1
|
Clayworth KV, Auld VJ. Dystroglycan mediates polarized deposition of laminin and axon ensheathment by wrapping glia. Development 2025; 152:dev204391. [PMID: 40309933 DOI: 10.1242/dev.204391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
The Drosophila peripheral nerve contains multiple layers of glial cells and an overlying extracellular matrix, which together support neuronal survival and function. The innermost glial layer, the wrapping glia (WG), ensheathes axons and facilitates action potential conduction. Recent work has identified involvement of laminin, a heterotrimeric extracellular matrix protein complex in WG development. However, the localization and function of laminin in the WG remains poorly understood. Here, we found that the α subunit, Laminin A (LanA), is dynamically expressed by WG, and loss of LanA results in a reduction in WG-axon contact. The deposition of LanA by WG is concentrated between WG and axons and is deposited preferentially around motor axons versus sensory axons. We identified Crag, a GDP-GTP exchange protein, as a factor that controls LanA deposition. We found that Dystroglycan also controls LanA deposition by the WG, and that both Dystroglycan and Dystrophin are present and necessary for WG ensheathment of axons. Thus, WG contain the highly conserved Dystroglycan/Dystrophin complex, which not only associates with deposited laminin but is necessary for the polarized deposition of laminin and the correct ensheathment of peripheral nerve axons.
Collapse
Affiliation(s)
- Katherine V Clayworth
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Vanessa J Auld
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
2
|
Castañeda-Sampedro A, Alcorta E, Gomez-Diaz C. Cell-specific genetic expression profile of antennal glia in Drosophila reveals candidate genes in neuron-glia interactions. Sci Rep 2025; 15:5493. [PMID: 39953089 PMCID: PMC11828885 DOI: 10.1038/s41598-025-87834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Understanding the genetic basis of neuron-glia interactions is essential to comprehend the function of glia. Recent studies on Drosophila antennal glia Mz317 has shown their role in olfactory perception. In the antenna, the Mz317-type glia tightly envelops the somas of olfactory sensory neurons and axons already covered by wrapping glia. Here, we investigate candidate genes involved in glial regulation in olfactory reception of Drosophila. Targeted transcriptional profiling reveals that Mz317 glial cells express 21% of Drosophila genes emphasizing functions related to cell junction organization, synaptic transmission, and chemical stimuli response. Comparative gene expression analysis with other glial cell types in both the antenna and brain provides a differential description based on cell type, offers candidate genes for further investigation, and contributes to our understanding of neuron-glia communication in olfactory signaling. Additionally, similarities between the molecular signatures of peripheral glia in Drosophila and vertebrates highlight the utility of model organisms in elucidating glial cell functions in complex systems.
Collapse
Affiliation(s)
- Ana Castañeda-Sampedro
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain
| | - Esther Alcorta
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain.
| | - Carolina Gomez-Diaz
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain.
| |
Collapse
|
3
|
Garcia-Ruiz B, Jiménez E, Aranda S, Verdolini N, Gutiérrez-Zotes A, Sáez C, Losantos E, Alonso-Lana S, Fatjó-Vilas M, Sarró S, Torres L, Panicalli F, Bonnin CDM, Pomarol-Clotet E, Vieta E, Vilella E. Associations of altered leukocyte DDR1 promoter methylation and childhood trauma with bipolar disorder and suicidal behavior in euthymic patients. Mol Psychiatry 2024; 29:2478-2486. [PMID: 38503928 DOI: 10.1038/s41380-024-02522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Altered DNA methylation (DNAm) patterns of discoidin domain receptor 1 (DDR1) have been found in the blood and brain of patients with schizophrenia (SCZ) and the brain of patients with bipolar disorder (BD). Childhood trauma (CT) is associated with changes in DNAm that in turn are related to suicidal behavior (SB) in patients with several psychiatric disorders. Here, using MassARRAY® technology, we studied 128 patients diagnosed with BD in remission and 141 healthy controls (HCs) to compare leukocyte DDR1 promoter DNAm patterns between patients and HCs and between patients with and without SB. Additionally, we investigated whether CT was associated with DDR1 DNAm and mediated SB. We found hypermethylation at DDR1 cg19215110 and cg23953820 sites and hypomethylation at cg14279856 and cg03270204 sites in patients with BD compared to HCs. Logistic regression models showed that hypermethylation of DDR1 cg23953820 but not cg19215110 and CT were risk factors for BD, while cg14279856 and cg03270204 hypomethylation were protective factors. In patients, CT was a risk factor for SB, but DDR1 DNAm, although associated with CT, did not mediate the association of CT with SB. This is the first study demonstrating altered leukocyte DDR1 promoter DNAm in euthymic patients with BD. We conclude that altered DDR1 DNAm may be related to immune and inflammatory mechanisms and could be a potential blood biomarker for the diagnosis and stratification of psychiatric patients.
