1
|
Clément AE, Merdrignac C, Puiggros SR, Sévère D, Brionne A, Lafond T, Nguyen T, Montfort J, Guyomar C, Dauvé A, Herpin A, Jabaudon D, Colson V, Murat F, Bobe J. Parent-of-origin regulation by maternal auts2 shapes neurodevelopment and behavior in fish. Genome Biol 2025; 26:125. [PMID: 40346605 PMCID: PMC12063280 DOI: 10.1186/s13059-025-03600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Parental experience can influence progeny behavior through gamete-mediated non-genetic inheritance, that is, mechanisms that do not involve changes in inherited DNA sequence. However, underlying mechanisms remain poorly understood in vertebrates, especially for maternal effects. Here, we use the medaka, a model fish species, to investigate the role of auts2a, the ortholog of human AUTS2, a gene repressed in the fish oocyte following maternal stress and associated with neurodevelopmental disorders. RESULTS We show that auts2a expression in the oocyte influences long-term progeny behavior, including anxiety-like behavior and environment recognition capabilities. Using single-nuclei RNA-sequencing, we reveal that maternal auts2a influences gene expression in neural cell populations during neurodevelopment. We also show that maternal auts2a knock-out triggers differences in maternally inherited factors, including early embryonic transcriptional and post-transcriptional regulators. CONCLUSIONS Together, our results reveal the unsuspected role of an autism-related gene expressed in the mother's oocyte in shaping progeny neurodevelopment and behavior. Finally, we report that auts2a/AUTS2 is part of a group of evolutionarily conserved genes associated with human neurodevelopmental disorders and expressed in oocytes across species, from fish to mammals. These findings raise important questions about their potential role in the non-genetic regulation of progeny neurodevelopment and behavior in vertebrates.
Collapse
Affiliation(s)
| | | | - Sergi Roig Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Dorine Sévère
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Aurélien Brionne
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thomas Lafond
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thaovi Nguyen
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Jérôme Montfort
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Cervin Guyomar
- Sigenae, GenPhySE, INRAE, ENVT, Université de Toulouse, Toulouse, Castanet Tolosan, France
| | - Alexandra Dauvé
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Amaury Herpin
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Violaine Colson
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Florent Murat
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Julien Bobe
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France.
| |
Collapse
|
2
|
Sivkina AL, Iarovaia OV, Razin SV, Ulianov SV. The establishment of the 3D genome structure during zygotic genome activation. Ann N Y Acad Sci 2025; 1545:38-51. [PMID: 40029160 DOI: 10.1111/nyas.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
During zygotic genome activation (ZGA) and early development, hierarchical levels of chromatin structure undergo remarkable perturbations: changes in the nuclear-to-cytoplasmic ratio of various components; changes in chromatin accessibility; histone exchange; and the formation of 3D structures such as loops, topologically associated domains, and compartments. Here, we review the peculiarities, variability, and emergence of the chromatin structural features during ZGA in different organisms. Focusing on newly found structures called fountains, we describe the prerequisites for cohesin loading on DNA and possible mechanisms of genome organization in early development. Fountains resulting from asymmetric bidirectional cohesin extrusion spread from cohesin-loading points in a CTCF-independent manner. We discuss that fountains may not possess specific functions, unlike conventional chromatin structures, and could be found in other biological processes where cohesin loading occurs.
Collapse
Affiliation(s)
| | - Olga V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Solberg T, Kobayashi-Ishihara M, Siomi H. The impact of retrotransposons on zygotic genome activation and the chromatin landscape of early embryos. Ann N Y Acad Sci 2024; 1542:11-24. [PMID: 39576233 DOI: 10.1111/nyas.15260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In mammals, fertilization is followed by extensive reprogramming and reorganization of the chromatin accompanying the transcriptional activation of the embryo. This reprogramming results in blastomeres with the ability to give rise to all cell types and a complete organism, including extra-embryonic tissues, and is known as totipotency. Transcriptional activation occurs in a process known as zygotic genome activation (ZGA) and is tightly linked to the expression of transposable elements, including endogenous retroviruses (ERVs) such as endogenous retrovirus with leucine tRNA primer (ERVL). Recent studies discovered the importance of ERVs in this process, yet the race to decipher the network surrounding these elements is still ongoing, and the molecular mechanism behind their involvement remains a mystery. Amid a recent surge of studies reporting the discovery of various factors and pathways involved in the regulation of ERVs, this review provides an overview of the knowns and unknowns in the field, with a particular emphasis on the chromatin landscape and how ERVs shape preimplantation development in mammals. In so doing, we highlight recent discoveries that have advanced our understanding of how these elements are involved in transforming the quiescent zygote into the most powerful cell type in mammals.
