1
|
Øvsthus M, van Swieten MMH, Puchades MA, Tocco C, Studer M, Bjaalie JG, Leergaard TB. Spatially integrated cortico-subcortical tracing data for analyses of rodent brain topographical organization. Sci Data 2024; 11:1214. [PMID: 39532918 PMCID: PMC11557934 DOI: 10.1038/s41597-024-04060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cerebral cortex extends axonal projections to several subcortical brain regions, including the striatum, thalamus, superior colliculus, and pontine nuclei. Experimental tract-tracing studies have shown that these subcortical projections are topographically organized, reflecting the spatial organization of sensory surfaces and body parts. Several public collections of mouse- and rat- brain tract-tracing data are available, with the Allen mouse brain connectivity atlas being most prominent. There, a large body of image data can be inspected, but it is difficult to combine data from different experiments and compare spatial distribution patterns. To enable co-visualization and comparison of topographical organization in mouse brain cortico-subcortical projections across experiments, we represent axonal labelling data as point data in a common 3D brain atlas space. We here present a collection of point-cloud data representing spatial distribution of corticostriatal, corticothalamic, corticotectal, and corticopontine projections in mice and exemplify how these spatially integrated point data can be used as references for experimental investigations of topographic organization in transgenic mice, and for cross-species comparison with corticopontine projections in rats.
Collapse
Affiliation(s)
- Martin Øvsthus
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maaike M H van Swieten
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Deloulme JC, Leclercq M, Deschaux O, Flore G, Capellano L, Tocco C, Braz BY, Studer M, Lahrech H. Structural interhemispheric connectivity defects in mouse models of BBSOAS: Insights from high spatial resolution 3D white matter tractography. Neurobiol Dis 2024; 193:106455. [PMID: 38408685 DOI: 10.1016/j.nbd.2024.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively. DTI is particularly valuable in unpinning structural tract connectivity defects of neural networks in NDDs. In this study, we used 3D DTI to unveil brain-specific tract defects in two mouse models lacking the Nr2f1 gene, which mutations in patients have been proven to cause an emerging NDD, called Bosch-Boonstra-Schaaf Optic Atrophy (BBSOAS). We aimed to investigate the impact of the lack of cortical Nr2f1 function on WM morphometry and tract microstructure quantifications. We found in both mutant mice partial loss of fibers and severe misrouting of the two major cortical commissural tracts, the corpus callosum, and the anterior commissure, as well as the two major hippocampal efferent tracts, the post-commissural fornix, and the ventral hippocampal commissure. DTI tract malformations were supported by 2D histology, 3D fluorescent imaging, and behavioral analyses. We propose that these interhemispheric connectivity impairments are consistent in explaining some cognitive defects described in BBSOAS patients, particularly altered information processing between the two brain hemispheres. Finally, our results highlight 3DDTI as a relevant neuroimaging modality that can provide appropriate morphometric biomarkers for further diagnosis of BBSOAS patients.
Collapse
Affiliation(s)
| | | | - Olivier Deschaux
- University Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Gemma Flore
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Napoli, Italy
| | - Laetitia Capellano
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France
| | - Chiara Tocco
- University Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Barbara Yael Braz
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France
| | - Michèle Studer
- University Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France.
| | | |
Collapse
|
3
|
Kleven H, Bjerke IE, Clascá F, Groenewegen HJ, Bjaalie JG, Leergaard TB. Waxholm Space atlas of the rat brain: a 3D atlas supporting data analysis and integration. Nat Methods 2023; 20:1822-1829. [PMID: 37783883 PMCID: PMC10630136 DOI: 10.1038/s41592-023-02034-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Volumetric brain atlases are increasingly used to integrate and analyze diverse experimental neuroscience data acquired from animal models, but until recently a publicly available digital atlas with complete coverage of the rat brain has been missing. Here we present an update of the Waxholm Space rat brain atlas, a comprehensive open-access volumetric atlas resource. This brain atlas features annotations of 222 structures, of which 112 are new and 57 revised compared to previous versions. It provides a detailed map of the cerebral cortex, hippocampal region, striatopallidal areas, midbrain dopaminergic system, thalamic cell groups, the auditory system and main fiber tracts. We document the criteria underlying the annotations and demonstrate how the atlas with related tools and workflows can be used to support interpretation, integration, analysis and dissemination of experimental rat brain data.
Collapse
Affiliation(s)
- Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvild E Bjerke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Francisco Clascá
- Department of Anatomy and Neuroscience, Autónoma de Madrid University, Madrid, Spain
| | - Henk J Groenewegen
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Reiten I, Olsen GM, Bjaalie JG, Witter MP, Leergaard TB. The efferent connections of the orbitofrontal, posterior parietal, and insular cortex of the rat brain. Sci Data 2023; 10:645. [PMID: 37735463 PMCID: PMC10514078 DOI: 10.1038/s41597-023-02527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
The orbitofrontal, posterior parietal, and insular cortices are sites of higher-order cognitive processing implicated in a wide range of behaviours, including working memory, attention guiding, decision making, and spatial navigation. To better understand how these regions contribute to such functions, we need detailed knowledge about the underlying structural connectivity. Several tract-tracing studies have investigated specific aspects of orbitofrontal, posterior parietal and insular connectivity, but a digital resource for studying the cortical and subcortical projections from these areas in detail is not available. We here present a comprehensive collection of brightfield and fluorescence microscopic images of serial coronal sections from 49 rat brain tract-tracing experiments, in which discrete injections of the anterograde tracers biotinylated dextran amine and/or Phaseolus vulgaris leucoagglutinin were placed in the orbitofrontal, parietal, or insular cortex. The images are spatially registered to the Waxholm Space Rat brain atlas. The image collection, with corresponding reference atlas maps, is suitable as a reference framework for investigating the brain-wide efferent connectivity of these cortical association areas.
