1
|
Mishra Y, Kumar A, Kaundal RK. Mitochondrial Dysfunction is a Crucial Immune Checkpoint for Neuroinflammation and Neurodegeneration: mtDAMPs in Focus. Mol Neurobiol 2024:10.1007/s12035-024-04412-0. [PMID: 39115673 DOI: 10.1007/s12035-024-04412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 01/03/2025]
Abstract
Neuroinflammation is a pivotal factor in the progression of both age-related and acute neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Mitochondria, essential for neuronal health due to their roles in energy production, calcium buffering, and oxidative stress regulation, become increasingly susceptible to dysfunction under conditions of metabolic stress, aging, or injury. Impaired mitophagy in aged or injured neurons leads to the accumulation of dysfunctional mitochondria, which release mitochondrial-derived damage-associated molecular patterns (mtDAMPs). These mtDAMPs act as immune checkpoints, activating pattern recognition receptors (PRRs) and triggering innate immune signaling pathways. This activation initiates inflammatory responses in neurons and brain-resident immune cells, releasing cytokines and chemokines that damage adjacent healthy neurons and recruit peripheral immune cells, further amplifying neuroinflammation and neurodegeneration. Long-term mitochondrial dysfunction perpetuates a chronic inflammatory state, exacerbating neuronal injury and contributing additional immunogenic components to the extracellular environment. Emerging evidence highlights the critical role of mtDAMPs in initiating and sustaining neuroinflammation, with circulating levels of these molecules potentially serving as biomarkers for disease progression. This review explores the mechanisms of mtDAMP release due to mitochondrial dysfunction, their interaction with PRRs, and the subsequent activation of inflammatory pathways. We also discuss the role of mtDAMP-triggered innate immune responses in exacerbating both acute and chronic neuroinflammation and neurodegeneration. Targeting dysfunctional mitochondria and mtDAMPs with pharmacological agents presents a promising strategy for mitigating the initiation and progression of neuropathological conditions.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India.
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Soni S, Lukhey MS, Thawkar BS, Chintamaneni M, Kaur G, Joshi H, Ramniwas S, Tuli HS. A current review on P2X7 receptor antagonist patents in the treatment of neuroinflammatory disorders: a patent review on antagonists. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4643-4656. [PMID: 38349395 DOI: 10.1007/s00210-024-02994-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/31/2024] [Indexed: 06/12/2024]
Abstract
Chronic inflammation is defined by an activated microglial state linked to all neurological disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (a motor neuron disease that affects the brain and spinal cord). P2X7 receptors (P2X7R) are ATP-activated ion-gated channels present on microglial surfaces. Prolonged ATP release under pathological settings results in sustained P2X7R activation, which leads to inflammasome development and cytokine release. P2X7R and its enabling roles have recently been linked to neurodegenerative diseases, making it a potential research subject. This research provides an overview of current patents for chemicals, biologics, and medicinal applications. The World Intellectual Property Organization (WIPO), European Patent Office (EPO, Espacenet), and the United States Patent and Trademark Office (USPTO) databases were searched for patents using the keywords "P2X7R and Neuroinflammation." During the study period from 2015 to 2021, 103 patents were examined. The countries that protected these innovations were the United States, PCT (Patent Cooperation Treaty states), Europe, Canada, Australia, and India. Janssen Pharmaceutica NV had the most applications, followed by Acetelion Pharmaceuticals LTD., Renovis Inc., Kelly Michael G, Kincaid Jhon, Merck Patent GMBH, H Lundbeck A/S, and many more. The P2X7R is a possible diagnostic and therapeutic target for cancer, pain disorders, and inflammation. For P2X7 R, several compounds have been discovered and are presently the subject of clinical trial investigations. This study featured patents for P2X7R antagonists, which help treat conditions including neuroinflammation.