Collapse
Affiliation(s)
- Therese Solberg
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | | | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| |
Collapse
|
4
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
5
|
Fang F, Chen D, Basharat AR, Poulos W, Wang Q, Cibelli JB, Liu X, Sun L. Quantitative proteomics reveals the dynamic proteome landscape of zebrafish embryos during the maternal-to-zygotic transition. iScience 2024; 27:109944. [PMID: 38784018 PMCID: PMC11111832 DOI: 10.1016/j.isci.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/23/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Maternal-to-zygotic transition (MZT) is central to early embryogenesis. However, its underlying molecular mechanisms are still not well described. Here, we revealed the expression dynamics of 5,000 proteins across four stages of zebrafish embryos during MZT, representing one of the most systematic surveys of proteome landscape of the zebrafish embryos during MZT. Nearly 700 proteins were differentially expressed and were divided into six clusters according to their expression patterns. The proteome expression profiles accurately reflect the main events that happen during the MZT, i.e., zygotic genome activation (ZGA), clearance of maternal mRNAs, and initiation of cellular differentiation and organogenesis. MZT is modulated by many proteins at multiple levels in a collaborative fashion, i.e., transcription factors, histones, histone-modifying enzymes, RNA helicases, and P-body proteins. Significant discrepancies were discovered between zebrafish proteome and transcriptome profiles during the MZT. The proteome dynamics database will be a valuable resource for bettering our understanding of MZT.
Collapse
Affiliation(s)
- Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Abdul Rehman Basharat
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - William Poulos
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Lee H, Han DW, Yoo S, Kwon O, La H, Park C, Lee H, Kang K, Uhm SJ, Song H, Do JT, Choi Y, Hong K. RNA helicase DEAD-box-5 is involved in R-loop dynamics of preimplantation embryos. Anim Biosci 2024; 37:1021-1030. [PMID: 38419548 PMCID: PMC11065950 DOI: 10.5713/ab.23.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. METHODS In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. RESULTS We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. CONCLUSION These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.
Collapse
Affiliation(s)
- Hyeonji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020,
China
| | - Seonho Yoo
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Ohbeom Kwon
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Heeji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kiye Kang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju 26339,
Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
7
|
Liu M, Ding Z, Sun P, Zhou S, Wu H, Huo L, Yang L, Davis JS, Liang A. Neddylation inhibition affects early embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function in mice. Theriogenology 2024; 220:1-11. [PMID: 38457854 DOI: 10.1016/j.theriogenology.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Post-translational modifications (PTMs) are critical for early development in mice because early cleavage-stage embryos are characterized by transcriptional inactivity. Neddylation is an important ubiquitin-like PTM that regulates multiple biophysical processes. However, the exact roles of neddylation in regulating early embryonic development remain largely unknown. In the present study, we found that inhibition of neddylation by specific inhibitor MLN4924 led to severe arrest of early embryonic development. Transcriptomic analysis showed that neddylation inhibition changed the expression of 3959 genes at the 2-cell stage. Importantly, neddylation inhibition blocked zygotic genome activation and maternal mRNA degradation, thus disrupting the maternal-to-zygotic transition. Moreover, inhibition of neddylation induced mitochondrial dysfunction including aberrant mitochondrial distribution, decreased mitochondrial membrane potential, and reduced ATP content. Further analysis showed that inhibition of neddylation resulted in the accumulation of reactive oxygen species and superoxide anion, thereby resulting in oxidative stress and severe DNA damage at the 2-cell stage. Overall, this study demonstrates that neddylation is vital for early embryonic development in mice. Our findings suggest that proper neddylation regulation is essential for the timely inter-stage transition during early embryonic development.
