1
|
Cao Z, Ge S, Xu Z, Ma YQ. β3-Endonexin interacts with ninein in vascular endothelial cells to promote angiogenesis. Biochem Biophys Res Commun 2021; 566:75-79. [PMID: 34118594 DOI: 10.1016/j.bbrc.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 12/01/2022]
Abstract
Anti-angiogenesis serves as an effective tumor therapy approach. In a previous study, we found that β3-endonexin expressed in vascular endothelial cells was involved in promoting proliferation and angiogenesis partially by facilitating VEGF expression. However, it still remains unclear if β3-endonexin in vascular endothelial cells also employs other mechanisms in regulating angiogenesis. In this study, we utilized a β3-endonexin mutant (M2) carrying a defective nuclear localization sequence to disrupt its nuclear localization and evaluated its ability to promote HUVEC proliferation and formation of tube-like vascular structures. In addition, we performed yeast 2-hybrid assay to identify potential functional effectors of β3-endonexin. We found that both wild type β3-endonexin and the M2 mutant could localize to centrosomes in HUVECs and both were able to promote HUVEC proliferation and formation of vascular structures. However, the M2 mutant failed to promote VEGF expression in HUVECs. Further, we found that both wild type β3-endonexin and the M2 mutant were capable of binding to ninein, a centrosomal protein with a proangiogenic effect. Knockdown of ninein in HUVECs impeded centrosome localization of wild type β3-endonexin and the M2 mutant and inhibited HUVEC proliferation and formation of vascular structures. Taken together, these findings suggest that β3-endonexin interacts with centrosome ninein and contributes to HUVEC proliferation and formation of vascular structures.
Collapse
Affiliation(s)
- Zhongyuan Cao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; School of Life Sciences, Shanghai University, Shanghai, China
| | - Shushu Ge
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhen Xu
- School of Life Sciences, Shanghai University, Shanghai, China; Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Yan-Qing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; School of Life Sciences, Shanghai University, Shanghai, China; Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Milwaukee, Wisconsin, USA.
| |
Collapse
|
2
|
Cao Z, Suo X, Chu Y, Xu Z, Bao Y, Miao C, Deng W, Mao K, Gao J, Xu Z, Ma YQ. Peptides derived from the integrin β cytoplasmic tails inhibit angiogenesis. Cell Commun Signal 2018; 16:38. [PMID: 29970081 PMCID: PMC6029062 DOI: 10.1186/s12964-018-0248-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrins are essential regulators of angiogenesis. However, the antiangiogenic potential of peptides derived from the integrin cytoplasmic tails (CT) remains mostly undetermined. METHODS Here we designed a panel of membrane-penetrating peptides (termed as mβCTPs), each comprising a C-terminal NxxY motif from one of the conserved integrin β CTs, and evaluated their antiangiogenic ability using both in vitro and in vivo approaches. RESULTS We found that mβ3CTP, mβ5CTP and mβ6CTP, derived respectively from the integrin β3, β5 and β6 CTs, but not others, exhibit antiangiogenic ability. Interestingly, we observed that the integrin β3, β5 and β6 CTs but not others are able to interact with β3-endonexin. In addition, the antiangiogenic core in mβ3CTP is identical to a previously identified β3-endonexin binding region in the integrin β3 CT, indicating that the antiangiogenic mβCTPs may function via their binding to β3-endonexin. Consistently, knockdown of endogenous β3-endonexin in HUVECs significantly suppresses tube formation, suggesting that β3-endonexin is proangiogenic. However, neither treatment with the antiangiogenic mβCTPs nor knockdown of endogenous β3-endonexin affects integrin-mediated HUVEC adhesion and migration, indicating that their antiangiogenic effect may not rely on directly regulating integrin activity. Importantly, both treatment with the antiangiogenic mβCTPs and knockdown of endogenous β3-endonexin in HUVECs inhibit VEGF expression and cell proliferation, thereby providing mechanistic explanations for the functional consequences. CONCLUSION Our results suggest that the antiangiogenic mβCTPs can interact with β3-endonexin in vascular endothelial cells and suppress its function in regulating VEGF expression and cell proliferation, thus disclosing a unique pathway that may be useful for developing novel antiangiogenic strategies.