Collapse
Affiliation(s)
- Simran Soni
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Mihir S Lukhey
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Baban S Thawkar
- Department of Pharmacology, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Meena Chintamaneni
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India.
| |
Collapse
|
4
|
Heavener K, Kabra K, Yidenk M, Bradshaw E. IL-1RA Disrupts ATP Activation of P2RX7 in Human Monocyte-Derived Microglia-like Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588607. [PMID: 38645234 PMCID: PMC11030313 DOI: 10.1101/2024.04.08.588607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immune system has a dynamic role in neurodegenerative diseases, and purinergic receptors allow immune cells to recognize neuronal signaling, cell injury, or stress. Purinergic Receptor 7 (P2RX7) can modulate inflammatory cascades and its expression is upregulated in Alzheimer's disease (AD) brain tissue. P2RX7 expression is enriched in microglia, and elevated levels are found in microglia surrounding amyloid-beta plaques in the brain. While P2RX7 is thought to play a role in neurodegenerative diseases, how it modulates pathology and disease progression is not well understood. Here, we utilize a human monocyte-derived microglia-like cell (MDMi) model to interrogate P2RX7 activation and downstream consequences on microglia function. By using MDMi derived from human donors, we can examine how human donor variation impacts microglia function. We assessed P2RX7-driven IL1β and IL18 production and amyloid-beta peptide 1-42 (Aβ1-42) uptake levels. Our results show that ATP-stimulation of MDMi triggers upregulation of IL1β and IL18 expression. This upregulation of cytokine gene expression is blocked with the A740003 P2RX7 antagonist. We find that high extracellular ATP conditions also reduced MDMi capacity for Aβ1-42 uptake, and this loss of function is prevented through A740003 inhibition of P2RX7. In addition, pretreatment of MDMi with IL-1RA limited ATP-driven IL1β and IL18 gene expression upregulation, indicating that ATP immunomodulation of P2RX7 is IL-1R dependent. Aβ1-42 uptake was higher with IL-1RA pretreatment compared to ATP treatment alone, suggesting P2RX7 regulates phagocytic engulfment through IL-1 signaling. Overall, our results demonstrate that P2RX7 is a key response protein for high extracellular ATP in human microglia-like cells, and its function can be modulated by IL-1 signaling. This work opens the door to future studies examining anti-IL-1 biologics to increase the clearance of amyloid-beta.
Collapse
Affiliation(s)
- Kelsey Heavener
- Division of Translational Neurobiology, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Khushbu Kabra
- Division of Translational Neurobiology, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Maedot Yidenk
- Division of Translational Neurobiology, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Elizabeth Bradshaw
- Division of Translational Neurobiology, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Departments of Neurology Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
5
|
Zamani A, Thomas E, Wright DK. Sex biology in amyotrophic lateral sclerosis. Ageing Res Rev 2024; 95:102228. [PMID: 38354985 DOI: 10.1016/j.arr.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Although sex differences in amyotrophic lateral sclerosis (ALS) have not been studied systematically, numerous clinical and preclinical studies have shown sex to be influential in disease prognosis. Moreover, with the development of advanced imaging tools, the difference between male and female brain in structure and function and their response to neurodegeneration are more definitive. As discussed in this review, ALS patients exhibit a sex bias pertaining to the features of the disease, and their clinical, pathological, (and pathophysiological) phenotypes. Several epidemiological studies have indicated that this sex disparity stems from various aetiologies, including sex-specific brain structure and neural functioning, genetic predisposition, age, gonadal hormones, susceptibility to traumatic brain injury (TBI)/head trauma and lifestyle factors.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Emma Thomas
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
6
|
Justice MJ. Sex matters in preclinical research. Dis Model Mech 2024; 17:dmm050759. [PMID: 38450661 PMCID: PMC10941654 DOI: 10.1242/dmm.050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
International Women's Day 2024 has a theme of inclusion. As publishers of preclinical research, we aim to show how inclusion of females in research advances scientific rigor and improves treatment reliability. Sexual reproduction is key to all life across the plant and animal kingdoms. Biological sex takes many forms that are morphologically differentiated during development: stamens versus pistils in plants; color and plumage in birds; fallopian tubes versus vas deferens in mammals; and differences in size, for instance, males are smaller in the fruit fly Drosophila melanogaster. Physical differences may be obvious, but many traits may be more obscure, including hormonal, physiological and metabolic factors. These traits have a big influence on disease and responses to treatment. Thus, we call for improved inclusion, analysis and reporting of sex as a biological variable in preclinical animal modeling research.
