1
|
Tong Y, Wang G, Riquelme MA, Du Y, Quan Y, Fu J, Gu S, Jiang JX. Mechano-activated connexin hemichannels and glutathione transport protect lens fiber cells against oxidative insults. Redox Biol 2024; 73:103216. [PMID: 38820983 PMCID: PMC11170479 DOI: 10.1016/j.redox.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Long-lived lens fiber cells require a robust cellular protective function against oxidative insults to maintain their hemostasis and viability; however, the underlying mechanism is largely obscure. In this study, we unveiled a new mechanism that protects lens fiber cells against oxidative stress-induced cell death. We found that mechano-activated connexin (Cx) hemichannels (HCs) mediate the transport of glutathione (GSH) into chick embryonic fibroblasts (CEF) and primary lens fiber cells, resulting in a decrease in the accumulation of intracellular reactive oxygen species induced by both H2O2 and ultraviolet B, providing protection to lens fiber cells against cell apoptosis and necrosis. Furthermore, HCs formed by both homomeric Cx50 or Cx46 and heteromeric Cx50/Cx46 were mechanosensitive and could transport GSH into CEF cells. Notably, mechano-activated Cx50 HCs exhibited a greater capacity to transport GSH than Cx46 HCs. Consistently, the deficiency of Cx50 in single lens fiber cells led to a higher level of oxidative stress. Additionally, outer cortical short lens fiber cells expressing full length Cxs demonstrated greater resistance to oxidative injury compared to central core long lens fibers. Taken together, our results suggest that the activation of Cx HCs by interstitial fluid flow in cultured epithelial cells and isolated fiber cells shows that HCs can serve as a pathway for moving GSH across the cell membrane to offer protection against oxidative stress.
Collapse
Affiliation(s)
- Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA; Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA; Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yu Du
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jialing Fu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
2
|
Du Y, Acosta FM, Zhang J, Tong Y, Quan Y, Gu S, Jiang JX. Protocol for altering connexin hemichannel function in primary chicken lens fiber cells using high-titer retroviral RCAS(A) infection. STAR Protoc 2023; 4:102564. [PMID: 37738121 PMCID: PMC10519848 DOI: 10.1016/j.xpro.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023] Open
Abstract
Connexins (Cxs) play a crucial role in maintaining lens transparency. Here, we present a protocol for altering Cx hemichannel (HC) function in primary chicken lens fiber cells using high-titer retroviral replication competent avian sarcoma-leukosis virus long terminal repeat with splice acceptor (A) infection. We describe steps for incubating eggs, isolating lenses, culturing cells, preparing reagents, and infecting cells. We then detail cell treatment and detection of apoptosis and death. This protocol can assess protein kinase A, HC activity, and increased glutathione transport for protecting lens fiber cells against oxidative stress. For complete details on the use and execution of this protocol, please refer to Liu et al.,1 Riquelme et al.,2 Shi et al.,3 Jiang,4 and Rath et al.5.
Collapse
Affiliation(s)
- Yu Du
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Ophthalmology, Lanzhou University Second Hospital; Second Clinical School, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jianping Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
3
|
Du Y, Tong Y, Quan Y, Wang G, Cheng H, Gu S, Jiang JX. Protein kinase A activation alleviates cataract formation via increased gap junction intercellular communication. iScience 2023; 26:106114. [PMID: 36852280 PMCID: PMC9958365 DOI: 10.1016/j.isci.2023.106114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Cataract is the leading cause of blindness worldwide. Here, we reported a potential, effective therapeutic mean for cataract prevention and treatment. Gap junction communication, an important mechanism in maintaining lens transparency, is increased by protein kinase A (PKA). We found that PKA activation reduced cataracts induced by oxidative stress, increased gap junctions/hemichannels in connexin (Cx) 50, Cx46 or Cx50 and Cx46 co-expressing cells, and decreased reactive oxygen species (ROS) levels. However, ROS reduction was shown in wild-type, Cx46 and Cx50 knockout, but not in Cx46/Cx50 double KO lens. In addition, PKA activation protects lens fiber cell death induced by oxidative stress via hemichannel-mediated glutathione transport. Connexin deletion increased lens opacity induced by oxidative stress associated with reduction of anti-oxidative stress gene expression. Together, our results suggest that PKA activation through increased connexin channels in lens fiber cell decreases ROS levels and cell death, leading to alleviated cataracts.
