1
|
Ramon-Mateu J, Ferraioli A, Teixidó N, Domart-Coulon I, Houliston E, Copley RR. Aboral cell types of Clytia and coral larvae have shared features and link taurine to the regulation of settlement. SCIENCE ADVANCES 2025; 11:eadv1159. [PMID: 40378222 DOI: 10.1126/sciadv.adv1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Larval settlement is of interest both for ecologists and for evolutionary biologists, who have proposed that anterior sensory systems for substrate selection provided the basis for animal brains. Nevertheless, the cellular and molecular regulation of settlement, including in Cnidaria (corals, jellyfish, sea anemones, and hydroids), is not well understood. We generated and compared anterior (aboral) transcriptomes and single-cell RNA sequencing datasets from the planula larvae of three cnidarian species: the jellyfish Clytia hemisphaerica and the corals Astroides calycularis and Pocillopora acuta. Integrating these datasets and characterizing aboral cell types, we defined common cellular features of the planula aboral end and identified clade-specific specializations in cell types. Among shared features were genes implicated in taurine uptake and catabolism expressed in distinct specialized aboral cell types. In functional assays using both Clytia and Astroides planulae, exogenous taurine inhibited settlement. These findings define the molecular and cellular architecture of the planula aboral pole and implicate localized taurine destruction in regulating settlement.
Collapse
Affiliation(s)
- Julia Ramon-Mateu
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Anna Ferraioli
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Núria Teixidó
- National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Center, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy
- Laboratoire d'Océanographie de Villefranche (LOV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Isabelle Domart-Coulon
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM) (UMR7245), Muséum National d'Histoire Naturelle (MNHN), CNRS, CP54, 63 Rue Buffon, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| |
Collapse
|
2
|
Kawamura K, Sekida S, Nishitsuji K, Satoh N. The property of larval cells of the scleractinian coral, Acropora tenuis, deduced from in vitro cultured cells. Dev Growth Differ 2025; 67:119-135. [PMID: 39982014 PMCID: PMC11997738 DOI: 10.1111/dgd.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
In previous studies, we have established approximately 15 cultured cell-lines derived from planula larvae of Acropora tenuis. Based on their morphology and behavior, these cells were classified into three types, flattened amorphous cells (FAmCs), vacuolated adherent cells (VAdCs), and small smooth cells (SSmCs). FAmCs include fibroblast-like cells and spherical, brilliant brown cells (BBrCs), which are transformable to each other. To examine the larval origin of the three cell types, we raised antibodies: anti-AtMLRP2 that appears to recognize FAmC, anti-AtAHNAK for BBrC, anti-AtSOMP5 and anti-AtEndoG for SSmC, and anti-AtGal and anti-AtFat4 for VAdC, respectively. Anti-AtMLRP2 antibody stained in vivo stomodeum and neuroblast-like cells embedded in larval ectoderm around the aboral pole. Anti-AtAHNAK antibody stained neuron-like and neuroblast-like cells, both of which were also stained with neuron-specific tubulin β-3 antibody. These results suggest that in vitro BBrCs and in vivo neuroblast-like cells share neuronal properties in common. Two antibodies for SSmCs, anti-AtSOMP5 and anti-AtEndoG, stained larval ectoderm cells, suggesting that SSmCs have larval ectoderm properties. Two antibodies for VAdCs, anti-AtGal and anti-AtFat4, stained larval endoderm cells, suggesting that VAdCs have larval endoderm properties. Therefore, the in vitro cell lines appear to retain properties of the stomodeum, neuroblast, ectoderm, or endoderm. Each of them may be used in future investigations to reveal cellular and molecular properties of cell types of coral larvae, such as the potential for symbiosis.