Collapse
Affiliation(s)
- Beatriz Garcia-Ruiz
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Reus, Spain
| | - Esther Jiménez
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelon, Spain
| | - Selena Aranda
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Norma Verdolini
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelon, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
| | - Alfonso Gutiérrez-Zotes
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Sáez
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
| | | | - Silvia Alonso-Lana
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
- Research Center and Memory Clinic Fundació ACE, Barcelona, Spain
- Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mar Fatjó-Vilas
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Sarró
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
| | - Llanos Torres
- Hospital Mare de Déu de la Mercè, Unitat Polivalent, Germanes Hospitalàries, Barcelona, Spain
| | - Francesco Panicalli
- Benito Menni Complex Assistencial en Salut Mental, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - Caterina Del Mar Bonnin
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelon, Spain
| | - Edith Pomarol-Clotet
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
| | - Eduard Vieta
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelon, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain.
- Universitat Rovira i Virgili (URV), Reus, Spain.
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Anand MAV, Manjula KS, Wang CZ. Functional Role of DDR1 in Oligodendrocyte Signaling Mechanism in Association with Myelination and Remyelination Process in the Central Nerve System. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:161-173. [PMID: 39175192 DOI: 10.4103/ejpi.ejpi-d-24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
ABSTRACT Multiple sclerosis (MS) is a complicated, inflammatory disease that causes demyelination of the central nervous system (CNS), resulting in a variety of neurological abnormalities. Over the past several decades, different animal models have been used to replicate the clinical symptoms and neuropathology of MS. The experimental model of experimental autoimmune/allergic encephalomyelitis (EAE) and viral and toxin-induced model was widely used to investigate the clinical implications of MS. Discoidin domain receptor 1 (DDR1) signaling in oligodendrocytes (OL) brings a new dimension to our understanding of MS pathophysiology. DDR1 is effectively involved in the OL during neurodevelopment and remyelination. It has been linked to many cellular processes, including migration, invasion, proliferation, differentiation, and adhesion. However, the exact functional involvement of DDR1 in developing OL and myelinogenesis in the CNS remains undefined. In this review, we critically evaluate the current literature on DDR1 signaling in OL and its proliferation, migration, differentiation, and myelination mechanism in OL in association with the progression of MS. It increases our knowledge of DDR1 in OL as a novel target molecule for oligodendrocyte-associated diseases in the CNS, including MS.
