1
|
Nam J, Min B, Baek A, Lee SY, Ha J, Cho MJ, Kim J. Mammalian Blastema: Possibility and Potentials. Int J Stem Cells 2025; 18:126-134. [PMID: 40059074 PMCID: PMC12122245 DOI: 10.15283/ijsc24121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 06/02/2025] Open
Abstract
Regeneration is a process that restores the structure and function of injured tissues or organs. Regenerative capacities vary significantly across species, with amphibians and fish demonstrating a high regenerative capacity even after severe injuries. This capacity is largely attributed to the formation of a blastema, a mass of multipotent cells reprogrammed from differentiated cells at the injury site. In contrast, mammals exhibit limited regenerative capacities, with blastema- like cells forming only in specific contexts, such as antler or digit tip regeneration. An interesting aspect of blastema formation in highly regenerative organisms is the temporary expression of pluripotency factors as known as the Yamanaka factors (YFs), which is a key requirement for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). While iPSCs hold pros and cons, direct or partial reprogramming with YF has been proposed as a safer alternative. Since blastema formation and partial reprogramming are similar in terms of YF expressions, we found blastema-like cells in mammalian reprogramming with YF. This review outlines the characteristics of blastema across various organisms, emphasizing interspecies differences. We also explore studies on partial reprogramming and the possibility of inducing blastema-like cells via the temporary expression of YF in mammals.
Collapse
Affiliation(s)
- Juhyeon Nam
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology, Daejeon, Korea
| | - Byungkuk Min
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Areum Baek
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Korea
| | - Sang-Yun Lee
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jeongmin Ha
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Korea
| | - Min Ji Cho
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Korea
| | - Janghwan Kim
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology, Daejeon, Korea
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Korea
| |
Collapse
|
2
|
Milheiro C, Moura ML, Amendola M, Barbosa MA, Caldeira J. Harnessing CRISPR potential for intervertebral disc regeneration strategies. Front Bioeng Biotechnol 2025; 13:1562412. [PMID: 40406584 PMCID: PMC12095242 DOI: 10.3389/fbioe.2025.1562412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 05/26/2025] Open
Abstract
Genome editing technologies, particularly CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), have broadened the possibilities of genetic research and molecular biology by enabling precise modifications of the genome, offering novel therapeutic potential for various disorders. Herein, we present an overview of traditional genome editing techniques and delve deeper into the CRISPR toolbox, with particular attention given to epigenetic and transcriptional regulation. In the context of the intervertebral disc (IVD), CRISPR offers an unprecedented approach to address the mechanisms underlying tissue degeneration, advancing the development of revolutionary therapies for Low Back Pain (LBP). As so, we showcase how to leverage CRISPR systems for IVD. This cutting-edge technology has been successfully used to improve our understanding of IVD biology through functional studies and disease modeling. Most relevant research prioritizes new targets associated with the extracellular matrix (ECM), pain sensing or inflammatory pathways. Promising CRISPR applications encompass IVD regeneration by recapitulation of a regenerative environment or by targeting important degenerative catalysts. In the future, priority should be given to fetal gene reactivation, multiple healthy gene expression enhancement and disease-associated polymorphisms' correction. Despite several challenges such as effective delivery, off-target effects, as well as ethical and safety concerns, exciting clinical trials are anticipated in the years to come, providing more effective and long-lasting solutions for IVD degeneration.
Collapse
Affiliation(s)
- Catarina Milheiro
- i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Maria L. Moura
- i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Mario Amendola
- Généthon, Évry, France
- Integrare Research Unit UMR_S951, Université Paris-Saclay, Université Evry, Inserm, Généthon, Évry, France
| | - Mário A. Barbosa
- i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Joana Caldeira
- i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells 2025; 14:282. [PMID: 39996754 PMCID: PMC11853389 DOI: 10.3390/cells14040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy is a cellular recycling system that, through the sequestration and degradation of intracellular components regulates multiple cellular functions to maintain cellular homeostasis and survival. Dysregulation of autophagy is closely associated with the development of physiological alterations and human diseases, including the loss of regenerative capacity. Tissue regeneration is a highly complex process that relies on the coordinated interplay of several cellular processes, such as injury sensing, defense responses, cell proliferation, differentiation, migration, and cellular senescence. These processes act synergistically to repair or replace damaged tissues and restore their morphology and function. In this review, we examine the evidence supporting the involvement of the autophagy pathway in the different cellular mechanisms comprising the processes of regeneration and repair across different regenerative contexts. Additionally, we explore how modulating autophagy can enhance or accelerate regeneration and repair, highlighting autophagy as a promising therapeutic target in regenerative medicine for the development of autophagy-based treatments for human diseases.
Collapse
Affiliation(s)
| | | | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; (D.M.-B.); (T.A.)
| |
Collapse
|
4
|
Nurhidayat L, Benes V, Blom S, Gomes I, Firdausi N, de Bakker MAG, Spaink HP, Richardson MK. Tokay gecko tail regeneration involves temporally collinear expression of HOXC genes and early expression of satellite cell markers. BMC Biol 2025; 23:6. [PMID: 39780185 PMCID: PMC11715542 DOI: 10.1186/s12915-024-02111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex. This system resembles an embryonic developmental field where cells undergo pattern formation. Some lizards, including geckos, can regenerate their tails, but it is unclear whether they show a "development-like" regeneration pathway. RESULTS Using the tokay gecko (Gekko gecko) model species, we examined seven stages of tail regeneration, and three stages of embryonic tail bud development, using transcriptomics, single-cell sequencing, and in situ hybridization. We find no apical growth zone in the regenerating tail. The transcriptomes of the regenerating vs. embryonic tails are quite different with respect to developmental patterning genes. Posterior HOXC genes were activated in a temporally collinear sequence in the regenerating tail. The major precursor populations were stromal cells (regenerating tail) vs. pluripotent stem cells (embryonic tail). Segmented skeletal muscles were regenerated with no expression of classical segmentation genes, but with the early activation of satellite cell markers. CONCLUSIONS Our study suggests that tail regeneration in the tokay gecko-unlike tail development-might rely on the activation of resident stem cells, guided by pre-existing positional information.
Collapse
Affiliation(s)
- Luthfi Nurhidayat
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory Heidelberg, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Sira Blom
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Inês Gomes
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Nisrina Firdausi
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Merijn A G de Bakker
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|