Collapse
Affiliation(s)
- Ingrid Reiten
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Grethe M Olsen
- Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Kleven H, Reiten I, Blixhavn CH, Schlegel U, Øvsthus M, Papp EA, Puchades MA, Bjaalie JG, Leergaard TB, Bjerke IE. A neuroscientist's guide to using murine brain atlases for efficient analysis and transparent reporting. Front Neuroinform 2023; 17:1154080. [PMID: 36970659 PMCID: PMC10033636 DOI: 10.3389/fninf.2023.1154080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Brain atlases are widely used in neuroscience as resources for conducting experimental studies, and for integrating, analyzing, and reporting data from animal models. A variety of atlases are available, and it may be challenging to find the optimal atlas for a given purpose and to perform efficient atlas-based data analyses. Comparing findings reported using different atlases is also not trivial, and represents a barrier to reproducible science. With this perspective article, we provide a guide to how mouse and rat brain atlases can be used for analyzing and reporting data in accordance with the FAIR principles that advocate for data to be findable, accessible, interoperable, and re-usable. We first introduce how atlases can be interpreted and used for navigating to brain locations, before discussing how they can be used for different analytic purposes, including spatial registration and data visualization. We provide guidance on how neuroscientists can compare data mapped to different atlases and ensure transparent reporting of findings. Finally, we summarize key considerations when choosing an atlas and give an outlook on the relevance of increased uptake of atlas-based tools and workflows for FAIR data sharing.
Collapse
Affiliation(s)
- Heidi Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingrid Reiten
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Camilla H Blixhavn
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulrike Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin Øvsthus
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Eszter A Papp
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvild E Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Wu X, Sarpong GA, Zhang J, Sugihara I. Divergent topographic projection of cerebral cortical areas to overlapping cerebellar lobules through distinct regions of the pontine nuclei. Heliyon 2023; 9:e14352. [PMID: 37025843 PMCID: PMC10070096 DOI: 10.1016/j.heliyon.2023.e14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The massive axonal projection from the cerebrum to the cerebellum through the pontine nuclei supports the cerebrocerebellar coordination of motor and nonmotor functions. However, the cerebrum and cerebellum have distinct patterns of functional localization in their cortices. We addressed this issue by bidirectional neuronal tracing from 22 various locations of the pontine nuclei in the mouse in a comprehensive manner. Cluster analyses of the distribution patterns of labeled cortical pyramidal cells and cerebellar mossy fiber terminals classified all cases into six groups located in six different subareas of the pontine nuclei. The lateral (insular), mediorostral (cingulate and prefrontal), and caudal (visual and auditory) cortical areas of the cerebrum projected to the medial, rostral, and lateral subareas of the pontine nuclei, respectively. These pontine subareas then projected mainly to the crus I, central vermis, and paraflocculus divergently. The central (motor and somatosensory) cortical areas projected to the centrorostral, centrocaudal and caudal subareas of the pontine nuclei, which then projected mainly to the rostral and caudal lobules with a somatotopic arrangement. The results indicate a new pontine nuclei-centric view of the corticopontocerebellar projection: the generally parallel corticopontine projection to pontine nuclei subareas is relayed to the highly divergent pontocerebellar projection terminating in overlapping specific lobules of the cerebellum. Consequently, the mode of the pontine nuclei relay underlies the cerebellar functional organization.
Collapse
|
7
|
A corticostriatal projection for sound-evoked and anticipatory motor behavior following temporal expectation. Neuroreport 2023; 34:1-8. [PMID: 36504042 DOI: 10.1097/wnr.0000000000001851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to form predictions based on recent sensory experience is essential for behavioral adaptation to our ever-changing environment. Predictive encoding represented by neuronal activity has been observed in sensory cortex, but how this neuronal activity is transformed into anticipatory motor behavior remains unclear. Fiber photometry to investigate a corticostriatal projection from the auditory cortex to the posterior striatum during an auditory paradigm in mice, and pharmacological experiments in a task that induces a temporal expectation of upcoming sensory stimuli. We find that the auditory corticostriatal projection relays both sound-evoked stimulus information as well as predictive signals in relation to stimulus timing following rhythmic auditory stimulation. Pharmacological experiments suggest that this projection is required for the initiation of both sound-evoked and anticipatory licking behavior in an auditory associative-learning behavioral task, but not for the general recognition of presented auditory stimuli. This auditory corticostriatal projection carries predictive signals, and the posterior striatum is critical to the anticipatory stimulus-driven motor behavior.
Collapse
|
8
|
Leergaard TB, Bjaalie JG. Atlas-based data integration for mapping the connections and architecture of the brain. Science 2022; 378:488-492. [DOI: 10.1126/science.abq2594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Detailed knowledge about the neural connections among regions of the brain is key for advancing our understanding of normal brain function and changes that occur with aging and disease. Researchers use a range of experimental techniques to map connections at different levels of granularity in rodent animal models, but the results are often challenging to compare and integrate. Three-dimensional reference atlases of the brain provide new opportunities for cumulating, integrating, and reinterpreting research findings across studies. Here, we review approaches for integrating data describing neural connections and other modalities in rodent brain atlases and discuss how atlas-based workflows can facilitate brainwide analyses of neural network organization in relation to other facets of neuroarchitecture.
Collapse
Affiliation(s)
- Trygve B. Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G. Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Pathophysiological Heterogeneity of the BBSOA Neurodevelopmental Syndrome. Cells 2022; 11:cells11081260. [PMID: 35455940 PMCID: PMC9024734 DOI: 10.3390/cells11081260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch–Boonstra–Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype–phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence—whenever possible—for the existing genotype–phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.
Collapse
|