1
|
Qian W, Yamaguchi N, Lis P, Cammer M, Knaut H. Pulses of RhoA signaling stimulate actin polymerization and flow in protrusions to drive collective cell migration. Curr Biol 2024; 34:245-259.e8. [PMID: 38096821 PMCID: PMC10872453 DOI: 10.1016/j.cub.2023.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network. Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin-II-dependent actin flow and protrusion retraction at the base of the protrusions and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other contexts.
Collapse
Affiliation(s)
- Weiyi Qian
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Patrycja Lis
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Qian W, Yamaguchi N, Lis P, Cammer M, Knaut H. Pulses of RhoA Signaling Stimulate Actin Polymerization and Flow in Protrusions to Drive Collective Cell Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560679. [PMID: 37873192 PMCID: PMC10592895 DOI: 10.1101/2023.10.03.560679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network (Yamada and Sixt, 2019). Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin II-dependent actin flow and protrusion retraction at the base of the protrusions, and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other-but not all (Bastock and Strutt, 2007; Lebreton and Casanova, 2013; Matthews et al., 2008)-contexts.
Collapse
Affiliation(s)
- Weiyi Qian
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Patrycja Lis
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| | - Michael Cammer
- Microscopy laboratory, New York University Grossman School of Medicine, New York, United States
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| |
Collapse
|
3
|
Chong-Morrison V, Mayes S, Simões FC, Senanayake U, Carroll DS, Riley PR, Wilson SW, Sauka-Spengler T. Ac/Ds transposition for CRISPR/dCas9-SID4x epigenome modulation in zebrafish. Biol Open 2023; 12:bio059995. [PMID: 37367831 PMCID: PMC10320716 DOI: 10.1242/bio.059995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Due to its genetic amenability coupled with advances in genome editing, zebrafish is an excellent model to examine the function of (epi)genomic elements. Here, we repurposed the Ac/Ds maize transposition system to efficiently characterise zebrafish cis-regulated elements, also known as enhancers, in F0-microinjected embryos. We further used the system to stably express guide RNAs enabling CRISPR/dCas9-interference (CRISPRi) perturbation of enhancers without disrupting the underlying genetic sequence. In addition, we probed the phenomenon of antisense transcription at two neural crest gene loci. Our study highlights the utility of Ac/Ds transposition as a new tool for transient epigenome modulation in zebrafish.
Collapse
Affiliation(s)
- Vanessa Chong-Morrison
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Sarah Mayes
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Filipa C. Simões
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Upeka Senanayake
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Dervla S. Carroll
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Paul R. Riley
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Stephen W. Wilson
- University College London, Department of Cell & Developmental Biology, London WC1E 6BT, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
4
|
IQ-Switch is a QF-based innocuous, silencing-free, and inducible gene switch system in zebrafish. Commun Biol 2021; 4:1405. [PMID: 34916605 PMCID: PMC8677817 DOI: 10.1038/s42003-021-02923-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
Though various transgene expression switches have been adopted in a wide variety of organisms for basic and biomedical research, intrinsic obstacles of those existing systems, including toxicity and silencing, have been limiting their use in vertebrate transgenesis. Here we demonstrate a novel QF-based binary transgene switch (IQ-Switch) that is relatively free of driver toxicity and transgene silencing, and exhibits potent and highly tunable transgene activation by the chemical inducer tebufenozide, a non-toxic lipophilic molecule to developing zebrafish with negligible background. The interchangeable IQ-Switch makes it possible to elicit ubiquitous and tissue specific transgene expression in a spatiotemporal manner. We generated a RASopathy disease model using IQ-Switch and demonstrated that the RASopathy symptoms were ameliorated by the specific BRAF(V600E) inhibitor vemurafenib, validating the therapeutic use of the gene switch. The orthogonal IQ-Switch provides a state-of-the-art platform for flexible regulation of transgene expression in zebrafish, potentially applicable in cell-based systems and other model organisms.