Collapse
Affiliation(s)
| | - Kumar Shivamadhaiah Manjula
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
5
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Aranda S, Jiménez E, Canales-Rodríguez EJ, Verdolini N, Alonso S, Sepúlveda E, Julià A, Marsal S, Bobes J, Sáiz PA, García-Portilla P, Menchón JM, Crespo JM, González-Pinto A, Pérez V, Arango C, Sierra P, Sanjuán J, Pomarol-Clotet E, Vieta E, Vilella E. Processing speed mediates the relationship between DDR1 and psychosocial functioning in euthymic patients with bipolar disorder presenting psychotic symptoms. Mol Psychiatry 2024; 29:2050-2058. [PMID: 38374360 DOI: 10.1038/s41380-024-02480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
The DDR1 locus is associated with the diagnosis of schizophrenia and with processing speed in patients with schizophrenia and first-episode psychosis. Here, we investigated whether DDR1 variants are associated with bipolar disorder (BD) features. First, we performed a case‒control association study comparing DDR1 variants between patients with BD and healthy controls. Second, we performed linear regression analyses to assess the associations of DDR1 variants with neurocognitive domains and psychosocial functioning. Third, we conducted a mediation analysis to explore whether neurocognitive impairment mediated the association between DDR1 variants and psychosocial functioning in patients with BD. Finally, we studied the association between DDR1 variants and white matter microstructure. We did not find any statistically significant associations in the case‒control association study; however, we found that the combined genotypes rs1264323AA-rs2267641AC/CC were associated with worse neurocognitive performance in patients with BD with psychotic symptoms. In addition, the combined genotypes rs1264323AA-rs2267641AC/CC were associated with worse psychosocial functioning through processing speed. We did not find correlations between white matter microstructure abnormalities and the neurocognitive domains associated with the combined genotypes rs1264323AA-rs2267641AC/CC. Overall, the results suggest that DDR1 may be a marker of worse neurocognitive performance and psychosocial functioning in patients with BD, specifically those with psychotic symptoms.
Collapse
Affiliation(s)
- Selena Aranda
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Universitat Rovira i Virgili, Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Jiménez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Psychiatry, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain
| | - Erick J Canales-Rodríguez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Germanes Hospitalàries Research Foundation, Sant Boi de Llobregat, Barcelona, Spain
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Norma Verdolini
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
- FIDMAG Germanes Hospitalàries Research Foundation, Sant Boi de Llobregat, Barcelona, Spain
| | - Silvia Alonso
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Esteban Sepúlveda
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Universitat Rovira i Virgili, Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Julio Bobes
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Universidad de Oviedo, Oviedo, Spain
- nstituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA) Oviedo, Oviedo, Spain
| | - Pilar A Sáiz
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Universidad de Oviedo, Oviedo, Spain
- nstituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA) Oviedo, Oviedo, Spain
| | - Paz García-Portilla
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Universidad de Oviedo, Oviedo, Spain
- nstituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA) Oviedo, Oviedo, Spain
| | - Jose M Menchón
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - José M Crespo
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Ana González-Pinto
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain
- Araba University Hospital, Bioaraba Research Institute, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Víctor Pérez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Hospital de Mar. Mental Health Institute, Barcelona, Spain
- Neurosciences Research Unit, Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Celso Arango
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Institute of Psychiatry and Mental Health, Madrid, Spain
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Universidad Complutense, Madrid, Spain
| | - Pilar Sierra
- La Fe University and Polytechnic Hospital, Valencia, Spain
- Department of Psychiatry, School of Medicine, University of Valencia, Valencia, Spain
| | - Julio Sanjuán
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, School of Medicine, University of Valencia, Valencia, Spain
| | - Edith Pomarol-Clotet
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Germanes Hospitalàries Research Foundation, Sant Boi de Llobregat, Barcelona, Spain
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Elisabet Vilella
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain.
- Hospital Universitari Institut Pere Mata, Reus, Spain.
- Universitat Rovira i Virgili, Reus, Spain.
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Clayworth K, Gilbert M, Auld V. Cell Biology Techniques for Studying Drosophila Peripheral Glial Cells. Cold Spring Harb Protoc 2024; 2024:pdb.top108159. [PMID: 37399179 DOI: 10.1101/pdb.top108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Glial cells are essential for the proper development and functioning of the peripheral nervous system (PNS). The ability to study the biology of glial cells is therefore critical for our ability to understand PNS biology and address PNS maladies. The genetic and proteomic pathways underlying vertebrate peripheral glial biology are understandably complex, with many layers of redundancy making it sometimes difficult to study certain facets of PNS biology. Fortunately, many aspects of vertebrate peripheral glial biology are conserved with those of the fruit fly, Drosophila melanogaster With simple and powerful genetic tools and fast generation times, Drosophila presents an accessible and versatile model for studying the biology of peripheral glia. We introduce here three techniques for studying the cell biology of peripheral glia of Drosophila third-instar larvae. With fine dissection tools and common laboratory reagents, third-instar larvae can be dissected, with extraneous tissues removed, revealing the central nervous system (CNS) and PNS to be processed using a standard immunolabeling protocol. To improve the resolution of peripheral nerves in the z-plane, we describe a cryosectioning method to achieve 10- to 20-µm thick coronal sections of whole larvae, which can then be immunolabeled using a modified version of standard immunolabeling techniques. Finally, we describe a proximity ligation assay (PLA) for detecting close proximity between two proteins-thus inferring protein interaction-in vivo in third-instar larvae. These methods, further described in our associated protocols, can be used to improve our understanding of Drosophila peripheral glia biology, and thus our understanding of PNS biology.
