Dou F, Ji W, Xie Q, Wang J, Cao Y, Shi J. Transcriptome analysis and temporal expression patterns of wing development-related genes in Lymantria dispar (Lepidoptera: Erebidae).
ENVIRONMENTAL ENTOMOLOGY 2025:nvae111. [PMID:
40172523 DOI:
10.1093/ee/nvae111]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 04/04/2025]
Abstract
Spongy moth, Lymantria dispar Linnaeus (Lepidoptera: Erebidae), stands as a pervasive international threat, marked by its designation as one of the "world's 100 worst invasive species" by IUCN, owing to its voracious leaf-eating habits encompassing over 500 plant species. Its strong flight ability facilitates its spread and invasion. The present study aims to uncover differential gene expression, utilizing the Illumina Novaseq6000 sequencing platform for comprehensive transcriptome sequencing and bioinformatic analysis of total RNA extracted from larvae and pupae. Results revealed pivotal processes of protein functional structure conformation, transport, and signal transduction in functional gene annotation during the 2 developmental stages of spongy moth. 18 functional genes, namely, Distal-less (Dll), Wingless (Wg), Decapentaplegic (Dpp), Hedgehog (Hh), Cubitus interruptus (Ci), Patched (Ptc), Apterous (Ap), Serrate (Ser), Fringe (Fng), Achaete (Ac), Engrailed (En), Vestigial (Vg), Scute (Sc), Invected (Inv), Scalloped (Sd), Ultrabithorax (Ubx), Serum Response Factor (SRF), and Spalt-major, associated with wing development were identified, and their expression levels were meticulously assessed through real-time quantitative PCR (RT-qPCR) in 1st-6th instar larvae and male and female pupae wing discs. The results showed that 18 genes exhibited expression. Furthermore, the relative expression values of wing development-related genes were significantly higher in the pupae stage than in the larval stage. The relative expression values of male and female pupae were also significantly different. The RT-qPCR results were in general agreement with the results of transcriptome analysis. This study establishes a foundational understanding of the developmental mechanisms governing the formation of spongy moth wings.
Collapse