Collapse
Affiliation(s)
- Kaz Kawamura
- Department of Applied ScienceKochi UniversityKochiJapan
| | - Satoko Sekida
- Kuroshio Science Unit, Multidisciplinary Science ClusterKochi UniversityKochiJapan
| | - Koki Nishitsuji
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
- Department of Marine Science and TechnologyFukui Prefectural UniversityObamaFukuiJapan
| | - Noriyuki Satoh
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
3
|
Gattoni G, Keitley D, Sawle A, Benito-Gutiérrez E. An ancient apical patterning system sets the position of the forebrain in chordates. SCIENCE ADVANCES 2025; 11:eadq4731. [PMID: 39854450 PMCID: PMC11758999 DOI: 10.1126/sciadv.adq4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates. Using functional approaches, we show Wnt signaling regulating this co-expression module in amphioxus, like the aGRN in echinoderms, and that its overactivation suppresses forebrain identity. This suggests a previously undescribed role for Wnt signaling in amphioxus in determining the position of the forebrain. We propose this Wnt-regulated gene co-expression module as a possible mechanism by which the brain set antero-dorsally early in chordate evolution.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ashley Sawle
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | | |
Collapse
|
4
|
Pickett CJ, Ryan J, Davidson B. Acquisition of polymorphism in the chordate doliolids. Integr Comp Biol 2024; 64:1255-1268. [PMID: 38992257 DOI: 10.1093/icb/icae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
In polymorphic organisms, a single genome is deployed to program numerous, morphologically distinct body plans within a colony. This complex life history trait has evolved independently within a limited subset of animal taxa. Reconstructing the underlying genetic, cellular, and developmental changes that drove the emergence of polymorphic colonies represents a promising avenue for exploring diversifying selection and resulting impacts on developmental gene regulatory networks. Doliolids are the only polymorphic chordate, deploying a single genome to program distinct morphs specialized for locomotion, feeding, asexual, or sexual reproduction. In this review, we provide a detailed summary of doliolid anatomy, development, taxonomy, ecology, life history, and the cellular basis for doliolid polymorphism. In order to frame the potential evolutionary and developmental insights that could be gained by studying doliolids, we provide a broader overview of polymorphism. We then discuss how comparative studies of polymorphic cnidarians have begun to illuminate the genetic basis of this unusual and complex life history strategy. We then provide a summary of life history divergence in the chordates, particularly among doliolids and their polymorphic cousins, the salps and pyrosomes.
Collapse
Affiliation(s)
- C J Pickett
- Department of Biology, Swarthmore College, 19081, Swarthmore, USA
| | - Joseph Ryan
- Whitney Laboratory for Marine Bioscience, 32080, St. Augustine, USA
| | - Bradley Davidson
- Department of Biology, Swarthmore College, 19081, Swarthmore, USA
| |
Collapse
|
5
|
de Miguel Bonet MDM, Hartenstein V. Ultrastructural analysis and 3D reconstruction of the frontal sensory-glandular complex and its neural projections in the platyhelminth Macrostomum lignano. Cell Tissue Res 2024:10.1007/s00441-024-03901-x. [PMID: 38898317 DOI: 10.1007/s00441-024-03901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
The marine microturbellarian Macrostomum lignano (Platyhelminthes, Rhabditophora) is an emerging laboratory model used by a growing community of researchers because it is easy to cultivate, has a fully sequenced genome, and offers multiple molecular tools for its study. M. lignano has a compartmentalized brain that receives sensory information from receptors integrated in the epidermis. Receptors of the head, as well as accompanying glands and specialized epidermal cells, form a compound sensory structure called the frontal glandular complex. In this study, we used semi-serial transmission electron microscopy (TEM) to document the types, ultrastructure, and three-dimensional architecture of the cells of the frontal glandular complex. We distinguish a ventral compartment formed by clusters of type 1 (multiciliated) sensory receptors from a central domain where type 2 (collar) sensory receptors predominate. Six different types of glands (rhammite glands, mucoid glands, glands with aster-like and perimaculate granula, vacuolated glands, and buckle glands) are closely associated with type 1 sensory receptors. Endings of a seventh type of gland (rhabdite gland) define a dorsal domain of the frontal glandular complex. A pair of ciliary photoreceptors is closely associated with the base of the frontal glandular complex. Bundles of dendrites, connecting the receptor endings with their cell bodies which are located in the brain, form the (frontal) peripheral nerves. Nerve fibers show a varicose structure, with thick segments alternating with thin segments, and are devoid of a glial layer. This distinguishes platyhelminths from larger and/or more complex invertebrates whose nerves are embedded in prominent glial sheaths.
Collapse
Affiliation(s)
- Maria Del Mar de Miguel Bonet
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Biomedicine and Biotechnology, University of Alcalá (UAH), Madrid, Spain
- BioWorld Science, Clarivate Analytics, Barcelona, Spain
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
6
|
Sabin KZ, Chen S, Hill EM, Weaver KJ, Yonke J, Kirkman M, Redwine WB, Klompen AML, Zhao X, Guo F, McKinney MC, Dewey JL, Gibson MC. Graded FGF activity patterns distinct cell types within the apical sensory organ of the sea anemone Nematostella vectensis. Dev Biol 2024; 510:50-65. [PMID: 38521499 DOI: 10.1016/j.ydbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.