Collapse
Affiliation(s)
- Monica J. Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| |
Collapse
|
7
|
Tang H, Wei W, Luo Y, Lu X, Chen J, Yang S, Wu F, Zhou H, Ma W, Yang X. P2X7 receptors: a bibliometric review from 2002 to 2023. Purinergic Signal 2024:10.1007/s11302-024-09996-9. [PMID: 38421486 DOI: 10.1007/s11302-024-09996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
For many years, there has been ongoing research on the P2X7 receptor (P2X7R). A comprehensive, systematic, and objective evaluation of the scientific output and status of P2X7R will be instrumental in guiding future research directions. This study aims to present the status and trends of P2X7R research from 2002 to 2023. Publications related to P2X7R were retrieved from the Web of Science Core Collection database. Quantitative analysis and visualization tools were Microsoft Excel, VOSviewer, and CiteSpace software. The analysis content included publication trends, literature co-citation, and keywords. 3282 records were included in total, with the majority of papers published within the last 10 years. Based on literature co-citation and keyword analysis, neuroinflammation, neuropathic pain, gastrointestinal diseases, tumor microenvironment, rheumatoid arthritis, age-related macular degeneration, and P2X7R antagonists were considered to be the hotspots and frontiers of P2X7R research. Researchers will get a more intuitive understanding of the status and trends of P2X7R research from this study.
Collapse
Affiliation(s)
- Haiting Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Wei
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Luo
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoqing Lu
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Chen
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenqiao Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Wu
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haiyan Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenbin Ma
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Leão Batista Simões J, Webler Eichler S, Raitz Siqueira ML, de Carvalho Braga G, Bagatini MD. Amyotrophic Lateral Sclerosis in Long-COVID Scenario and the Therapeutic Potential of the Purinergic System in Neuromodulation. Brain Sci 2024; 14:180. [PMID: 38391754 PMCID: PMC10886908 DOI: 10.3390/brainsci14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) involves the degeneration of motor neurons and debilitating and possibly fatal symptoms. The COVID-19 pandemic directly affected the quality of life of this group, and the SARS-CoV-2 infection accelerated the present neuroinflammatory process. Furthermore, studies indicate that the infection may have led to the development of the pathology. Thus, the scenario after this pandemic presents "long-lasting COVID" as a disease that affects people who have been infected. From this perspective, studying the pathophysiology behind ALS associated with SARS-CoV-2 infection and possible supporting therapies becomes necessary when we understand the impact on the quality of life of these patients. Thus, the purinergic system was trained to demonstrate how its modulation can add to the treatment, reduce disease progression, and result in better prognoses. From our studies, we highlight the P2X7, P2X4, and A2AR receptors and how their activity can directly influence the ALS pathway.