Collapse
|
5
|
Miao KZ, Kim GY, Meara GK, Qin X, Feng H. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Front Cell Dev Biol 2021; 9:660969. [PMID: 34095125 PMCID: PMC8173129 DOI: 10.3389/fcell.2021.660969] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The future of improved immunotherapy against cancer depends on an in-depth understanding of the dynamic interactions between the immune system and tumors. Over the past two decades, the zebrafish has served as a valuable model system to provide fresh insights into both the development of the immune system and the etiologies of many different cancers. This well-established foundation of knowledge combined with the imaging and genetic capacities of the zebrafish provides a new frontier in cancer immunology research. In this review, we provide an overview of the development of the zebrafish immune system along with a side-by-side comparison of its human counterpart. We then introduce components of the adaptive immune system with a focus on their roles in the tumor microenvironment (TME) of teleosts. In addition, we summarize zebrafish models developed for the study of cancer and adaptive immunity along with other available tools and technology afforded by this experimental system. Finally, we discuss some recent research conducted using the zebrafish to investigate adaptive immune cell-tumor interactions. Without a doubt, the zebrafish will arise as one of the driving forces to help expand the knowledge of tumor immunity and facilitate the development of improved anti-cancer immunotherapy in the foreseeable future.
Collapse
Affiliation(s)
- Kelly Z Miao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace Y Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace K Meara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Xiaodan Qin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Raby L, Völkel P, Le Bourhis X, Angrand PO. Genetic Engineering of Zebrafish in Cancer Research. Cancers (Basel) 2020; 12:E2168. [PMID: 32759814 PMCID: PMC7464884 DOI: 10.3390/cancers12082168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (X.L.B.)
| |
Collapse
|
7
|
Elliot A, Myllymäki H, Feng Y. Inflammatory Responses during Tumour Initiation: From Zebrafish Transgenic Models of Cancer to Evidence from Mouse and Man. Cells 2020; 9:cells9041018. [PMID: 32325966 PMCID: PMC7226149 DOI: 10.3390/cells9041018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The zebrafish is now an important model organism for cancer biology studies and provides unique and complementary opportunities in comparison to the mammalian equivalent. The translucency of zebrafish has allowed in vivo live imaging studies of tumour initiation and progression at the cellular level, providing novel insights into our understanding of cancer. Here we summarise the available transgenic zebrafish tumour models and discuss what we have gleaned from them with respect to cancer inflammation. In particular, we focus on the host inflammatory response towards transformed cells during the pre-neoplastic stage of tumour development. We discuss features of tumour-associated macrophages and neutrophils in mammalian models and present evidence that supports the idea that these inflammatory cells promote early stage tumour development and progression. Direct live imaging of tumour initiation in zebrafish models has shown that the intrinsic inflammation induced by pre-neoplastic cells is tumour promoting. Signals mediating leukocyte recruitment to pre-neoplastic cells in zebrafish correspond to the signals that mediate leukocyte recruitment in mammalian tumours. The activation state of macrophages and neutrophils recruited to pre-neoplastic cells in zebrafish appears to be heterogenous, as seen in mammalian models, which provides an opportunity to study the plasticity of innate immune cells during tumour initiation. Although several potential mechanisms are described that might mediate the trophic function of innate immune cells during tumour initiation in zebrafish, there are several unknowns that are yet to be resolved. Rapid advancement of genetic tools and imaging technologies for zebrafish will facilitate research into the mechanisms that modulate leukocyte function during tumour initiation and identify targets for cancer prevention.
Collapse
Affiliation(s)
| | | | - Yi Feng
- Correspondence: ; Tel.: +44-(0)131-242-6685
| |
Collapse
|
8
|
Simões FC, Cahill TJ, Kenyon A, Gavriouchkina D, Vieira JM, Sun X, Pezzolla D, Ravaud C, Masmanian E, Weinberger M, Mayes S, Lemieux ME, Barnette DN, Gunadasa-Rohling M, Williams RM, Greaves DR, Trinh LA, Fraser SE, Dallas SL, Choudhury RP, Sauka-Spengler T, Riley PR. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat Commun 2020; 11:600. [PMID: 32001677 PMCID: PMC6992796 DOI: 10.1038/s41467-019-14263-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Canonical roles for macrophages in mediating the fibrotic response after a heart attack include extracellular matrix turnover and activation of cardiac fibroblasts to initiate collagen deposition. Here we reveal that macrophages directly contribute collagen to the forming post-injury scar. Unbiased transcriptomics shows an upregulation of collagens in both zebrafish and mouse macrophages following heart injury. Adoptive transfer of macrophages, from either collagen-tagged zebrafish or adult mouse GFPtpz-collagen donors, enhances scar formation via cell autonomous production of collagen. In zebrafish, the majority of tagged collagen localises proximal to the injury, within the overlying epicardial region, suggesting a possible distinction between macrophage-deposited collagen and that predominantly laid-down by myofibroblasts. Macrophage-specific targeting of col4a3bpa and cognate col4a1 in zebrafish significantly reduces scarring in cryoinjured hosts. Our findings contrast with the current model of scarring, whereby collagen deposition is exclusively attributed to myofibroblasts, and implicate macrophages as direct contributors to fibrosis during heart repair. Macrophages mediate the fibrotic response after a heart attack by extracellular matrix turnover and cardiac fibroblasts activation. Here the authors identify an evolutionarily-conserved function of macrophages that contributes directly to the forming post-injury scar through cell-autonomous deposition of collagen.