Collapse
Affiliation(s)
- Zhongyuan Cao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xinfeng Suo
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yudan Chu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhou Xu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yun Bao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Chunxiao Miao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenfeng Deng
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Kaijun Mao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Juan Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhen Xu
- School of Life Sciences, Shanghai University, Shanghai, China. .,Blood Research Institute, Blood Center of Wisconsin, part of Versiti, 8727 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Yan-Qing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China. .,School of Life Sciences, Shanghai University, Shanghai, China. .,Blood Research Institute, Blood Center of Wisconsin, part of Versiti, 8727 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Kračun D, Riess F, Kanchev I, Gawaz M, Görlach A. The β3-integrin binding protein β3-endonexin is a novel negative regulator of hypoxia-inducible factor-1. Antioxid Redox Signal 2014; 20:1964-76. [PMID: 24386901 PMCID: PMC3993052 DOI: 10.1089/ars.2013.5286] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AIMS Integrins are multifunctional heterodimeric adhesion receptors that mediate the attachment between a cell and the extracellular matrix or other surrounding cells. In endothelial cells, integrins can modulate cell migration and motility. In particular, β3-integrin is expressed in angiogenic vessels. Signal transduction by β3-integrins requires the recruitment of intracellular signaling molecules. β3-endonexin is a highly spliced molecule that has been identified as a β3-integrin binding protein. β3-endonexin isoforms are expressed in endothelial cells and have been suggested to act as shuttle proteins between the membrane and the nucleus. However, their functional role in angiogenesis is unclear. In this study, we investigated whether β3-endonexin isoforms are involved in endothelial angiogenic processes under hypoxia. RESULTS The overexpression of β3-endonexin isoforms decreased endothelial proliferation and tube formation under hypoxia, while the depletion of β3-endonexin by RNAi promoted angiogenic responses in vitro and in vivo. In hypoxia, β3-endonexin accumulated in the nucleus, and prevention of this response by depletion of β3-endonexin increased hypoxic activation and induction of the hypoxia-inducible factor (HIF)-1 and its target genes VEGF and PAI-1. β3-endonexin diminished nuclear factor kappa B (NFκB) activation and decreased NFκB binding to the HIF-1α promoter under hypoxia, subsequently diminishing NFκB-dependent transcription of HIF-1α under hypoxia. INNOVATION Our results indicate for the first time that the overexpression of β3-endonexin can decrease hypoxic induction and activation of HIF-1α and can prevent hypoxic endothelial proliferation and angiogenic responses. CONCLUSION β3-endonexin can act as a novel anti-angiogenic factor specifically in the response to hypoxia due to its negative impact on the activation of HIF-1.
Collapse
Affiliation(s)
- Damir Kračun
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich , Munich, Germany
| | | | | | | | | |
Collapse
|
4
|
Wan F, Lenardo MJ. Specification of DNA binding activity of NF-kappaB proteins. Cold Spring Harb Perspect Biol 2010; 1:a000067. [PMID: 20066093 DOI: 10.1101/cshperspect.a000067] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a pleiotropic mediator of inducible and specific gene regulation involving diverse biological activities including immune response, inflammation, cell proliferation, and death. The fine-tuning of the NF-kappaB DNA binding activity is essential for its fundamental function as a transcription factor. An increasing body of literature illustrates that this process can be elegantly and specifically controlled at multiple levels by different protein subsets. In particular, the recent identification of a non-Rel subunit of NF-kappaB itself provides a new way to understand the selective high-affinity DNA binding specificity of NF-kappaB conferred by a synergistic interaction within the whole complex. Here, we review the mechanism of the specification of DNA binding activity of NF-kappaB complexes, one of the most important aspects of NF-kappaB transcriptional control.
Collapse
Affiliation(s)
- Fengyi Wan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
5
|
Identification of a genetic locus for autosomal dominant disseminated superficial actinic porokeratosis on chromosome 1p31.3–p31.1. Hum Genet 2008; 123:507-13. [DOI: 10.1007/s00439-008-0504-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/19/2008] [Indexed: 12/24/2022]
|
6
|
Gattelli A, Zimberlin MN, Meiss RP, Castilla LH, Kordon EC. Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines. J Virol 2006; 80:11409-15. [PMID: 16971449 PMCID: PMC1642155 DOI: 10.1128/jvi.00234-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions.
Collapse
Affiliation(s)
- Albana Gattelli
- IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, UBA Ciudad Universitaria, Pabellón 2, 2do piso, (1428) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
7
|
Wang L, Menendez P, Shojaei F, Li L, Mazurier F, Dick JE, Cerdan C, Levac K, Bhatia M. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. ACTA ACUST UNITED AC 2005; 201:1603-14. [PMID: 15883170 PMCID: PMC2212922 DOI: 10.1084/jem.20041888] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the need for alternative sources of human hematopoietic stem cells (HSCs), the functional capacity of hematopoietic cells generated from human embryonic stem cells (hESCs) has yet to be evaluated and compared with adult sources. Here, we report that somatic and hESC-derived hematopoietic cells have similar phenotype and in vitro clonogenic progenitor activity. However, in contrast with somatic cells, hESC-derived hematopoietic cells failed to reconstitute intravenously transplanted recipient mice because of cellular aggregation causing fatal emboli formation. Direct femoral injection allowed recipient survival and resulted in multilineage hematopoietic repopulation, providing direct evidence of HSC function. However, hESC-derived HSCs had limited proliferative and migratory capacity compared with somatic HSCs that correlated with a distinct gene expression pattern of hESC-derived hematopoietic cells that included homeobox (HOX) A and B gene clusters. Ectopic expression of HOXB4 had no effect on repopulating capacity of hESC-derived cells. We suggest that limitations in the ability of hESC-derived HSCs to activate a molecular program similar to somatic HSCs may contribute to their atypical in vivo behavior. Our study demonstrates that HSCs can be derived from hESCs and provides an in vivo system and molecular foundation to evaluate strategies for the generation of clinically transplantable HSC from hESC lines.