Collapse
Affiliation(s)
- Yu Du
- Department of Ophthalmology, Lanzhou University Second Hospital; Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730000, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| |
Collapse
|
4
|
Li Z, Quan Y, Wang G, Ma B, Gu S, Jiang JX. The second extracellular domain of connexin 50 is important for in cell adhesion, lens differentiation, and adhesion molecule expression. J Biol Chem 2023; 299:102965. [PMID: 36736424 PMCID: PMC10011516 DOI: 10.1016/j.jbc.2023.102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Connexin (Cx)-forming channels play essential roles in maintaining lens homeostasis and transparency. We showed here channel-independent roles of Cx50 in cell-cell adhesion and confirmed the second extracellular (E2) domain as a critical domain for cell adhesion function. We found that cell adhesion decreased in cells expressing chimeric Cx50 in which the E2 domain was swapped with the E2 domain of either Cx43 or Cx46. In contrast, adhesion increased in cells expressing chimeric Cx43 and Cx46 with the Cx50 (E2) domain. This function is Cx channel-independent and Cx50 E2 domain-dependent cell adhesion acting in both homotypic and heterotypic manners. In addition, we generated eight site mutations of unique residues between Cx50 and the other two lens Cxs and found that mutation of any one of the residues abolished the adhesive function. Moreover, expression of adhesive-impaired mutants decreased adhesion-related proteins, N-cadherin and β-catenin. Expression of the adhesion-impaired Cx50W188P mutant in embryonic chick lens caused enlarged extracellular spaces, distorted fiber organization, delayed nuclear condensation, and cortical cataracts. In summary, the results from both in vitro and in vivo studies demonstrate the importance of the adhesive function of Cx50 in the lens.
Collapse
Affiliation(s)
- Zhen Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Bo Ma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA.
| |
Collapse
|
5
|
Li Z, Quan Y, Gu S, Jiang JX. Beyond the Channels: Adhesion Functions of Aquaporin 0 and Connexin 50 in Lens Development. Front Cell Dev Biol 2022; 10:866980. [PMID: 35465319 PMCID: PMC9022433 DOI: 10.3389/fcell.2022.866980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Lens, an avascular tissue involved in light transmission, generates an internal microcirculatory system to promote ion and fluid circulation, thus providing nutrients to internal lens cells and excreting the waste. This unique system makes up for the lack of vasculature and distinctively maintains lens homeostasis and lens fiber cell survival through channels of connexins and other transporters. Aquaporins (AQP) and connexins (Cx) comprise the majority of channels in the lens microcirculation system and are, thus, essential for lens development and transparency. Mutations of AQPs and Cxs result in abnormal channel function and cataract formation. Interestingly, in the last decade or so, increasing evidence has emerged suggesting that in addition to their well-established channel functions, AQP0 and Cx50 play pivotal roles through channel-independent actions in lens development and transparency. Specifically, AQP0 and Cx50 have been shown to have a unique cell adhesion function that mediates lens development and transparency. Precise regulation of cell-matrix and cell-cell adhesion is necessary for cell migration, a critical process during lens development. This review will provide recent advances in basic research of cell adhesion mediated by AQP0 and Cx50.