Collapse
Affiliation(s)
- Keith Z Sabin
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Eric M Hill
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kyle J Weaver
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jacob Yonke
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | | | - Xia Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
7
|
Thiel D, Yañez Guerra LA, Kieswetter A, Cole AG, Temmerman L, Technau U, Jékely G. Large-scale deorphanization of Nematostella vectensis neuropeptide G protein-coupled receptors supports the independent expansion of bilaterian and cnidarian peptidergic systems. eLife 2024; 12:RP90674. [PMID: 38727714 PMCID: PMC11087051 DOI: 10.7554/elife.90674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) - the most common receptors of bilaterian neuropeptides - but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.
Collapse
Affiliation(s)
- Daniel Thiel
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | | | - Amanda Kieswetter
- Animal Physiology & Neurobiology, Department of Biology, University of LeuvenLeuvenBelgium
| | - Alison G Cole
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of ViennaViennaAustria
| | - Liesbet Temmerman
- Animal Physiology & Neurobiology, Department of Biology, University of LeuvenLeuvenBelgium
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of ViennaViennaAustria
| | - Gáspár Jékely
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Centre for Organismal Studies (COS), Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
8
|
Birch S, McGee L, Provencher C, DeMio C, Plachetzki D. Phototactic preference and its genetic basis in the planulae of the colonial Hydrozoan Hydractinia symbiolongicarpus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.585045. [PMID: 38617216 PMCID: PMC11014542 DOI: 10.1101/2024.03.28.585045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Marine organisms with sessile adults commonly possess motile larval stages that make settlement decisions based on integrating environmental sensory cues. Phototaxis, the movement toward or away from light, is a common behavioral characteristic of aquatic and marine metazoan larvae, and of algae, protists, and fungi. In cnidarians, behavioral genomic investigations of motile planulae larvae have been conducted in anthozoans (corals and sea anemones) and scyphozoans (true jellyfish), but such studies are presently lacking in hydrozoans. Here, we examined the behavioral genomics of phototaxis in planulae of the hydrozoan Hydractinia symbiolongicarpus. Results A behavioral phototaxis study of day 3 planulae indicated preferential phototaxis to green (523 nm) and blue (470 nm) wavelengths of light, but not red (625 nm) wavelengths. A developmental transcriptome study where planula larvae were collected from four developmental time points for RNA-seq revealed that many genes critical to the physiology and development of ciliary photosensory systems are dynamically expressed in planula development and correspond to the expression of phototactic behavior. Microscopical investigations using immunohistochemistry and in situ hybridization demonstrated that several transcripts with predicted function in photoreceptors, including cnidops class opsin, CNG ion channel, and CRX-like transcription factor, localize to ciliated bipolar sensory neurons of the aboral sensory neural plexus, which is associated with the direction of phototaxis and the site of settlement. Conclusions The phototactic preference displayed by planulae is consistent with the shallow sandy marine habitats they experience in nature. Our genomic investigations add further evidence of similarities between cnidops-mediated photoreceptors of hydrozoans and other cnidarians and ciliary photoreceptors as found in the eyes of humans and other bilaterians, suggesting aspects of their shared evolutionary history.
Collapse
Affiliation(s)
- Sydney Birch
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
- Department of Biological Sciences; University of North Carolina Charlotte; Charlotte, NC, 28223; USA
| | - Lindy McGee
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
| | - Curtis Provencher
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
| | - Christine DeMio
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
| | - David Plachetzki
- Department of Molecular, Cellular, and Biomedical Sciences; University of New Hampshire; Durham, NH, 03824; USA
| |
Collapse
|
9
|
Cole AG, Steger J, Hagauer J, Denner A, Ferrer Murguia P, Knabl P, Narayanaswamy S, Wick B, Montenegro JD, Technau U. Updated single cell reference atlas for the starlet anemone Nematostella vectensis. Front Zool 2024; 21:8. [PMID: 38500146 PMCID: PMC10946136 DOI: 10.1186/s12983-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The recent combination of genomics and single cell transcriptomics has allowed to assess a variety of non-conventional model organisms in much more depth. Single cell transcriptomes can uncover hidden cellular complexity and cell lineage relationships within organisms. The recent developmental cell atlases of the sea anemone Nematostella vectensis, a representative of the basally branching Cnidaria, has provided new insights into the development of all cell types (Steger et al Cell Rep 40(12):111370, 2022; Sebé-Pedrós et al. Cell 173(6):1520-1534.e20). However, the mapping of the single cell reads still suffers from relatively poor gene annotations and a draft genome consisting of many scaffolds. RESULTS Here we present a new wildtype resource of the developmental single cell atlas, by re-mapping of sequence data first published in Steger et al. (2022) and Cole et al. (Nat Commun 14(1):1747, 2023), to the new chromosome-level genome assembly and corresponding gene models in Zimmermann et al. (Nat Commun 14, 8270 (2023). https://doi.org/10.1038/s41467-023-44080-7 ). We expand the pre-existing dataset through the incorporation of additional sequence data derived from the capture and sequencing of cell suspensions from four additional samples: 24 h gastrula, 2d planula, an inter-parietal region of the bodywall from a young unsexed animal, and another adult mesentery from a mature male animal. CONCLUSION Our analyses of the full cell-state inventory provide transcriptomic signatures for 127 distinct cell states, of which 47 correspond to neuroglandular subtypes. We also identify two distinct putatively immune-related transcriptomic profiles that segregate between the inner and outer cell layers. Furthermore, the new gene annotation Nv2 has markedly improved the mapping on the single cell transcriptome data and will therefore be of great value for the community and anyone using the dataset.