Collapse
Affiliation(s)
- Katherine Clayworth
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mary Gilbert
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vanessa Auld
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
8
|
Aranda S, Muntané G, Vilella E. Coexpression network analysis of the adult brain sheds light on the pathogenic mechanism of DDR1 in schizophrenia and bipolar disorder. Transl Psychiatry 2024; 14:112. [PMID: 38395959 PMCID: PMC10891045 DOI: 10.1038/s41398-024-02823-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
DDR1 has been linked to schizophrenia (SCZ) and bipolar disorder (BD) in association studies. DDR1 encodes 58 distinct transcripts, which can be translated into five isoforms (DDR1a-e) and are expressed in the brain. However, the transcripts expressed in each brain cell type, their functions and their involvement in SCZ and BD remain unknown. Here, to infer the processes in which DDR1 transcripts are involved, we used transcriptomic data from the human brain dorsolateral prefrontal cortex of healthy controls (N = 936) and performed weighted gene coexpression network analysis followed by enrichment analyses. Then, to explore the involvement of DDR1 transcripts in SCZ (N = 563) and BD (N = 222), we studied the association of coexpression modules with disease and performed differential expression and transcript significance analyses. Some DDR1 transcripts were distributed across five coexpression modules identified in healthy controls (MHC). MHC1 and MHC2 were enriched in the cell cycle and proliferation of astrocytes and OPCs; MHC3 and MHC4 were enriched in oligodendrocyte differentiation and myelination; and MHC5 was enriched in neurons and synaptic transmission. Most of the DDR1 transcripts associated with SCZ and BD pertained to MHC1 and MHC2. Altogether, our results suggest that DDR1 expression might be altered in SCZ and BD via the proliferation of astrocytes and OPCs, suggesting that these processes are relevant in psychiatric disorders.
Collapse
Affiliation(s)
- Selena Aranda
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Universitat Rovira i Virgili, Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Gerard Muntané
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Universitat Rovira i Virgili, Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Elisabet Vilella
- Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain.
- Hospital Universitari Institut Pere Mata, Reus, Spain.
- Universitat Rovira i Virgili, Reus, Spain.