Collapse
Affiliation(s)
- Zhen Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
6
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
7
|
Liu J, Riquelme MA, Li Z, Li Y, Tong Y, Quan Y, Pei C, Gu S, Jiang JX. Mechanosensitive collaboration between integrins and connexins allows nutrient and antioxidant transport into the lens. J Cell Biol 2021; 219:211530. [PMID: 33180092 PMCID: PMC7668387 DOI: 10.1083/jcb.202002154] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
The delivery of glucose and antioxidants is vital to maintain homeostasis and lens transparency. Here, we report a new mechanism whereby mechanically activated connexin (Cx) hemichannels serve as a transport portal for delivering glucose and glutathione (GSH). Integrin α6β1 in outer cortical lens fiber activated by fluid flow shear stress (FFSS) induced opening of hemichannels. Inhibition of α6 activation prevented hemichannel opening as well as glucose and GSH uptake. The activation of integrin β1, a heterodimeric partner of α6 in the absence of FFSS, increased Cx50 hemichannel opening. Hemichannel activation by FFSS depended on the interaction of integrin α6 and Cx50 C-terminal domain. Moreover, hemichannels in nuclear fiber were unresponsive owing to Cx50 truncation. Taken together, these results show that mechanically activated α6β1 integrin in outer cortical lens fibers leads to opening of hemichannels, which transport glucose and GSH into cortical lens fibers. This study unveils a new transport mechanism that maintains metabolic and antioxidative function of the lens.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Zhen Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yuting Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
8
|
Shi W, Riquelme MA, Gu S, Jiang JX. Connexin hemichannels mediate glutathione transport and protect lens fiber cells from oxidative stress. J Cell Sci 2018; 131:jcs212506. [PMID: 29487175 PMCID: PMC5897712 DOI: 10.1242/jcs.212506] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/07/2018] [Indexed: 01/04/2023] Open
Abstract
Elevated oxidized stress contributes to lens cataracts, and gap junctions play important roles in maintaining lens transparency. As well as forming gap junctions, connexin (Cx) proteins also form hemichannels. Here, we report a new mechanism whereby hemichannels mediate transport of reductant glutathione into lens fiber cells and protect cells against oxidative stress. We found that Cx50 (also known as GJA8) hemichannels opened in response to H2O2 in lens fiber cells but that transport through the channels was inhibited by two dominant-negative mutants in Cx50, Cx50P88S, which inhibits transport through both gap junctions and hemichannels, and Cx50H156N, which only inhibits transport through hemichannels and not gap junctions. Treatment with H2O2 increased the number of fiber cells undergoing apoptosis, and this increase was augmented with dominant-negative mutants that disrupted both hemichannels formed from Cx46 (also known as GJA3) and Cx50, while Cx50E48K, which only impairs gap junctions, did not have such an effect. Moreover, hemichannels mediate uptake of glutathione, and this uptake protected lens fiber cells against oxidative stress, while hemichannels with impaired transport had less protective benefit from glutathione. Taken together, these results show that oxidative stress activates connexin hemichannels in the lens fiber cells and that hemichannels likely protect lens cell against oxidative damage through transporting extracellular reductants.
Collapse
Affiliation(s)
- Wen Shi
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Wang D, Wang E, Liu K, Xia CH, Li S, Gong X. Roles of TGFβ and FGF signals during growth and differentiation of mouse lens epithelial cell in vitro. Sci Rep 2017; 7:7274. [PMID: 28779082 PMCID: PMC5544739 DOI: 10.1038/s41598-017-07619-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
Transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling pathways play important roles in the proliferation and differentiation of lens epithelial cells (LECs) during development. Low dosage bFGF promotes cell proliferation while high dosage induces differentiation. TGFβ signaling regulates LEC proliferation and differentiation as well, but also promotes epithelial-mesenchymal transitions that lead to cataracts. Thus far, it has been difficult to recapitulate the features of germinative LECs in vitro. Here, we have established a LEC culture protocol that uses SB431542 (SB) compound to inhibit TGFβ/Smad activation, and found that SB treatment promoted mouse LEC proliferation, maintained LECs’ morphology and distinct markers including N-cadherin, c-Maf, Prox1, and αA-, αB-, and β-crystallins. In contrast, low-dosage bFGF was unable to sustain those markers and, combined with SB, altered LECs’ morphology and β-crystallin expression. We further found that Matrigel substrate coatings greatly increased cell proliferation and uniquely affected β-crystallin expression. Cultured LECs retained the ability to differentiate into γ-crystallin-positive lentoids by high-dosage bFGF treatment. Thus, a suppression of TGFβ/Smad signaling in vitro is critical to maintaining characteristic features of mouse LECs, especially expression of the key transcription factors c-Maf and Prox1.
