown not only inhibits membrane infolding formation at aneural AChR clusters and delays agrin-induced AChR clustering in vitro but also affects junctional fold development at NMJs in vivo. Collectively, this study demonstrated the progressive development of membrane infoldings via nerve-independent, caveolin-3-dependent mechanisms and identified their roles in AChR trafficking and redistribution during the structural maturation of NMJs.
Collapse
Affiliation(s)
- Hui-Lam Rachel Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zora Chui-Kuen Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinyi Bi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Justyna Kutkowska
- Łukasiewicz Research Network – PORT Polish Center for Technology Development, Wrocław, Poland
| | - Tomasz J. Prószyński
- Łukasiewicz Research Network – PORT Polish Center for Technology Development, Wrocław, Poland
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
4
|
Xia XD, Alabi A, Wang M, Gu HM, Yang RZ, Wang G, Zhang DW. Membrane-type I matrix metalloproteinase (MT1-MMP), lipid metabolism and therapeutic implications. J Mol Cell Biol 2021; 13:513-526. [PMID: 34297054 PMCID: PMC8530520 DOI: 10.1093/jmcb/mjab048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Lipids exert many essential physiological functions, such as serving as a structural component of biological membranes, storing energy, and regulating cell signal transduction. Dysregulation of lipid metabolism can lead to dyslipidemia related to various human diseases, such as obesity, diabetes, and cardiovascular disease. Therefore, lipid metabolism is strictly regulated through multiple mechanisms at different levels, including the extracellular matrix. Membrane-type I matrix metalloproteinase (MT1-MMP), a zinc-dependent endopeptidase, proteolytically cleaves extracellular matrix components, and non-matrix proteins, thereby regulating many physiological and pathophysiological processes. Emerging evidence supports the vital role of MT1-MMP in lipid metabolism. For example, MT1-MMP mediates ectodomain shedding of low-density lipoprotein receptor and increases plasma low-density lipoprotein cholesterol levels and the development of atherosclerosis. It also increases the vulnerability of atherosclerotic plaque by promoting collagen cleavage. Furthermore, it can cleave the extracellular matrix of adipocytes, affecting adipogenesis and the development of obesity. Therefore, the activity of MT1-MMP is strictly regulated by multiple mechanisms, such as autocatalytic cleavage, endocytosis and exocytosis, and post-translational modifications. Here, we summarize the latest advances in MT1-MMP, mainly focusing on its role in lipid metabolism, the molecular mechanisms regulating the function and expression of MT1-MMP, and their pharmacotherapeutic implications.
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Department of Orthopedics, The Sixth Affiliated Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511500, China.,Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Adekunle Alabi
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Maggie Wang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Rui Zhe Yang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Guiqing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511500, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| |
Collapse
|