1
|
Naghipour S, Corben LA, Hulme AJ, Dottori M, Delatycki MB, Lees JG, Lim SY. Omaveloxolone for the Treatment of Friedreich Ataxia: Efficacy, Safety, and Future Perspectives. Mov Disord 2025; 40:226-230. [PMID: 39559924 DOI: 10.1002/mds.30070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Saba Naghipour
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
| | - Amy J Hulme
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mirella Dottori
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
- National Heart Research Institute, National Heart Center, Singapore
| |
Collapse
|
2
|
Salinas L, Montgomery CB, Figueroa F, Thai PN, Chiamvimonvat N, Cortopassi G, Dedkova EN. Sexual dimorphism in a mouse model of Friedreich's ataxia with severe cardiomyopathy. Commun Biol 2024; 7:1250. [PMID: 39363102 PMCID: PMC11449905 DOI: 10.1038/s42003-024-06962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Friedreich's ataxia (FA) is an autosomal recessive disorder caused by reduced frataxin (FXN) expression in mitochondria, where the lethal component is cardiomyopathy. Using the conditional Fxnflox/null::MCK-Cre knock-out (Fxn-cKO) mouse model, we discovered significant sex differences in the progression towards heart failure, with Fxn-cKO males exhibiting a worse cardiac phenotype, low survival rate, kidney and reproductive organ deficiencies. These differences are likely due to a decline in testosterone in Fxn-cKO males. The decrease in testosterone was related to decreased expression of proteins involved in cholesterol transfer into the mitochondria: StAR and TSPO on the outer mitochondrial membrane, and the cholesterol side-chain cleavage enzyme P450scc and ferredoxin on the inner mitochondrial membrane. Expression of excitation-contraction coupling proteins (L-type calcium channel, RyR2, SERCA2, phospholamban and CaMKIIδ) was decreased significantly more in Fxn-cKO males. This is the first study that extensively investigates the sexual dimorphism in FA mouse model with cardiac calcium signaling impairment.
Collapse
Grants
- T32 HL086350 NHLBI NIH HHS
- R01 HL085727 NHLBI NIH HHS
- I01 CX001490 CSRD VA
- R01 HL101235 NHLBI NIH HHS
- R01 HL137228 NHLBI NIH HHS
- I01 BX000576 BLRD VA
- S10 OD010389 NIH HHS
- R01 HL085844 NHLBI NIH HHS
- R01 HL155907 NHLBI NIH HHS
- 1R01HL155907-1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F32 HL149288 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Friedreich's Ataxia Research Alliance (FARA)
- University of California Davis CRCF Pilot & Feasibility Award 181031 (to END), University of California Innovative Development Award (to END) Harold S. Geneen Charitable Trust Awards Program for Coronary Heart Disease Research (to PNT) VA Merit Review Grant I01 BX000576 and I01 CX001490 (to NC) Research Award from the Rosenfeld Foundation (to NC.
- Pre-doctoral fellowship from NIH R01HL155907-02S1 Diversity Supplement (to LS).
- Pre-doctoral fellowship from NIH T32 HL086350 Training Grant in Basic & Translational Cardiovascular Science
- Postdoctoral fellowship from NIH T32HL086350 Training Grant in Basic & Translational Cardiovascular Science and NIH F32HL149288 and Harold S. Geneen Charitable Trust Awards Program for Coronary Heart Disease Research (to PNT).
- NIH R01 HL085727, HL085844, HL137228, VA Merit Review Grant I01 BX000576 and I01 CX001490, AHA 23SFRNCCS1052478, 23SFRNPCS1060482, and Research Award from the Rosenfeld Foundation (to NC).
Collapse
Affiliation(s)
- Lili Salinas
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | - Claire B Montgomery
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | - Francisco Figueroa
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | - Phung N Thai
- Department of Internal Medicine, University of California, Davis, CA, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, CA, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | - Elena N Dedkova
- Department of Molecular Biosciences, University of California, Davis, CA, USA.