Collapse
Affiliation(s)
- Dong Wang
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
| | - Eddie Wang
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA
| | - Kelsey Liu
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA
| | - Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA
| | - Song Li
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Los Angeles, California, 90095, USA.,Department of Medicine, University of California, Los Angeles, California, 90095, USA
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA.
| |
Collapse
|
10
|
Hu Z, Shi W, Riquelme MA, Shi Q, Biswas S, Lo WK, White TW, Gu S, Jiang JX. Connexin 50 Functions as an Adhesive Molecule and Promotes Lens Cell Differentiation. Sci Rep 2017; 7:5298. [PMID: 28706245 PMCID: PMC5509658 DOI: 10.1038/s41598-017-05647-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/01/2017] [Indexed: 11/25/2022] Open
Abstract
Connexins play essential roles in lens homeostasis and development. Here, we identified a new role for Cx50 that mediates cell-cell adhesion function. Cx50 enhanced the adhesive capability of AQP0. Interestingly, the expression of Cx50 alone promoted cell adhesion at a comparable level to AQP0; however, this cell adhesive function was not observed with other lens connexins, Cx43 and Cx46. Moreover, the adhesive property occurred in both homotypic with Cx50 expressed in both pairing cells and heterotypic with Cx50 in only one pairing cell, and this function appears to be unrelated to its role in forming gap junction channels. Cx50 KO lenses exhibited increased intercellular spaces between lens fiber cells. The second extracellular loop domain (E2) is primarily responsible for this adhesive function. Treatment with a fusion protein containing E2 domain inhibited cell adhesion. Furthermore, disruption of cell adhesion by the E2 domains impaired primary lens cell differentiation. Five critical amino acid residues in the E2 domain primarily are involved in cell adhesive function as well as lens epithelial-fiber differentiation. Together, these results suggest that in addition to forming gap junction channels, Cx50 acts as an adhesive molecule that is critical in maintaining lens fiber integrity and epithelial-fiber differentiation.
Collapse
Affiliation(s)
- Zhengping Hu
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen Shi
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Manuel A Riquelme
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Qian Shi
- Departments of Physiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sondip Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Sumin Gu
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
11
|
Wang E, Geng A, Maniar AM, Mui BWH, Gong X. Connexin 50 Regulates Surface Ball-and-Socket Structures and Fiber Cell Organization. Invest Ophthalmol Vis Sci 2017; 57:3039-46. [PMID: 27281269 PMCID: PMC4913802 DOI: 10.1167/iovs.16-19521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose The roles of gap junction protein connexin 50 (Cx50) encoded by Gja8, during lens development are not fully understood. Connexin 50 knockout (KO) lenses have decreased proliferation of epithelial cells and altered fiber cell denucleation. We further investigated the mechanism for cellular defects in Cx50 KO (Gja8−/−) lenses. Methods Fiber cell morphology and subcellular distribution of various lens membrane/cytoskeleton proteins from wild-type and Cx50 KO mice were visualized by immunofluorescent staining and confocal microscopy. Results We observed multiple morphological defects in the cortical fibers of Cx50 KO lenses, including abnormal fiber cell packing geometry, decreased F-actin enrichment at tricellular vertices, and disrupted ball-and-socket (BS) structures on the long sides of hexagonal fibers. Moreover, only small gap junction plaques consisting of Cx46 (α3 connexin) were detected in cortical fibers and the distributions of the BS-associated beta-dystroglycan and ZO-1 proteins were altered. Conclusions Connexin 50 gap junctions are important for BS structure maturation and cortical fiber cell organization. Connexin 50–based gap junction plaques likely form structural domains with an array of membrane/cytoskeletal proteins to stabilize BS. Loss of Cx50-mediated coupling, BS disruption, and altered F-actin in Cx50 KO fibers, thereby contribute to the small lens and mild cataract phenotypes.