Collapse
Affiliation(s)
| | | | | | | | - Margarete Dulce Bagatini
- Graduate Program in Medical Sciences, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
9
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Hu Z, Luo Y, Zhu J, Jiang D, Luo Z, Wu L, Li J, Peng S, Hu J. Role of the P2 × 7 receptor in neurodegenerative diseases and its pharmacological properties. Cell Biosci 2023; 13:225. [PMID: 38093352 PMCID: PMC10720200 DOI: 10.1186/s13578-023-01161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Neurodegenerative diseases seriously affect patients' physical and mental health, reduce their quality of life, and impose a heavy burden on society. However, their treatment remains challenging. Therefore, exploring factors potentially related to the pathogenesis of neurodegenerative diseases and improving their diagnosis and treatment are urgently needed. Recent studies have shown that P2 × 7R plays a crucial role in regulating neurodegenerative diseases caused by neuroinflammation. P2 × 7R is an adenosine 5'-triphosphate ligand-gated cation channel receptor present in most tissues of the human body. An increase in P2 × 7R levels can affect the progression of neurodegenerative diseases, and the inhibition of P2 × 7R can alleviate neurodegenerative diseases. In this review, we comprehensively describe the biological characteristics (structure, distribution, and function) of this gene, focusing on its potential association with neurodegenerative diseases, and we discuss the pharmacological effects of drugs (P2 × 7R inhibitors) used to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziyan Hu
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yifan Luo
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jinxi Zhu
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lidong Wu
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jin Li
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
12
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
13
|
Volonté C, Amadio S. Rethinking purinergic concepts and updating the emerging role of P2X7 and P2X4 in amyotrophic lateral sclerosis. Neuropharmacology 2022; 221:109278. [PMID: 36202258 DOI: 10.1016/j.neuropharm.2022.109278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
The topic of the present review regards the ubiquitous and phylogenetically most ancient prototype of intercellular signaling, the one mediated by extracellular nucleosides and nucleotides, bearing a strong influence on pathophysiological processes in the nervous system. Not by chance, purine and pyrimidine molecules are the most prevalent and ubiquitous chemical messengers in the animal and plant kingdoms, operating through a large plethora of purinergic metabolizing enzymes, P1 and P2 receptors, nucleoside and nucleotide channels and transporters. Because ectonucleotidases degrade the agonists of P2 receptors while simultaneously generate the agonists for P1 receptors, and because several agonists, or antagonists, simultaneously bind and activate, or inhibit, more than one receptor subtype, it follows that an all-inclusive "purinergic network" perspective should be better considered when looking at purinergic actions. This becomes particularly crucial during pathological conditions as for instance amyotrophic lateral sclerosis, where the contribution of purinergic signaling has been demonstrated to differ according to each target cell phenotype and stage of disease progression. Here we will present some newly updated results about P2X7 and P2X4 as the most thoroughly investigated P2 receptors in amyotrophic lateral sclerosis, being aware that the comprehension of their actions is still in progress, and that the purinergic rationale for studying this disease must be however wide-ranging and all-inclusive. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Cinzia Volonté
- CNR-Institute for Systems Analysis and Computer Science "Antonio Ruberti", Via Dei Taurini 19, 00185, Rome, Italy; IRCCS Fondazione Santa Lucia-Cellular Neurobiology Unit, Via Del Fosso di Fiorano 65, 00143, Rome, Italy.
| | - Susanna Amadio
- IRCCS Fondazione Santa Lucia-Cellular Neurobiology Unit, Via Del Fosso di Fiorano 65, 00143, Rome, Italy
| |
Collapse
|
14
|
P2X7 receptor activation mediates superoxide dismutase 1 (SOD1) release from murine NSC-34 motor neurons. Purinergic Signal 2022; 18:451-467. [PMID: 35478453 PMCID: PMC9832181 DOI: 10.1007/s11302-022-09863-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/15/2023] Open
Abstract
Mutant superoxide dismutase 1 (SOD1) can be constitutively released from motor neurons and transmitted to naïve motor neurons to promote the progression of amyotrophic lateral sclerosis (ALS). However, the biological impacts of this process and the precise mechanisms of SOD1 release remain to be fully resolved. Using biochemical and fluorescent techniques, this study aimed to determine if P2X7 receptor activation could induce mutant SOD1 release from motor neurons and whether this released SOD1 could be transmitted to motor neurons or microglia to mediate effects associated with neurodegeneration in ALS. Aggregated SOD1G93A, released from murine NSC-34 motor neurons transiently transfected with SOD1G93A, could be transmitted to naïve NSC-34 cells and murine EOC13 microglia to induce endoplasmic reticulum (ER) stress and tumour necrosis factor-alpha (TNFα) release, respectively. Immunoblotting revealed NSC-34 cells expressed P2X7. Extracellular ATP induced cation dye uptake into these cells, which was blocked by the P2X7 antagonist AZ10606120, demonstrating these cells express functional P2X7. Moreover, ATP induced the rapid release of aggregated SOD1G93A from NSC-34 cells transiently transfected with SOD1G93A, a process blocked by AZ10606120 and revealing a role for P2X7 in this process. ATP-induced SOD1G93A release coincided with membrane blebbing. Finally, aggregated SOD1G93A released via P2X7 activation could also be transmitted to NSC-34 and EOC13 cells to induce ER stress and TNFα release, respectively. Collectively, these results identify a novel role for P2X7 in the prion-like propagation of SOD1 in ALS and provide a possible explanation for the therapeutic benefits of P2X7 antagonism previously observed in ALS SOD1G93A mice.
