1
|
Waich S, Kreidl K, Vodopiutz J, Demir AM, Pollio AR, Dostál V, Pfaller K, Parlato M, Cerf-Bensussan N, Adam R, Vogel GF, Uhlig HH, Ruemmele FM, Müller T, Hess MW, Janecke AR, Huber LA, Valovka T. Altered chaperone-nonmuscle myosin II interactions drive pathogenicity of the UNC45A c.710T>C variant in osteo-oto-hepato-enteric syndrome. JCI Insight 2025; 10:e185508. [PMID: 40125554 PMCID: PMC11949031 DOI: 10.1172/jci.insight.185508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
The osteo-oto-hepato-enteric (O2HE) syndrome is a severe autosomal recessive disease ascribed to loss-of-function mutations in the Unc-45 myosin chaperone A (UNC45A) gene. The clinical spectrum includes bone fragility, hearing loss, cholestasis, and life-threatening diarrhea associated with microvillus inclusion disease-like enteropathy. Here, we present molecular and functional analysis of the UNC45A c.710T>C (p.Leu237Pro) missense variant, which revealed a unique pathogenicity compared with other genetic variants causing UNC45A deficiency. The UNC45A p.Leu237Pro mutant retained chaperone activity, prevented myosin aggregation, and supported proper nonmuscle myosin II (NMII) filament formation in patient fibroblasts and human osteosarcoma (U2OS) cells. However, the mutant formed atypically stable oligomers and prevented chaperone-myosin complex dissociation, thereby inhibiting NMII functions. Similar to biallelic UNC45A deficiency, this resulted in impaired intracellular trafficking, defective recycling, and abnormal retention of transferrin at various endocytic sites. In particular, coexpression of wild-type protein attenuated the pathogenic effects of the variant by inhibiting excessive oligomer formation. Our results elucidate the pathogenic mechanisms and recessive characteristics of this variant and may aid in the development of targeted therapies.
Collapse
Affiliation(s)
| | - Karin Kreidl
- Institute of Cell Biology, Biocenter, and
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Vodopiutz
- Division of Paediatric Pulmonology, Allergology and Endocrinology, Department of Paediatrics and Adolescent Medicine, Comprehensive Center for Paediatrics, Medical University of Vienna, Vienna, Austria
- Vienna Bone & Growth Center (VBGC), Medical University of Vienna, and full member of European Reference Network on Rare Bone Diseases, Vienna, Austria
| | - Arzu Meltem Demir
- Ankara Child Health and Diseases, Training and Research Hospital, Department of Paediatric Gastroenterology, Ankara, Turkey
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Ankara University School of Medicine, Ankara, Turkey
| | | | | | - Kristian Pfaller
- Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marianna Parlato
- Université Paris Cité, Laboratory of Intestinal Immunity, Institut IMAGINE INSERM UMR 1163, Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Laboratory of Intestinal Immunity, Institut IMAGINE INSERM UMR 1163, Paris, France
| | - Rüdiger Adam
- University Children’s Hospital, Paediatric Gastroenterology, Hepatology and Nutrition, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georg F. Vogel
- Institute of Cell Biology, Biocenter, and
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Holm H. Uhlig
- Experimental Medicine Division, Nuffield Department of Clinical Medicine; Department of Paediatrics; and Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Frank M. Ruemmele
- Université Paris Cité, Faculté de Santé, UFR de Médicine, APHP, Hôpital Universitaire Necker Enfants Malades, Service de Gastroentérologie Pediatrique, Institut IMAGINE INSERM UMR 1163, Paris, France
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael W. Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas R. Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Taras Valovka
- Institute of Cell Biology, Biocenter, and
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Wang H, Sun F. UNC-45A: A potential therapeutic target for malignant tumors. Heliyon 2024; 10:e31276. [PMID: 38803956 PMCID: PMC11128996 DOI: 10.1016/j.heliyon.2024.e31276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/31/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Uncoordinated mutant number-45 myosin chaperone A (UNC-45A), a protein highly conserved throughout evolution, is ubiquitously expressed in somatic cells. It is correlated with tumorigenesis, proliferation, metastasis, and invasion of multiple malignant tumors. The current understanding of the role of UNC-45A in tumor progression is mainly related to the regulation of non-muscle myosin II (NM-II). However, many studies have suggested that the mechanisms by which UNC-45A is involved in tumor progression are far greater than those of NM-II regulation. UNC-45A can also promote tumor cell proliferation by regulating checkpoint kinase 1 (ChK1) phosphorylation or the transcriptional activity of nuclear receptors, and induces chemoresistance to paclitaxel in tumor cells by destabilizing microtubule activity. In this review, we discuss the recent advances illuminating the role of UNC-45A in tumor progression. We also put forward therapeutic strategies targeting UNC-45A, in the hope of paving the way the development of UNC-45A-targeted therapies for patients with malignant tumors.