Collapse
|
12
|
Roy S, Jiang JX, Li AF, Kim D. Connexin channel and its role in diabetic retinopathy. Prog Retin Eye Res 2017; 61:35-59. [PMID: 28602949 DOI: 10.1016/j.preteyeres.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy is the leading cause of blindness in the working age population. Unfortunately, there is no cure for this devastating ocular complication. The early stage of diabetic retinopathy is characterized by the loss of various cell types in the retina, namely endothelial cells and pericytes. As the disease progresses, vascular leakage, a clinical hallmark of diabetic retinopathy, becomes evident and may eventually lead to diabetic macular edema, the most common cause of vision loss in diabetic retinopathy. Substantial evidence indicates that the disruption of connexin-mediated cellular communication plays a critical role in the pathogenesis of diabetic retinopathy. Yet, it is unclear how altered communication via connexin channel mediated cell-to-cell and cell-to-extracellular microenvironment is linked to the development of diabetic retinopathy. Recent observations suggest the possibility that connexin hemichannels may play a role in the pathogenesis of diabetic retinopathy by allowing communication between cells and the microenvironment. Interestingly, recent studies suggest that connexin channels may be involved in regulating retinal vascular permeability. These cellular events are coordinated at least in part via connexin-mediated intercellular communication and the maintenance of retinal vascular homeostasis. This review highlights the effect of high glucose and diabetic condition on connexin channels and their impact on the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Sayon Roy
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - An-Fei Li
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Dongjoon Kim
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Shi Q, Gu S, Yu XS, White TW, Banks EA, Jiang JX. Connexin Controls Cell-Cycle Exit and Cell Differentiation by Directly Promoting Cytosolic Localization and Degradation of E3 Ligase Skp2. Dev Cell 2015; 35:483-96. [PMID: 26585299 DOI: 10.1016/j.devcel.2015.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 09/10/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
Abstract
Connexins and connexin channels play important roles in cell growth/differentiation and tumorigenesis. Here, we identified a relationship between a connexin molecule and a critical cell-cycle regulator. Our data show that connexin (Cx) 50 regulated lens cell-cycle progression and differentiation by modulating expression of cyclin-dependent kinase inhibitor p27/p57 and E3 ubiquitin ligase Skp2. Cx50 directly interacted with and retained Skp2 in the cytosol by masking the nuclear targeting domain of Skp2, and this effect was supported by an increased nuclear localization of Skp2, disruption of Skp2 interaction with importin-7, and decreased levels of p27/p57 in mouse lenses lacking Cx50. As a result, Cx50 increased auto-ubiquitination and subsequent degradation of Skp2. A mutation (V362E) on the C terminus of Cx50 disrupted the interaction between Cx50 and Skp2 and completely abolished such effects. Therefore, this study identifies a role for connexins in regulating cell-cycle modulators and, consequently, cell growth and differentiation.
Collapse
Affiliation(s)
- Qian Shi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - X Sean Yu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Thomas W White
- Department of Physiology and Biophysics, State University of New York, Stony Brook, NY 11794-8661, USA
| | - Eric A Banks
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
14
|
Berthoud VM, Minogue PJ, Osmolak P, Snabb JI, Beyer EC. Roles and regulation of lens epithelial cell connexins. FEBS Lett 2014; 588:1297-303. [PMID: 24434541 DOI: 10.1016/j.febslet.2013.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 11/27/2022]
Abstract
The avascular lens of the eye is covered anteriorly by an epithelium containing nucleated, metabolically active cells. This epithelium contains the first lens cells to encounter noxious external stimuli and cells that can develop compensatory or protective responses. Lens epithelial cells express the gap junction proteins, connexin43 (Cx43) and connexin50 (Cx50). Cx43 and Cx50 form gap junction channels and hemichannels with different properties. Although they may form heteromeric hemichannels, Cx43 and Cx50 probably do not form heterotypic channels in the lens. Cx50 channels make their greatest contribution to intercellular communication during the early postnatal period; subsequently, Cx43 becomes the predominant connexin supporting intercellular communication. Although epithelial Cx43 appears dispensable for lens development, Cx50 is critical for epithelial cell proliferation and differentiation. Cx43 and Cx50 hemichannels and gap junction channels are regulated by multiple different agents. Lens epithelial cell connexins contribute to both normal lens physiology and pathology.
Collapse
Affiliation(s)
- Viviana M Berthoud
- Department of Pediatrics and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, United States.
| | - Peter J Minogue
- Department of Pediatrics and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Patricia Osmolak
- Department of Pediatrics and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Joseph I Snabb
- Department of Pediatrics and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Eric C Beyer
- Department of Pediatrics and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
15
|
Zhou JZ, Jiang JX. Gap junction and hemichannel-independent actions of connexins on cell and tissue functions--an update. FEBS Lett 2014; 588:1186-92. [PMID: 24434539 DOI: 10.1016/j.febslet.2014.01.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Connexins, a family of transmembrane proteins, are components of both gap junction channels and hemichannels, which mediate the exchange of ions and small molecules between adjacent cells, and between the inside and outside of the cell, respectively. Substantial advancements have been made in the comprehension of the role of gap junctions and hemichannels in coordinating cellular events. In recent years, a plethora of studies demonstrate a role of connexin proteins in the regulation of tissue homeostasis that occurs independently of their channel activities. This is shown in the context of cell growth, adhesion, migration, apoptosis, and signaling. The major mechanisms of these channel-independent activities still remain to be discovered. In this review, we provide an updated overview on the current knowledge of gap junction- and hemichannel-independent functions of connexins, in particular, their effects on tumorigenesis, neurogenesis and disease development.