- Department of Basic Sciences, California Northstate University, Elk Grove, CA, USA.
| |
Collapse
|
3
|
Mosbach V, Puccio H. A multiple animal and cellular models approach to study frataxin deficiency in Friedreich Ataxia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119809. [PMID: 39134123 DOI: 10.1016/j.bbamcr.2024.119809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Friedreich's ataxia (FA) is one of the most frequent inherited recessive ataxias characterized by a progressive sensory and spinocerebellar ataxia. The main causative mutation is a GAA repeat expansion in the first intron of the frataxin (FXN) gene which leads to a transcriptional silencing of the gene resulting in a deficit in FXN protein. The nature of the mutation (an unstable GAA expansion), as well as the multi-systemic nature of the disease (with neural and non-neural sites affected) make the generation of models for Friedreich's ataxia quite challenging. Over the years, several cellular and animal models for FA have been developed. These models are all complementary and possess their own strengths to investigate different aspects of the disease, such as the epigenetics of the locus or the pathophysiology of the disease, as well as being used to developed novel therapeutic approaches. This review will explore the recent advancements in the different mammalian models developed for FA.
Collapse
Affiliation(s)
- Valentine Mosbach
- Institut NeuroMyoGene-PGNM UCBL-CNRS UMR5261 INSERM U1315, Lyon, France
| | - Hélène Puccio
- Institut NeuroMyoGene-PGNM UCBL-CNRS UMR5261 INSERM U1315, Lyon, France.
| |
Collapse
|
4
|
Vicente-Acosta A, Herranz-Martín S, Pazos MR, Galán-Cruz J, Amores M, Loria F, Díaz-Nido J. Glial cell activation precedes neurodegeneration in the cerebellar cortex of the YG8-800 murine model of Friedreich ataxia. Neurobiol Dis 2024; 200:106631. [PMID: 39111701 DOI: 10.1016/j.nbd.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Friedreich ataxia is a hereditary neurodegenerative disorder resulting from reduced levels of the protein frataxin due to an expanded GAA repeat in the FXN gene. This deficiency causes progressive degeneration of specific neuronal populations in the cerebellum and the consequent loss of movement coordination and equilibrium, which are some of the main symptoms observed in affected individuals. Like in other neurodegenerative diseases, previous studies suggest that glial cells could be involved in the neurodegenerative process and disease progression in patients with Friedreich ataxia. In this work, we followed and characterized the progression of changes in the cerebellar cortex in the latest version of Friedreich ataxia humanized mouse model, YG8-800 (Fxnnull:YG8s(GAA)>800), which carries a human FXN transgene containing >800 GAA repeats. Comparative analyses of behavioral, histopathological, and biochemical parameters were conducted between the control strain Y47R and YG8-800 mice at different time points. Our findings revealed that YG8-800 mice exhibit an ataxic phenotype characterized by poor motor coordination, decreased body weight, cerebellar atrophy, neuronal loss, and changes in synaptic proteins. Additionally, early activation of glial cells, predominantly astrocytes and microglia, was observed preceding neuronal degeneration, as was increased expression of key proinflammatory cytokines and downregulation of neurotrophic factors. Together, our results show that the YG8-800 mouse model exhibits a stronger phenotype than previous experimental murine models, reliably recapitulating some of the features observed in humans. Accordingly, this humanized model could represent a valuable tool for studying Friedreich ataxia molecular disease mechanisms and for preclinical evaluation of possible therapies.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Saúl Herranz-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Jorge Galán-Cruz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Mario Amores
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Frida Loria
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain.
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro, Segovia de Arana, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 1, Majadahonda, 28222 Madrid, Spain.
| |
Collapse
|
5
|
Stovickova L, Hansikova H, Hanzalova J, Musova Z, Semjonov V, Stovicek P, Hadzic H, Novotna L, Simcik M, Strnad P, Serbina A, Karamazovova S, Schwabova Paulasova J, Vyhnalek M, Krsek P, Zumrova A. Exploring mitochondrial biomarkers for Friedreich's ataxia: a multifaceted approach. J Neurol 2024; 271:3439-3454. [PMID: 38520521 PMCID: PMC11136723 DOI: 10.1007/s00415-024-12223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/25/2024]
Abstract
This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.
Collapse
Affiliation(s)
- Lucie Stovickova
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic.
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic.
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Medical Faculty, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Jitka Hanzalova
- Department of Immunology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Zuzana Musova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Valerij Semjonov
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Haris Hadzic
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Ludmila Novotna
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Martin Simcik
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Pavel Strnad
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Anastaziia Serbina
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Simona Karamazovova
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Jaroslava Schwabova Paulasova
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Pavel Krsek
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Alena Zumrova
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| |
Collapse
|