Collapse
|
15
|
Mckenzie ADJ, Garrett TR, Werry EL, Kassiou M. Purinergic P2X 7 Receptor: A Therapeutic Target in Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:1479-1490. [PMID: 35512313 DOI: 10.1021/acschemneuro.2c00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by upper and lower motor neuron loss. The pathomechanisms of ALS are still poorly understood with current hypotheses involving genetic mutations, excitotoxicity, and reactive oxygen species formation. In the absence of a disease-altering clinically approved therapeutic, there is an ever-increasing need to identify new targets to develop drugs that delay disease onset and/or progression. The purinergic P2X7 receptor (P2X7R) has been implicated widely across the ALS realm, providing a potential therapeutic strategy. This review summarizes the current understanding of ALS, the P2X7R and its role in ALS, the current landscape of P2X7R antagonists, and the in vivo potential of these antagonists in preclinical ALS models.
Collapse
Affiliation(s)
- André D. J. Mckenzie
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Taylor R. Garrett
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Eryn L. Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
16
|
de Pascual R, Calzaferri F, Gonzalo PC, Serrano-Nieto R, de los Ríos C, García AG, Gandía L. Novel Purine Derivative ITH15004 Facilitates Exocytosis through a Mitochondrial Calcium-Mediated Mechanism. Int J Mol Sci 2021; 23:440. [PMID: 35008868 PMCID: PMC8745631 DOI: 10.3390/ijms23010440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Upon depolarization of chromaffin cells (CCs), a prompt release of catecholamines occurs. This event is triggered by a subplasmalemmal high-Ca2+ microdomain (HCMD) generated by Ca2+ entry through nearby voltage-activated calcium channels. HCMD is efficiently cleared by local mitochondria that avidly take up Ca2+ through their uniporter (MICU), then released back to the cytosol through mitochondrial Na+/Ca2+ exchanger (MNCX). We found that newly synthesized derivative ITH15004 facilitated the release of catecholamines triggered from high K+-depolarized bovine CCs. Such effect seemed to be due to regulation of mitochondrial Ca2+ circulation because: (i) FCCP-potentiated secretory responses decay was prevented by ITH15004; (ii) combination of FCCP and ITH15004 exerted additive secretion potentiation; (iii) such additive potentiation was dissipated by the MICU blocker ruthenium red (RR) or the MNCX blocker CGP37157 (CGP); (iv) combination of FCCP and ITH15004 produced both additive augmentation of cytosolic Ca2+ concentrations ([Ca2+]c) K+-challenged BCCs, and (v) non-inactivated [Ca2+]c transient when exposed to RR or CGP. On pharmacological grounds, data suggest that ITH15004 facilitates exocytosis by acting on mitochondria-controlled Ca2+ handling during K+ depolarization. These observations clearly show that ITH15004 is a novel pharmacological tool to study the role of mitochondria in the regulation of the bioenergetics and exocytosis in excitable cells.