Collapse
Affiliation(s)
- Jade Z Zhou
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
16
|
Beyer EC, Ebihara L, Berthoud VM. Connexin mutants and cataracts. Front Pharmacol 2013; 4:43. [PMID: 23596416 PMCID: PMC3625720 DOI: 10.3389/fphar.2013.00043] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022] Open
Abstract
The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8) have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating) or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death) and formation of cytoplasmic accumulations (that may act as light scattering particles). These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago Chicago, IL, USA
| | | | | |
Collapse
|
17
|
Kar R, Batra N, Riquelme MA, Jiang JX. Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys 2012; 524:2-15. [PMID: 22430362 PMCID: PMC3376239 DOI: 10.1016/j.abb.2012.03.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/16/2012] [Accepted: 03/06/2012] [Indexed: 12/11/2022]
Abstract
Gap junctions (GJ) and hemichannels (HC) formed from the protein subunits called connexins are transmembrane conduits for the exchange of small molecules and ions. Connexins and another group of HC-forming proteins, pannexins comprise the two families of transmembrane proteins ubiquitously distributed in vertebrates. Most cell types express more than one connexin or pannexin. While connexin expression and channel activity may vary as a function of physiological and pathological states of the cell and tissue, only a few studies suggest the involvement of pannexin HC in acquired pathological conditions. Importantly, genetic mutations in connexin appear to interfere with GJ and HC function which results in several diseases. Thus connexins could serve as potential drug target for therapeutic intervention. Growing evidence suggests that diseases resulting from HC dysfunction might open a new direction for development of specific HC reagents. This review provides a comprehensive overview of the current studies of GJ and HC formed by connexins and pannexins in various tissue and organ systems including heart, central nervous system, kidney, mammary glands, ovary, testis, lens, retina, inner ear, bone, cartilage, lung and liver. In addition, present knowledge of the role of GJ and HC in cell cycle progression, carcinogenesis and stem cell development is also discussed.
Collapse
Affiliation(s)
| | | | - Manuel A Riquelme
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Jean X. Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900
| |
Collapse
|
18
|
Abstract
Gap junctions (GJ) can no longer be thought of as simple channel forming structures that mediate intercellular communication. Hemi-channel and channel-independent functions of connexins (Cxs) have been described and numerous Cx interacting partners have been uncovered ranging from enzymes to structural and scaffolding molecules to transcription factors. With the growing number of Cx partners and functions, including well-documented roles for Cxs as conditional tumor suppressors, it has become essential to understand how Cxs are regulated in a context-dependent manner to mediate distinct functions. In this review we will shed light on the tissue and context-dependent regulation and function of Cxs and on the importance of Cx-interactions in modulating tissue-specific function. We will emphasize how the context-dependent functions of Cxs can help in understanding the impact of Cx mis-expression on cancer development and, ultimately, explore whether Cxs can be used as potential therapeutic targets in cancer treatment. In the end, we will address the need for developing relevant assays for studying Cx and GJ functions and will highlight how advances in bioengineering tools and the design of 3D biological platforms can help studying gap junction function in real time in a non-intrusive manner.