Collapse
Affiliation(s)
- Mingxiao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhiming Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, PR China
| | - Peihao Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shuo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hanxiao Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lijun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, PR China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, PR China
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, and Veterans Affairs Medical Center, Omaha, NE, 68198, USA
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, PR China.
| |
Collapse
|
8
|
Shao R, Suzuki T, Suyama M, Tsukada Y. The impact of selective HDAC inhibitors on the transcriptome of early mouse embryos. BMC Genomics 2024; 25:143. [PMID: 38317092 PMCID: PMC10840191 DOI: 10.1186/s12864-024-10029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), plays a crucial role in the control of gene expression. HDAC inhibitors (HDACi) have shown potential in cancer therapy; however, the specific roles of HDACs in early embryos remain unclear. Moreover, although some pan-HDACi have been used to maintain cellular undifferentiated states in early embryos, the specific mechanisms underlying their effects remain unknown. Thus, there remains a significant knowledge gap regarding the application of selective HDACi in early embryos. RESULTS To address this gap, we treated early embryos with two selective HDACi (MGCD0103 and T247). Subsequently, we collected and analyzed their transcriptome data at different developmental stages. Our findings unveiled a significant effect of HDACi treatment during the crucial 2-cell stage of zygotes, leading to a delay in embryonic development after T247 and an arrest at 2-cell stage after MGCD0103 administration. Furthermore, we elucidated the regulatory targets underlying this arrested embryonic development, which pinpointed the G2/M phase as the potential period of embryonic development arrest caused by MGCD0103. Moreover, our investigation provided a comprehensive profile of the biological processes that are affected by HDACi, with their main effects being predominantly localized in four aspects of zygotic gene activation (ZGA): RNA splicing, cell cycle regulation, autophagy, and transcription factor regulation. By exploring the transcriptional regulation and epigenetic features of the genes affected by HDACi, we made inferences regarding the potential main pathways via which HDACs affect gene expression in early embryos. Notably, Hdac7 exhibited a distinct response, highlighting its potential as a key player in early embryonic development. CONCLUSIONS Our study conducted a comprehensive analysis of the effects of HDACi on early embryonic development at the transcriptional level. The results demonstrated that HDACi significantly affected ZGA in embryos, elucidated the distinct actions of various selective HDACi, and identified specific biological pathways and mechanisms via which these inhibitors modulated early embryonic development.
Collapse
Affiliation(s)
- Ruiqi Shao
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, 567-0047, Ibaraki, Osaka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan.
| | - Yuichi Tsukada
- Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan.
| |
Collapse
|
9
|
Yu T, Zhang C, Song W, Zhao X, Cheng Y, Liu J, Su J. Single-cell RNA-seq and single-cell bisulfite-sequencing reveal insights into yak preimplantation embryogenesis. J Biol Chem 2024; 300:105562. [PMID: 38097189 PMCID: PMC10821408 DOI: 10.1016/j.jbc.2023.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024] Open
Abstract
Extensive epigenetic reprogramming occurs during preimplantation embryonic development. However, the impact of DNA methylation in plateau yak preimplantation embryos and how epigenetic reprogramming contributes to transcriptional regulatory networks are unclear. In this study, we quantified gene expression and DNA methylation in oocytes and a series of yak embryos at different developmental stages and at single-cell resolution using single-cell bisulfite-sequencing and RNA-seq. We characterized embryonic genome activation and maternal transcript degradation and mapped epigenetic reprogramming events critical for embryonic development. Through cross-species transcriptome analysis, we identified 31 conserved maternal hub genes and 39 conserved zygotic hub genes, including SIN3A, PRC1, HDAC1/2, and HSPD1. Notably, by combining single-cell DNA methylation and transcriptome analysis, we identified 43 candidate methylation driver genes, such as AURKA, NUSAP1, CENPF, and PLK1, that may be associated with embryonic development. Finally, using functional approaches, we further determined that the epigenetic modifications associated with the histone deacetylases HDAC1/2 are essential for embryonic development and that the deubiquitinating enzyme USP7 may affect embryonic development by regulating DNA methylation. Our data represent an extensive resource on the transcriptional dynamics of yak embryonic development and DNA methylation remodeling, and provide new insights into strategies for the conservation of germplasm resources, as well as a better understanding of mammalian early embryonic development that can be applied to investigate the causes of early developmental disorders.