Collapse
Affiliation(s)
- Ricardo de Pascual
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
| | - Francesco Calzaferri
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Institut des Biomolécules Max Mousseron (IBMM—UMR5247, CNRS), 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Paula C. Gonzalo
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
| | - Rubén Serrano-Nieto
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
| | - Cristóbal de los Ríos
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Campus de Alcorcon, Universidad Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - Antonio G. García
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Fundación Teófilo Hernando, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
| |
Collapse
|
17
|
Contingent intramuscular boosting of P2XR7 axis improves motor function in transgenic ALS mice. Cell Mol Life Sci 2021; 79:7. [PMID: 34936028 PMCID: PMC8695421 DOI: 10.1007/s00018-021-04070-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons and severe muscle atrophy without effective treatment. Most research on the disease has been focused on studying motor neurons and supporting cells of the central nervous system. Strikingly, the recent observations have suggested that morpho-functional alterations in skeletal muscle precede motor neuron degeneration, bolstering the interest in studying muscle tissue as a potential target for the delivery of therapies. We previously showed that the systemic administration of the P2XR7 agonist, 2′(3′)-O‐(4-benzoylbenzoyl) adenosine 5-triphosphate (BzATP), enhanced the metabolism and promoted the myogenesis of new fibres in the skeletal muscles of SOD1G93A mice. Here we further corroborated this evidence showing that intramuscular administration of BzATP improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of infiltrating macrophages. The preservation of the skeletal muscle retrogradely propagated along with the motor unit, suggesting that backward signalling from the muscle could impinge on motor neuron death. In addition to providing the basis for a suitable adjunct multisystem therapeutic approach in ALS, these data point out that the muscle should be at the centre of ALS research as a target tissue to address novel therapies in combination with those oriented to the CNS.
Collapse
|
18
|
Novel P2X7 Antagonist Ameliorates the Early Phase of ALS Disease and Decreases Inflammation and Autophagy in SOD1-G93A Mouse Model. Int J Mol Sci 2021; 22:ijms221910649. [PMID: 34638992 PMCID: PMC8508678 DOI: 10.3390/ijms221910649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system. Particularly in ALS, it is known that the purinergic ionotropic P2X7 receptor plays a dual role in disease progression by acting at different cellular and molecular levels. In this context, we previously demonstrated that the P2X7 receptor antagonist, brilliant blue G, reduces neuroinflammation and ameliorates some of the pathological features of ALS in the SOD1-G93A mouse model. Here, we test the novel, noncommercially available, and centrally permeant Axxam proprietary P2X7 antagonist, AXX71, in SOD1-G93A mice, by assessing some behavioral and molecular parameters, among which are disease progression, survival, gliosis, and motor neuron wealth. We demonstrate that AXX71 affects the early symptomatic phase of the disease by reducing microglia-related proinflammatory markers and autophagy without affecting the anti-inflammatory markers or motor neuron survival. Our results suggest that P2X7 modulation can be further investigated as a therapeutic strategy in preclinical studies, and exploited in ALS clinical trials.
Collapse
|
19
|
Golzari-Sorkheh M, Brown CE, Weaver DF, Reed MA. The NLRP3 Inflammasome in the Pathogenesis and Treatment of Alzheimer's Disease. J Alzheimers Dis 2021; 84:579-598. [PMID: 34569958 DOI: 10.3233/jad-210660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Although AD is one of the most socioeconomically devastating diseases confronting humanity, no "curative" disease modifying drug has been identified. Recent decades have witnessed repeated failures of drug trials and have called into question the utility of the amyloid hypothesis approach to AD therapeutics design. Accordingly, new neurochemical processes are being evaluated and explored as sources of alternative druggable targets. Among these newly identified targets, neuroinflammation is emerging as a front-runner, and within the realm of neuroinflammation, the inflammasome, particularly the NLRP3 complex, is garnering focussed attention. This review summarizes current data and approaches to understanding the role of the NLRP3 inflammasome in neuroinflammation and AD, and systematically identifies and evaluates multiple targets within the NLRP3 inflammasome cascade as putative drug targets.