Collapse
Affiliation(s)
- R M Mroue
- Division of Life Sciences, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
19
|
Turmel P, Dufresne J, Hermo L, Smith CE, Penuela S, Laird DW, Cyr DG. Characterization of pannexin1 and pannexin3 and their regulation by androgens in the male reproductive tract of the adult rat. Mol Reprod Dev 2011; 78:124-38. [DOI: 10.1002/mrd.21280] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Jiang JX. Gap junctions or hemichannel-dependent and independent roles of connexins in cataractogenesis and lens development. Curr Mol Med 2010; 10:851-63. [PMID: 21091421 PMCID: PMC6263138 DOI: 10.2174/156652410793937750] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 09/13/2010] [Indexed: 11/22/2022]
Abstract
In the last decade or so, increasing evidences suggest that the mutations of two connexin genes, GJA3 and GJA8, are directly linked to human congenital cataracts in North and Central America, Europe and Asia. GIA3 and GIA8 genes encode gap junction-forming proteins, connexin (Cx) 46 and Cx50, respectively. These two connexins are predominantly expressed in lens fiber cells. Majority of identified mutations are missense, and the mutated sites are scattered across various domains of connexin molecules. Genetic deletion of either of these two genes leads to the development of cataracts; however, the types of cataracts developed are distinctive. More interestingly, microphthalmia is only developed in Cx50, but not Cx46 deficient mice, suggesting the unique role of Cx50 in lens cell growth and development. Knockin studies with the replacement of Cx46 or Cx50 at their respective gene locus further demonstrate the unique properties of these two connexins. Furthermore, the function of Cx50 in epithelial-fiber differentiation appears to be independent of its conventional role in forming gap junction junction channels. Due to their specific functions in maintaining lens clarity and development, and their malfunctions resulting in lens cataractogenesis and developmental impairment, connexin molecules could be developed as potential drug targets for therapeutic intervention for treatment of cataracts and other eye disorders. Recent advances in basic research of lens connexins and the discoveries of clinical disorders as a result of lens connexin dysfunctions are summarized and discussed here.
Collapse
Affiliation(s)
- J X Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
21
|
Shi Q, Banks EA, Yu XS, Gu S, Lauer J, Fields GB, Jiang JX. Amino acid residue Val362 plays a critical role in maintaining the structure of C terminus of connexin 50 and in lens epithelial-fiber differentiation. J Biol Chem 2010; 285:18415-22. [PMID: 20395299 DOI: 10.1074/jbc.m110.107052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that connexin (Cx) 50, unlike the other two lens connexins, Cx43 and Cx46, promotes chicken lens epithelial-fiber differentiation in a channel-independent manner. Here, we show that deletion of the PEST motif at the C terminus (CT) domain of Cx50 attenuates the stimulatory effect of Cx50 on lens fiber differentiation. Valine 362, a residue located within the PEST domain, is functionally involved. The structure of the Cx50 CT predicted by molecular modeling revealed four alpha-helices and Val(362) was found to be located in the middle of the 3rd helix. Replacement of Val(362) with amino acid residues that disrupt the alpha-helical structure predicted by molecular modeling, such as arginine, glutamate, or phenylalanine, attenuated the stimulatory effects of Cx50 on lens differentiation, whereas replacement with threonine, isoleucine, leucine, or proline, which maintain the structure preserved the function of Cx50. Circular dichroism (CD) studies supported the structural predictions and showed that the substitution with Glu, but not Thr or Pro, disrupted the alpha-helix, which appears to be the structural feature important for lens epithelial-fiber differentiation. Together, our results suggest that Val(362) is important for maintaining the helical structure and is crucial for the role of Cx50 in promoting lens epithelial-fiber differentiation.
Collapse
Affiliation(s)
- Qian Shi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Banks EA, Toloue MM, Shi Q, Zhou ZJ, Liu J, Nicholson BJ, Jiang JX. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. J Cell Sci 2009; 122:378-88. [PMID: 19126675 PMCID: PMC2650834 DOI: 10.1242/jcs.034124] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2008] [Indexed: 11/20/2022] Open
Abstract
The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency.
Collapse
Affiliation(s)
- Eric A Banks
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
In vertebrates, a family of related proteins called connexins form gap junctions (GJs), which are intercellular channels. In the central nervous system (CNS), GJs couple oligodendrocytes and astrocytes (O/A junctions) and adjacent astrocytes (A/A junctions), but not adjacent oligodendrocytes, forming a "glial syncytium." Oligodendrocytes and astrocytes each express different connexins. Mutations of these connexin genes demonstrate that the proper functioning of myelin and oligodendrocytes requires the expression of these connexins. The physiological function of O/A and A/A junctions, however, remains to be illuminated.
Collapse
|