Collapse
Affiliation(s)
- Alison G Cole
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Julia Steger
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julia Hagauer
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Andreas Denner
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Patricio Ferrer Murguia
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sanjay Narayanaswamy
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Brittney Wick
- UCSC Cellbrowser, University of California, Santa Cruz, USA
| | - Juan D Montenegro
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Max Perutz Labs, University of Vienna, Dr. Bohrgasse 9, 1090, Vienna, Austria.
| |
Collapse
|
10
|
Mah JL, Dunn CW. Cell type evolution reconstruction across species through cell phylogenies of single-cell RNA sequencing data. Nat Ecol Evol 2024; 8:325-338. [PMID: 38182680 DOI: 10.1038/s41559-023-02281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/16/2023] [Indexed: 01/07/2024]
Abstract
The origin and evolution of cell types has emerged as a key topic in evolutionary biology. Driven by rapidly accumulating single-cell datasets, recent attempts to infer cell type evolution have largely been limited to pairwise comparisons because we lack approaches to build cell phylogenies using model-based approaches. Here we approach the challenges of applying explicit phylogenetic methods to single-cell data by using principal components as phylogenetic characters. We infer a cell phylogeny from a large, comparative single-cell dataset of eye cells from five distantly related mammals. Robust cell type clades enable us to provide a phylogenetic, rather than phenetic, definition of cell type, allowing us to forgo marker genes and phylogenetically classify cells by topology. We further observe evolutionary relationships between diverse vessel endothelia and identify the myelinating and non-myelinating Schwann cells as sister cell types. Finally, we examine principal component loadings and describe the gene expression dynamics underlying the function and identity of cell type clades that have been conserved across the five species. A cell phylogeny provides a rigorous framework towards investigating the evolutionary history of cells and will be critical to interpret comparative single-cell datasets that aim to ask fundamental evolutionary questions.
Collapse
Affiliation(s)
- Jasmine L Mah
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Gilbert E, Craggs J, Modepalli V. Gene Regulatory Network that Shaped the Evolution of Larval Apical Organ in Cnidaria. Mol Biol Evol 2024; 41:msad285. [PMID: 38152864 PMCID: PMC10781443 DOI: 10.1093/molbev/msad285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Among non-bilaterian animals, a larval apical sensory organ with integrated neurons is only found in cnidarians. Within cnidarians, an apical organ with a ciliary tuft is mainly found in Actiniaria. Whether this apical tuft has evolved independently in Actiniaria or alternatively originated in the common ancestor of Cnidaria and Bilateria and was lost in specific groups is uncertain. To test this hypothesis, we generated transcriptomes of the apical domain during the planula stage of four species representing three key groups of cnidarians: Aurelia aurita (Scyphozoa), Nematostella vectensis (Actiniaria), and Acropora millepora and Acropora tenuis (Scleractinia). We showed that the canonical genes implicated in patterning the apical domain of N. vectensis are largely absent in A. aurita. In contrast, the apical domain of the scleractinian planula shares gene expression pattern with N. vectensis. By comparing the larval single-cell transcriptomes, we revealed the apical organ cell type of Scleractinia and confirmed its homology to Actiniaria. However, Fgfa2, a vital regulator of the regionalization of the N. vectensis apical organ, is absent in the scleractinian genome. Likewise, we found that FoxJ1 and 245 genes associated with cilia are exclusively expressed in the N. vectensis apical domain, which is in line with the presence of ciliary apical tuft in Actiniaria and its absence in Scleractinia and Scyphozoa. Our findings suggest that the common ancestor of cnidarians lacked a ciliary apical tuft, and it could have evolved independently in the Actiniaria.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jamie Craggs
- Horniman Museum and Gardens, London SE23 3PQ, UK
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|