1
|
Zúniga-García M, Riesgo-Escovar JR. fos genes in mainly invertebrate model systems: A review of commonalities and some diversities. Cells Dev 2025; 181:203997. [PMID: 39880305 DOI: 10.1016/j.cdev.2025.203997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
fos genes, transcription factors with a common basic region and leucine zipper domains binding to a consensus DNA sequence (TGA{}TCA), are evolutionarily conserved in eukaryotes. Homologs can be found in many different species from yeast to vertebrates. In yeast, the homologous GCN4 gene is required to mediate "emergency" situations like nutrient deprivation and the unfolded protein response. The C. elegans homolog fos-1 is required for reproduction and vulval development, as well as in adult homeostasis. In Drosophila melanogaster, there is also a sole fos homolog: the gene kayak, with five isoforms. The kayak locus has been studied in detail. It was originally described as embryonic lethal with a "dorsal open" phenotype. Since then, kayak has been shown to be required for oocyte maturation and as a source for piRNA; for early dorsoventral specification, macrophage function, dorsal closure, endoderm differentiation, and finally during metamorphosis in wing and eye-antennal development. In mammals there are multiple fos loci, each one with alternative splicing giving rise to multiple isoforms. Overall, mammalian fos genes are required for bone, cartilage and tooth formation, and in some instances for placental angiogenesis and retinal function. We review here mainly what is known about fos function in invertebrate model systems, especially during embryogenesis. We propose that fos genes, evolutionarily conserved transcription factors, evolved early during eukaryotic development, and from its inception as part of an environmental stress response machinery, were co-opted several times during development to regulate processes that may require similar cellular responses.
Collapse
Affiliation(s)
- Manuel Zúniga-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Querétaro, Mexico; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico
| | - Juan Rafael Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Querétaro, Mexico.
| |
Collapse
|
2
|
Hu X, Cheng F, Gong Z, Qin K, Shan T, Li W, Zhang L, Yan W, Zeng Z, Wang Z. Knockout of a single Pax6 gene (toy but not ey) leads to compound eye deficiency and small head in honeybees. Commun Biol 2024; 7:1319. [PMID: 39402171 PMCID: PMC11473719 DOI: 10.1038/s42003-024-07016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 10/04/2024] [Indexed: 10/17/2024] Open
Abstract
The compound eyes are crucial to honeybees, playing pivotal roles in color recognition, orientation, localization, and navigation processes. The development of compound eyes is primarily mastered by an evolutionarily conserved transcription factor Pax6. In honeybees, there are two Pax6 homologs: ey and toy. To gain a deeper understanding of their functions, we knock out both homologs using CRISPR/Cas9 technology. Intriguingly, we observe that toy knockout mutants have smaller heads without compound eyes and exhibit brain atrophy, while ey knockout mutants develop normal compound eyes, most of which die before/during their metamorphosis from pupa to adult. By comparing the head transcriptomes of four stages (larva, prepupa, pupa, and adult) in toy-knockout mutants versus normal controls, we identify significantly perturbed genes related to DNA binding transcription factors, neuron differentiation, and insect visual primordium development. Additionally, we find the interaction network of toy in honeybees differs obviously from that of D. melanogaster. Our findings suggest the two Pax6 genes serve distinct functions in honeybees and toy takes over the central function of ey in master-regulating the development of honeybee compound eyes. This adds new evidence for breaking the simplified view that some of conservative developmental toolkit genes function as all-or-nothing master regulators.
Collapse
Affiliation(s)
- Xiaofen Hu
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fuping Cheng
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Zhixian Gong
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Kaixin Qin
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Tingting Shan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenwen Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lizhen Zhang
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Weiyu Yan
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Zhijiang Zeng
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China.
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.
| | - Zilong Wang
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China.
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
3
|
Navarro T, Iannini A, Neto M, Campoy-Lopez A, Muñoz-García J, Pereira PS, Ares S, Casares F. Feedback control of organ size precision is mediated by BMP2-regulated apoptosis in the Drosophila eye. PLoS Biol 2024; 22:e3002450. [PMID: 38289899 PMCID: PMC10826937 DOI: 10.1371/journal.pbio.3002450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024] Open
Abstract
Biological processes are intrinsically noisy, and yet, the result of development-like the species-specific size and shape of organs-is usually remarkably precise. This precision suggests the existence of mechanisms of feedback control that ensure that deviations from a target size are minimized. Still, we have very limited understanding of how these mechanisms operate. Here, we investigate the problem of organ size precision using the Drosophila eye. The size of the adult eye depends on the rates at which eye progenitor cells grow and differentiate. We first find that the progenitor net growth rate results from the balance between their proliferation and apoptosis, with this latter contributing to determining both final eye size and its variability. In turn, apoptosis of progenitor cells is hampered by Dpp, a BMP2/4 signaling molecule transiently produced by early differentiating retinal cells. Our genetic and computational experiments show how the status of retinal differentiation is communicated to progenitors through the differentiation-dependent production of Dpp, which, by adjusting the rate of apoptosis, exerts a feedback control over the net growth of progenitors to reduce final eye size variability.