Collapse
Affiliation(s)
- Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Thomas J Cahill
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amy Kenyon
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Daria Gavriouchkina
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.,Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1 Tancha, Onna, 904-0495, Japan
| | - Joaquim M Vieira
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Xin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Daniela Pezzolla
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christophe Ravaud
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Eva Masmanian
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael Weinberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sarah Mayes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | | | - Damien N Barnette
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Ruth M Williams
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Le A Trinh
- Translational Imaging Centre, University of Southern California, Los Angeles, CA, USA
| | - Scott E Fraser
- Translational Imaging Centre, University of Southern California, Los Angeles, CA, USA
| | - Sarah L Dallas
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK. .,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Patton EE, Tobin DM. Spotlight on zebrafish: the next wave of translational research. Dis Model Mech 2019; 12:12/3/dmm039370. [PMID: 30858282 PMCID: PMC6451428 DOI: 10.1242/dmm.039370] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Five years after the launch of the Disease Models & Mechanisms (DMM) Special Issue on zebrafish as a disease model, the field has progressed significantly. Zebrafish have been used to precisely model human genetic variants, to unpick the mechanisms of metabolic and other diseases, to study infection, inflammation and cancer, and to develop and test new therapeutic approaches. In this Editorial, we highlight recent research published in DMM that uses zebrafish to develop new experimental tools and to provide new insight into disease mechanism and therapy. The broad spectrum of subjects and approaches covered in these articles underscores the versatility of zebrafish in translational research. Further, it highlights the zebrafish community's ethos of creativity and collaboration in translating basic biological research into clinically relevant advances affecting how we understand and treat human disease. Summary: Zebrafish are a highly versatile and relevant organism for human disease modelling. This Editorial highlights the recent zebrafish research published in DMM.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - David M Tobin
- Departments of Molecular Genetics and Microbiology, and Immunology, Box 3020, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
10
|
Sarasamma S, Lai YH, Liang ST, Liu K, Hsiao CD. The Power of Fish Models to Elucidate Skin Cancer Pathogenesis and Impact the Discovery of New Therapeutic Opportunities. Int J Mol Sci 2018; 19:E3929. [PMID: 30544544 PMCID: PMC6321611 DOI: 10.3390/ijms19123929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023] Open
Abstract
Animal models play important roles in investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic tools. Despite rapid progress in the understanding of disease mechanisms and technological advancement in drug discovery, negative trial outcomes are the most frequent incidences during a Phase III trial. Skin cancer is a potential life-threatening disease in humans and might be medically futile when tumors metastasize. This explains the low success rate of melanoma therapy amongst other malignancies. In the past decades, a number of skin cancer models in fish that showed a parallel development to the disease in humans have provided important insights into the fundamental biology of skin cancer and future treatment methods. With the diversity and breadth of advanced molecular genetic tools available in fish biology, fish skin cancer models will continue to be refined and expanded to keep pace with the rapid development of skin cancer research. This review begins with a brief introduction of molecular characteristics of skin cancers, followed by an overview of teleost models that have been used in the last decades in melanoma research. Next, we will detail the importance of the zebrafish (Danio rerio) animal model and other emerging fish models including platyfish (Xiphophorus sp.), and medaka (Oryzias latipes) in future cutaneous malignancy studies. The last part of this review provides the recent development and genome editing applications of skin cancer models in zebrafish and the progress in small molecule screening.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Taiwan Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
11
|
Trinh LA, Chong-Morrison V, Sauka-Spengler T. Biotagging, an in vivo biotinylation approach for cell-type specific subcellular profiling in zebrafish. Methods 2018; 150:24-31. [DOI: 10.1016/j.ymeth.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
|