Collapse
Affiliation(s)
- Tong Yu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengtu Zhang
- Academician Zhang Yong Innovation Center, Xining Animal Disease Control Center, Xining, Qinghai, China
| | - Weijia Song
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyao Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
10
|
Kumari P, Thuestad L, Ciosk R. Post-transcriptional repression of CFP-1 expands the regulatory repertoire of LIN-41/TRIM71. Nucleic Acids Res 2023; 51:10668-10680. [PMID: 37670562 PMCID: PMC10602926 DOI: 10.1093/nar/gkad729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The Caenorhabditis elegans LIN-41/TRIM71 is a well-studied example of a versatile regulator of mRNA fate, which plays different biological functions involving distinct post-transcriptional mechanisms. In the soma, LIN-41 determines the timing of developmental transitions between larval stages. The somatic LIN-41 recognizes specific mRNAs via LREs (LIN-41 Recognition Elements) and elicits either mRNA decay or translational repression. In the germline, LIN-41 controls the oocyte-to-embryo transition (OET), although the relevant targets and regulatory mechanisms are poorly understood. The germline LIN-41 was suggested to regulate mRNAs indirectly by associating with another RNA-binding protein. We show here that LIN-41 can also regulate germline mRNAs via the LREs. Through a computational-experimental analysis, we identified the germline mRNAs potentially controlled via LREs and validated one target, the cfp-1 mRNA, encoding a conserved chromatin modifier. Our analysis suggests that cfp-1 may be a long-sought target whose LIN-41-mediated regulation during OET facilitates the transcriptional reprogramming underlying the switch from germ- to somatic cell identity.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Rafal Ciosk
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
11
|
Lin Z, He H, Xian Y, Cai J, Ge Q, Guo M, Zheng Q, Liu X, Mo C, Zhang X, Qi W, Zhang Y, Liang L, Yu X, Zhu YZ. Discovery of deoxyandrographolide and its novel effect on vascular senescence by targeting HDAC1. MedComm (Beijing) 2023; 4:e338. [PMID: 37600507 PMCID: PMC10435835 DOI: 10.1002/mco2.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Aconitum carmichaelii (Fuzi) is a traditional Chinese medicine that has been widely used in the clinic to save the dying life for over several thousand years. However, the medicinal components of Fuzi in treating vascular senescence (VS) and its potential mechanism remain unclear. In this study, a network pharmacology method was used to explore the possible components and further validated by experiments to get a candidate compound, deoxyandrographolide (DA). DA restrains aging biomarkers, such as p16, p21, γH2A.X, and p53 in vitro and in vivo blood co-culture studies. Histone deacetylase 1 (HDAC1), mouse double minute2 (MDM2), cyclin-dependent kinase 4, and mechanistic target of rapamycin kinase (mTOR) are predicted to be the possible targets of DA based on virtual screening. Subsequent bio-layer interferometry results indicated that DA showed good affinity capability with HDAC1. DA enhances the protein expression of HDAC1 in the angiotensin II-induced senescence process by inhibiting its ubiquitination degradation. Loss of HDAC1 by CRISPR/Cas9 leads to the disappearance of DA's anti-aging property. The enhancement of HDAC1 represses H3K4me3 (a biomarker of chromosomal activity) and improves chromosome stability. RNA sequencing results also confirmed our hypothesis. Our evidence illuminated that DA may achieve as a novel compound in the treatment of VS by improving chromosome stability.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Yu Xian
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Qinyang Ge
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Minghao Guo
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Quan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Xiaoyan Liu
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Chengke Mo
- Guangzhou Twelfth People's HospitalGuangzhouChina
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Wei Qi
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Lu Liang
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
| | - Xi‐Yong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Huang Y, Zhang J, Li X, Wu Z, Xie G, Wang Y, Liu Z, Jiao M, Zhang H, Shi B, Wang Y, Zhang Y. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development. FASEB J 2023; 37:e23111. [PMID: 37531300 DOI: 10.1096/fj.202300131rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The post-transfer developmental capacity of bovine somatic cell nuclear transfer (SCNT) blastocysts is reduced, implying that abnormalities in gene expression regulation are present at blastocyst stage. Chromatin accessibility, as an indicator for transcriptional regulatory elements mediating gene transcription activity, has heretofore been largely unexplored in SCNT embryos, especially at blastocyst stage. In the present study, single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) of in vivo and SCNT blastocysts were conducted to segregate lineages and demonstrate the aberrant chromatin accessibility of transcription factors (TFs) related to inner cell mass (ICM) development in SCNT blastocysts. Pseudotime analysis of lineage segregation further reflected dysregulated chromatin accessibility dynamics of TFs in the ICM of SCNT blastocysts compared to their in vivo counterparts. ATAC- and ChIP-seq results of SCNT donor cells revealed that the aberrant chromatin accessibility in the ICM of SCNT blastocysts was due to the persistence of chromatin accessibility memory at corresponding loci in the donor cells, with strong enrichment of trimethylation of histone H3 at lysine 4 (H3K4me3) at these loci. Correction of the aberrant chromatin accessibility through demethylation of H3K4me3 by KDM5B diminished the expression of related genes (e.g., BCL11B) and significantly improved the ICM proliferation in SCNT blastocysts. This effect was confirmed by knocking down BCL11B in SCNT embryos to down-regulate p21 and alleviate the inhibition of ICM proliferation. These findings expand our understanding of the chromatin accessibility abnormalities in SCNT blastocysts and BCL11B may be a potential target to improve SCNT efficiency.