Collapse
Affiliation(s)
| | | | - Donald F Weaver
- Krembil Research Institute, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mark A Reed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
20
|
Post J, Kogel V, Schaffrath A, Lohmann P, Shah NJ, Langen KJ, Willbold D, Willuweit A, Kutzsche J. A Novel Anti-Inflammatory d-Peptide Inhibits Disease Phenotype Progression in an ALS Mouse Model. Molecules 2021; 26:molecules26061590. [PMID: 33805709 PMCID: PMC7999518 DOI: 10.3390/molecules26061590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by selective neuronal death in the brain stem and spinal cord. The cause is unknown, but an increasing amount of evidence has firmly certified that neuroinflammation plays a key role in ALS pathogenesis. Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and has been implicated as driver of disease progression. Here, we describe a treatment study demonstrating the therapeutic potential of a tandem version of the well-known all-d-peptide RD2 (RD2RD2) in a transgenic mouse model of ALS (SOD1*G93A). Mice were treated intraperitoneally for four weeks with RD2RD2 vs. placebo. SOD1*G93A mice were tested longitudinally during treatment in various behavioural and motor coordination tests. Brain and spinal cord samples were investigated immunohistochemically for gliosis and neurodegeneration. RD2RD2 treatment in SOD1*G93A mice resulted not only in a reduction of activated astrocytes and microglia in both the brain stem and lumbar spinal cord, but also in a rescue of neurons in the motor cortex. RD2RD2 treatment was able to slow progression of the disease phenotype, especially the motor deficits, to an extent that during the four weeks treatment duration, no significant progression was observed in any of the motor experiments. Based on the presented results, we conclude that RD2RD2 is a potential therapeutic candidate against ALS.
Collapse
Affiliation(s)
- Julia Post
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
| | - Vanessa Kogel
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
| | - Anja Schaffrath
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- JARA-Brain-Translational Medicine, 52074 Aachen, Germany
- Department of Neurology, RWTH Aachen University, 52062 Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
- Department of Nuclear Medicine, RWTH Aachen University, 52062 Aachen, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: (D.W.); (A.W.); (J.K.); Tel.: +49-2461-619496 (J.K.)
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
- Correspondence: (D.W.); (A.W.); (J.K.); Tel.: +49-2461-619496 (J.K.)
| | - Janine Kutzsche
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
- Correspondence: (D.W.); (A.W.); (J.K.); Tel.: +49-2461-619496 (J.K.)
| |
Collapse
|
21
|
Chen YH, Lin RR, Tao QQ. The role of P2X7R in neuroinflammation and implications in Alzheimer's disease. Life Sci 2021; 271:119187. [PMID: 33577858 DOI: 10.1016/j.lfs.2021.119187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is set to rise in prevalence as the global trends in population aging. The extracellular deposition of amyloid protein (Aβ) and the intracellular formation of neurofibrillary tangles in the brain have been recognized as the two core pathologies of AD. Over the past decades, the presence of neuroinflammation in the brain has been documented as the third core pathology of AD. In recent years, emerging evidence demonstrated that the purinergic receptor P2X7 (P2X7R) serves a critical role in microglia responses and neuroinflammation. Besides, targeting P2X7R by genetic or pharmacological strategies attenuates the symptoms and pathological changes of AD models, and P2X7R has been recognized as a promising therapeutic target for AD. In this review, we summarized the recent evidence concerning the roles of P2X7R in neuroinflammation and implications in AD pathogenesis.
Collapse
Affiliation(s)
- Yi-He Chen
- Department of Neurology, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong-Rong Lin
- Department of Neurology, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Tao
- Department of Neurology, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|