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Fernandes VM, Auld V, Klämbt C. Glia as Functional Barriers and Signaling Intermediaries. Cold Spring Harb Perspect Biol 2024; 16:a041423. [PMID: 38167424 PMCID: PMC10759988 DOI: 10.1101/cshperspect.a041423] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Glia play a crucial role in providing metabolic support to neurons across different species. To do so, glial cells isolate distinct neuronal compartments from systemic signals and selectively transport specific metabolites and ions to support neuronal development and facilitate neuronal function. Because of their function as barriers, glial cells occupy privileged positions within the nervous system and have also evolved to serve as signaling intermediaries in various contexts. The fruit fly, Drosophila melanogaster, has significantly contributed to our understanding of glial barrier development and function. In this review, we will explore the formation of the glial sheath, blood-brain barrier, and nerve barrier, as well as the significance of glia-extracellular matrix interactions in barrier formation. Additionally, we will delve into the role of glia as signaling intermediaries in regulating nervous system development, function, and response to injury.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London UC1E 6DE, United Kingdom
| | - Vanessa Auld
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, University of Münster, Münster 48149, Germany
| |
Collapse
|
10
|
Baldenius M, Kautzmann S, Nanda S, Klämbt C. Signaling Pathways Controlling Axonal Wrapping in Drosophila. Cells 2023; 12:2553. [PMID: 37947631 PMCID: PMC10647682 DOI: 10.3390/cells12212553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The rapid transmission of action potentials is an important ability that enables efficient communication within the nervous system. Glial cells influence conduction velocity along axons by regulating the radial axonal diameter, providing electrical insulation as well as affecting the distribution of voltage-gated ion channels. Differentiation of these wrapping glial cells requires a complex set of neuron-glia interactions involving three basic mechanistic features. The glia must recognize the axon, grow around it, and eventually arrest its growth to form single or multiple axon wraps. This likely depends on the integration of numerous evolutionary conserved signaling and adhesion systems. Here, we summarize the mechanisms and underlying signaling pathways that control glial wrapping in Drosophila and compare those to the mechanisms that control glial differentiation in mammals. This analysis shows that Drosophila is a beneficial model to study the development of even complex structures like myelin.
Collapse
Affiliation(s)
| | | | | | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, Faculty of Biology, University of Münster, Röntgenstraße 16, D-48149 Münster, Germany; (M.B.)
| |
Collapse
|
11
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
12
|
Corty MM, Coutinho-Budd J. Drosophila glia take shape to sculpt the nervous system. Curr Opin Neurobiol 2023; 79:102689. [PMID: 36822142 PMCID: PMC10023329 DOI: 10.1016/j.conb.2023.102689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 02/23/2023]
Abstract
The importance of glial cells has become increasingly apparent over the past 20 years, yet compared to neurons we still know relatively little about these essential cells. Most critical glial cell functions are conserved in Drosophila glia, often using the same key molecular players as their vertebrate counterparts. The relative simplicity of the Drosophila nervous system, combined with a vast array of powerful genetic tools, allows us to further dissect the molecular composition and functional roles of glia in ways that would be much more cumbersome or not possible in higher vertebrate systems. Importantly, Drosophila genetics allow for in vivo manipulation, and their transparent body wall enables in vivo imaging of glia in intact animals throughout early development. Here we discuss recent advances in Drosophila glial development detailing how these cells take on their mature morphologies and interact with neurons to perform their important functional roles in the nervous system.
Collapse
Affiliation(s)
- Megan M Corty
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA. https://twitter.com/@megancphd
| | - Jaeda Coutinho-Budd
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
13
|
Lassetter AP, Corty MM, Barria R, Sheehan AE, Hill JQ, Aicher SA, Fox AN, Freeman MR. Glial TGFβ activity promotes neuron survival in peripheral nerves. J Cell Biol 2023; 222:e202111053. [PMID: 36399182 PMCID: PMC9679965 DOI: 10.1083/jcb.202111053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/06/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
Maintaining long, energetically demanding axons throughout the life of an animal is a major challenge for the nervous system. Specialized glia ensheathe axons and support their function and integrity throughout life, but glial support mechanisms remain poorly defined. Here, we identified a collection of secreted and transmembrane molecules required in glia for long-term axon survival in vivo. We showed that the majority of components of the TGFβ superfamily are required in glia for sensory neuron maintenance but not glial ensheathment of axons. In the absence of glial TGFβ signaling, neurons undergo age-dependent degeneration that can be rescued either by genetic blockade of Wallerian degeneration or caspase-dependent death. Blockade of glial TGFβ signaling results in increased ATP in glia that can be mimicked by enhancing glial mitochondrial biogenesis or suppressing glial monocarboxylate transporter function. We propose that glial TGFβ signaling supports axon survival and suppresses neurodegeneration through promoting glial metabolic support of neurons.
Collapse
Affiliation(s)
| | - Megan M. Corty
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Romina Barria
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Amy E. Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Jo Q. Hill
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - Sue A. Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - A. Nicole Fox
- University of Massachusetts Medical School, Worcester, MA
| | - Marc R. Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|