Collapse
Affiliation(s)
- Tomas Navarro
- CABD, CSIC/Universidad Pablo de Olavide, Seville, Spain
| | | | - Marta Neto
- CABD, CSIC/Universidad Pablo de Olavide, Seville, Spain
| | - Alejandro Campoy-Lopez
- CABD, CSIC/Universidad Pablo de Olavide, Seville, Spain
- ALMIA, CABD, CSIC/Universidad Pablo de Olavide, Seville, Spain
| | - Javier Muñoz-García
- Grupo Interdisciplinar de Sistemas Complejos (GISC) and Departamento de Matematicas, Universidad Carlos III de Madrid, Leganes, Spain
| | - Paulo S. Pereira
- I3S, Instituto de Investigação e Inovação em Saude, Universidade do Porto; IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Saúl Ares
- Grupo Interdisciplinar de Sistemas Complejos (GISC) and Centro Nacional de Biotecnologia (CNB), CSIC, Madrid, Spain
| | | |
Collapse
|
4
|
Weasner BP, Brown HE, Policastro R, Weasner BM, Kumar JP. A CUT&RUN protocol to determine patterns of epigenetic marks in imaginal discs of Drosophila. STAR Protoc 2023; 4:101878. [PMID: 36867537 PMCID: PMC10009584 DOI: 10.1016/j.xpro.2022.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 03/04/2023] Open
Abstract
Cleavage Under Targets & Release Using Nucleases (CUT&RUN) sequencing is a technique used to study gene regulation. The protocol presented here has been used successfully to identify the pattern of histone modifications within the genome of the eye-antennal disc of the fruit fly, Drosophila melanogaster. In its present form, it can be used to analyze genomic features of other imaginal discs. It can be modified for use with other tissues and applications including identifying the pattern of transcription factor occupancy.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Haley E Brown
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
5
|
DeSantis DF, Neal SJ, Zhou Q, Pignoni F. Peripodial adherens junctions regulate Ajuba-Yorkie signaling to preserve fly eye morphology. Biol Open 2023; 12:bio059579. [PMID: 36912729 PMCID: PMC10084860 DOI: 10.1242/bio.059579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
The Drosophila eye develops from the larval eye disc, a flattened vesicle comprised of continuous retinal and peripodial epithelia (PE). The PE is an epithelium that plays a supporting role in retinal neurogenesis, but gives rise to cuticle in the adult. We report here that the PE is also necessary to preserve the morphology of the retinal epithelium. Depletion of the adherens junction (AJ) components β-Catenin (β-Cat), DE-Cadherin or α-Catenin from the PE leads to altered disc morphology, characterized by retinal displacement (RDis); so too does loss of the Ajuba protein Jub, an AJ-associated regulator of the transcriptional coactivator Yorkie (Yki). Restoring AJs or overexpressing Yki in β-Cat deficient PE results in suppression of RDis. Additional suppressors of AJ-dependent RDis include knockdown of Rho kinase (Rok) and Dystrophin (Dys). Furthermore, knockdown of βPS integrin (Mys) from the PE results in RDis, while overexpression of Mys can suppress RDis induced by the loss of β-Cat. We thus propose that AJ-Jub-Yki signaling in PE cells regulates PE cell contractile properties and/or attachment to the extracellular matrix to promote normal eye disc morphology.
Collapse
Affiliation(s)
- Dana F. DeSantis
- Department of Neuroscience and Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Scott J. Neal
- Department of Neuroscience and Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Qingxiang Zhou
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Francesca Pignoni
- Department of Neuroscience and Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Department of Cell and Developmental Biology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Effect of Sonic Hedgehog on the Regeneration of Epidermal Texture Patterns. Biomedicines 2022; 10:biomedicines10123099. [PMID: 36551853 PMCID: PMC9776110 DOI: 10.3390/biomedicines10123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Wounds on embryonic mouse fetuses regenerate up to embryonic day (E) 13, but after E14, the pattern is lost and a visible scar remains. We hypothesized that the sonic hedgehog (Shh), which is involved in patterning during development, is involved in the regeneration of texture. Embryos of ICR mice were surgically injured at E13, E14, and E15 and analyzed for the expression of Shh. For external Shh administration, recombinant Shh-containing slow-release beads were implanted in the wounds of mice. In contrast, cyclopamine was administered to wounds of adult mice to inhibit Shh. The expression of Shh was unaltered at E13, whereas it was upregulated in the epidermis of the wound from E14 onward. Implantation of recombinant Shh-containing beads into E13 wounds inhibited skin texture regeneration. Cyclopamine treatment inhibited epithelialization and thickening of the epidermis in the wounds of adult mice. In vitro, Shh promoted proliferation and inhibited the migration of epidermal keratinocytes through the activation of cyclin D proteins. Thus, our results suggested that the expression of Shh is involved in the regeneration of texture during wound healing, especially in epidermal keratinocyte migration and division, and could inhibit skin texture regeneration after E14.
Collapse
|
7
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
8
|
Shhedding New Light on the Role of Hedgehog Signaling in Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms23073630. [PMID: 35408986 PMCID: PMC8998466 DOI: 10.3390/ijms23073630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.
Collapse
|