Collapse
Affiliation(s)
- Yuemeng Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxiang Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| |
Collapse
|
13
|
Yang P, Yuan Y, Sun Y, Lv B, Du H, Zhou Z, Yang Z, Liu X, Duan H, Shen C. The Host Protein CAD Regulates the Replication of FMDV through the Function of Pyrimidines' De Novo Synthesis. J Virol 2023; 97:e0036923. [PMID: 37162335 DOI: 10.1128/jvi.00369-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a single-stranded picornavirus that causes economically devastating disease in even-hooved animals. There has been little research on the function of host cells during FMDV infection. We aimed to shed light on key host factors associated with FMDV replication during acute infection. We found that HDAC1 overexpression in host cells induced upregulation of FMDV RNA and protein levels. Activation of the AKT-mammalian target of rapamycin (mTOR) signaling pathway using bpV(HOpic) or SC79 also promoted FMDV replication. Furthermore, short hairpin RNA (shRNA)-induced suppression of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), a transcription factor downstream of the AKT-mTOR signaling pathway, resulted in downregulation of FMDV RNA and protein levels. Coimmunoprecipitation assays showed that the ACTase domain of CAD could interact with the FMDV 2C protein, suggesting that the ACTase domain of CAD may be critical in FMDV replication. CAD proteins participate in de novo pyrimidine synthesis. Inhibition of FMDV replication by deletion of the ACTase domain of CAD in host cells could be reversed by supplementation with uracil. These results revealed that the contribution of the CAD ACTase domain to FMDV replication is dependent on de novo pyrimidine synthesis. Our research shows that HDAC1 promotes FMDV replication by regulating de novo pyrimidine synthesis from CAD via the AKT-mTOR signaling pathway. IMPORTANCE Foot-and-mouth disease virus is an animal virus of the Picornaviridae family that seriously harms the development of animal husbandry and foreign trade of related products, and there is still a lack of effective means to control its harm. Replication complexes would generate during FMDV replication to ensure efficient replication cycles. 2C is a common viral protein in the replication complex of Picornaviridae virus, which is thought to be an essential component of membrane rearrangement and viral replication complex formation. The host protein CAD is a key protein in the pyrimidines de novo synthesis. In our research, the interaction of CAD and FMDV 2C was demonstrated in FMDV-infected BHK-21 cells, and it colocalized with 2C in the replication complex. The inhibition of the expression of FMDV 3D protein through interference with CAD and supplementation with exogenous pyrimidines reversed this inhibition, suggesting that FMDV might recruit CAD through the 2C protein to ensure pyrimidine supply during replication. In addition, we also found that FMDV infection decreased the expression of the host protein HDAC1 and ultimately inhibited CAD activity through the AKT-mTOR signaling pathway. These results revealed a unique means of counteracting the virus in BHK-21 cells lacking the interferon (IFN) signaling pathway. In conclusion, our study provides some potential targets for the development of drugs against FMDV.
Collapse
Affiliation(s)
- Pu Yang
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Yuncong Yuan
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Yidan Sun
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Bonan Lv
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Hang Du
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Zhou Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Zhuang Yang
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Xuemei Liu
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Huimin Duan
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Ikeda S. Current status of genome-wide epigenetic profiling of mammalian preimplantation embryos. Reprod Med Biol 2023; 22:e12521. [PMID: 37351110 PMCID: PMC10283350 DOI: 10.1002/rmb2.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Background Genome-wide information on epigenetic modifications in mammalian preimplantation embryos was an unexplored sanctuary of valuable research insights protected by the difficulty of its analysis. However, that is no longer the case, and many epigenome maps are now available for sightseeing there. Methods This review overviews the current status of genome-wide epigenetic profiling in terms of DNA methylome and histone modifications in mammalian preimplantation embryos. Main findings As the sensitivity of methods for analyzing epigenetic modifications increased, pioneering work began to explore the genome-wide epigenetic landscape in the mid-2010s, first for DNA methylation and then for histone modifications. Since then, a huge amount of data has accumulated, revealing typical epigenetic profiles in preimplantation development and, more recently, changes in response to environmental interventions. Conclusions These accumulating data may be used to improve the quality of preimplantation embryos, both in terms of their short-term developmental competence and their subsequent long-term health implications.