Collapse
Affiliation(s)
- Lisheng Wang
- Robarts Research Institute, Krembil Center for Stem Cell Biology and Regenerative Medicine, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
van Hinsbergh VWM, Koolwijk P, Hoekman K. The hemostatic system in angiogenesis. EXS 2005:247-66. [PMID: 15617483 DOI: 10.1007/3-7643-7311-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Victor W M van Hinsbergh
- Laboratory for Physiology, VU University Medical Center, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands.
| | | | | |
Collapse
|
9
|
Besta F, Müller I, Lorenz M, Massberg S, Bültmann A, Cabeza N, Richter T, Kremmer E, Nothdurfter C, Brand K, Gawaz M. Reduced β3-endonexin levels are associated with enhanced urokinase-type plasminogen activator receptor expression in ApoE−/− mice. Thromb Res 2004; 114:283-92. [PMID: 15381392 DOI: 10.1016/j.thromres.2004.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2003] [Revised: 02/19/2004] [Accepted: 02/23/2004] [Indexed: 01/13/2023]
Abstract
Proteolysis of extracellular matrix components is required for cell migration occurring in atherosclerotic lesion formation. In the present study, gene expression of the urokinase plasmingen activator receptor (uPAR) and underlying mechanisms were analyzed during the development of atherosclerosis in the aorta of apolipoprotein E-deficient mice (apoE(-/-)). A significant increase of uPAR expression was detected in the atherosclerotic tissue with advancing plaque-dimension. As uPAR gene transcription involves the transcription factor nuclear factor-kappaB (NF-kappaB), we analyzed nuclear NF-kappaB activity in vascular tissue of apoE-deficient mice. Congruent to uPAR, we could detect an increase in NF-kappaB activity, which underlines the chronic inflammatory component of the disease. Recently we reported that beta(3)-endonexin, a protein that modulates beta(3)-integrins, regulates uPAR expression through direct interaction with subunits of the NF-kappaB-complex. Herein we could show that beta(3)-endonexin protein is expressed in aortic tissue of mice. Moreover, in contrast to uPAR or NF-kappaB, the expression of beta(3)-endonexin was reduced in extracts of advanced atherosclerotic aortic tissue. The cytoplasmic protein beta(3)-endonexin regulates function of beta(3)-integrins. We revealed that integrin stimulation of endothelial cells led to an enhanced NF-kappaB activity and secretion of the NF-kappaB dependent chemokine monocyte chemoattractant protein-1 (MCP-1). The beta(3)-integrin dependent increase in MCP-1 was notedly reduced in cells that overexpressed beta(3)-endonexin. These results provide strong evidence that beta(3)-endonexin acts as a regulating factor in the integrin-mediated signal transduction and the present findings imply a pathophysiological role of beta(3)-endonexin in atherogenesis.
Collapse
Affiliation(s)
- F Besta
- Deutsches Herzzentrum München, Lazarettstrasse 36, 80636 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Reuning U, Magdolen V, Hapke S, Schmitt M. Molecular and functional interdependence of the urokinase-type plasminogen activator system with integrins. Biol Chem 2003; 384:1119-31. [PMID: 12974381 DOI: 10.1515/bc.2003.125] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The serine protease urokinase-type plasminogen activator (uPA), its inhibitor PAI-1, and its cellular receptor uPA-R (CD87) are of crucial importance during cellular invasion and migration, required for a variety of physio- and pathophysiological processes. It has become increasingly evident in recent years that the uPA/uPA-R-system has far more functional properties than plasminogen activation alone. This is reflected by its involvement in cellular events such as proliferation, adhesion, migration, and chemotaxis. Since uPA-R lacks a transmembrane domain and thus on its own is not capable of transmitting signals into cells, association and functional cooperation with other signaling molecules/receptors is needed. In this respect, one group of adhesion and signaling receptors, the integrins, have been identified which constitute, together with the uPA/uPA-R-system, an interdependent biological network by which the uPA/uPA-R-system broadly affects integrin functions and vice versa. Moreover, there is a growing body of evidence that cellular uPA, uPA-R, and PAI-1 expression is under control of specific ECM/integrin interactions and also that integrins are regulated by components of the uPA/uPA-R-system. By this multifaceted crosstalk, cells may modulate their proteolytic, adhesive, and migratory activities and monitor ECM integrity in their microenvironment.
Collapse
Affiliation(s)
- Ute Reuning
- Klinische Forschergruppe, Frauenklinik der Technischen Universität München, Klinikum rechts der Isar, D-81675 München, Germany
| | | | | | | |
Collapse
|