Collapse
Affiliation(s)
- Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
15
|
Wang W, Cao C, Zhang B, Wang F, Deng D, Cao J, Li H, Yu M. Integrating Transcriptomic and ChIP-Seq Reveals Important Regulatory Regions Modulating Gene Expression in Myometrium during Implantation in Pigs. Biomolecules 2022; 13:biom13010045. [PMID: 36671430 PMCID: PMC9856092 DOI: 10.3390/biom13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The myometrium is the outer layer of the uterus. Its contraction and steroidogenic activities are required for embryo implantation. However, the molecular mechanisms underlying its functions remain unknown in pigs. The myometrium includes the inner circular muscle (CM) and the outer longitudinal muscle (LM) layers. In this study, we collected the CM and LM samples from the mesometrial side (named M) of the uterus on days 12 (pre-implantation stage) and 15 (implantation stage) of pregnancy and day 15 of the estrous cycle. The transcriptomic results revealed distinct differences between the uterine CM and LM layers in early pregnancy: the genes expressed in the LM layer were mainly related to contraction pathways, whereas the transcriptional signatures in the CM layer on day 15 of pregnancy were primarily involved in the immune response processes. Subsequent comparisons in the CM layer between pregnant and cyclic gilts show that the transcriptional signatures of the CM layer are implantation-dependent. Next, we investigated the genome-wide profiling of histone H3 lysine 27 acetylation (H3K27ac) and histone H3 lysine 4 trimethylation (H3K4me3) in pig uterine CM and LM layers. The genomic regions that had transcriptional activity and were associated with the expression of genes in the two layers were characterized. Taken together, the regulatory regions identified in the study may contribute to modulating the gene expression in pig uterine CM and LM layers during implantation.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiqin Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Botao Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| | - Feiyu Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dadong Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
16
|
Wang M, Chen Z, Zhang Y. CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos. EMBO J 2022; 41:e112012. [PMID: 36215692 PMCID: PMC9670200 DOI: 10.15252/embj.2022112012] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
Epigenome reprogramming after fertilization enables transcriptionally quiescent maternal and paternal chromatin to acquire a permissive state for subsequent zygotic genome activation (ZGA). H3K27 acetylation (H3K27ac) is a well-established chromatin marker of active enhancers and promoters. However, reprogramming dynamics of H3K27ac during maternal-to-zygotic transition (MZT) in mammalian embryos are not well-studied. By profiling the allelic landscape of H3K27ac during mouse MZT, we show that H3K27ac undergoes three waves of rapid global transitions between oocyte stage and 2-cell stage. Notably, germinal vesicle oocyte and zygote chromatin are globally hyperacetylated, with noncanonical, broad H3K27ac domains that correlate with broad H3K4 trimethylation (H3K4me3) and open chromatin. H3K27ac marks genomic regions primed for activation including ZGA genes, retrotransposons, and active alleles of imprinted genes. We show that CBP/p300 and HDAC activities play important roles in regulating H3K27ac dynamics and are essential for preimplantation development. Specifically, CBP/p300 acetyltransferase broadly deposits H3K27ac in zygotes to induce the opening of condensed chromatin at putative enhancers and ensure proper ZGA. On the contrary, HDACs revert broad H3K27ac domains to canonical domains and safeguard ZGA by preventing premature expression of developmental genes. In conclusion, coordinated activities of CBP/p300 and HDACs during mouse MZT are essential for ZGA and preimplantation development.
Collapse
Affiliation(s)
- Meng Wang
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMAUSA
- Program in Cellular and Molecular MedicineBoston Children's HospitalBostonMAUSA
- Division of Hematology/Oncology, Department of PediatricsBoston Children's HospitalBostonMAUSA
| | - Zhiyuan Chen
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMAUSA
- Program in Cellular and Molecular MedicineBoston Children's HospitalBostonMAUSA
- Division of Hematology/Oncology, Department of PediatricsBoston Children's HospitalBostonMAUSA
| | - Yi Zhang
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMAUSA
- Program in Cellular and Molecular MedicineBoston Children's HospitalBostonMAUSA
- Division of Hematology/Oncology, Department of PediatricsBoston Children's HospitalBostonMAUSA
- Department of GeneticsHarvard Medical SchoolBostonMAUSA
- Harvard Stem Cell InstituteBostonMAUSA
| |
Collapse
|