Collapse
Affiliation(s)
- Hong Wang
- School of Nursing, Binzhou Medical University, Yantai, 264003, PR China
| | - Fude Sun
- Department of Anesthesiology, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, 265699, PR China
| |
Collapse
|
3
|
Valdebenito S, Eugenin E, Oberhauser A. SPR spectroscopic analysis of myosin binding to wild type and mutant UNC45B. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001131. [PMID: 38404916 PMCID: PMC10884834 DOI: 10.17912/micropub.biology.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
UNC45B is a multidomain molecular chaperone that is essential for the proper folding and function of myosin. It has previously been demonstrated that the UCS domain is responsible for the chaperoning function of UNC45B and that removing its client-binding loop leads to a significant change in its solution conformation and a reduced chaperoning function. Here, we report the direct quantification of affinities of myosin binding to wild type and mutant UNC45B using surface plasmon resonance (SPR) spectroscopy. We found that deletion of the client-binding loop in UNC45B resulted in a dramatic decrease in myosin affinity.
Collapse
Affiliation(s)
- Silvana Valdebenito
- The University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| | - Eliseo Eugenin
- The University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| | - Andres Oberhauser
- The University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| |
Collapse
|
4
|
Odunuga OO, Oberhauser AF. Beyond Chaperoning: UCS Proteins Emerge as Regulators of Myosin-Mediated Cellular Processes. Subcell Biochem 2023; 101:189-211. [PMID: 36520308 DOI: 10.1007/978-3-031-14740-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The UCS (UNC-45/CRO1/She4p) family of proteins has emerged as chaperones specific for the folding, assembly, and function of myosin. UCS proteins participate in various myosin-dependent cellular processes including myofibril organization and muscle functions, cell differentiation, striated muscle development, cytokinesis, and endocytosis. Mutations in the genes that code for UCS proteins cause serious defects in myosin-dependent cellular processes. UCS proteins that contain an N-terminal tetratricopeptide repeat (TPR) domain are called UNC-45. Vertebrates usually possess two variants of UNC-45, the ubiquitous general-cell UNC-45 (UNC-45A) and the striated muscle UNC-45 (UNC-45B), which is exclusively expressed in skeletal and cardiac muscles. Except for the TPR domain in UNC-45, UCS proteins comprise of several irregular armadillo (ARM) repeats that are organized into a central domain, a neck region, and the canonical C-terminal UCS domain that functions as the chaperoning module. With or without TPR, UCS proteins form linear oligomers that serve as scaffolds that mediate myosin folding, organization into myofibrils, repair, and motility. This chapter reviews emerging functions of these proteins with a focus on UNC-45 as a dedicated chaperone for folding, assembly, and function of myosin at protein and potentially gene levels. Recent experimental evidences strongly support UNC-45 as an absolute regulator of myosin, with each domain of the chaperone playing different but complementary roles during the folding, assembly, and function of myosin, as well as recruiting Hsp90 as a co-chaperone to optimize key steps. It is becoming increasingly clear that UNC-45 also regulates the transcription of several genes involved in myosin-dependent cellular processes.
Collapse
Affiliation(s)
- Odutayo O Odunuga
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA.
| | - Andres F Oberhauser
- Department of Neuroscience, Cell Biology, & Anatomy, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
5
|
Liu C, Hao J, Yao LL, Wei M, Chen W, Yang Q, Li XD. Insect Sf9 cells are suitable for functional expression of insect, but not vertebrate, striated muscle myosin. Biochem Biophys Res Commun 2022; 635:259-266. [DOI: 10.1016/j.bbrc.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022]
|
6
|
Piper PW, Scott JE, Millson SH. UCS Chaperone Folding of the Myosin Head: A Function That Evolved before Animals and Fungi Diverged from a Common Ancestor More than a Billion Years Ago. Biomolecules 2022; 12:biom12081028. [PMID: 35892339 PMCID: PMC9331494 DOI: 10.3390/biom12081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
The folding of the myosin head often requires a UCS (Unc45, Cro1, She4) domain-containing chaperone. Worms, flies, and fungi have just a single UCS protein. Vertebrates have two; one (Unc45A) which functions primarily in non-muscle cells and another (Unc45B) that is essential for establishing and maintaining the contractile apparatus of cardiac and skeletal muscles. The domain structure of these proteins suggests that the UCS function evolved before animals and fungi diverged from a common ancestor more than a billion years ago. UCS proteins of metazoans and apicomplexan parasites possess a tetratricopeptide repeat (TPR), a domain for direct binding of the Hsp70/Hsp90 chaperones. This, however, is absent in the UCS proteins of fungi and largely nonessential for the UCS protein function in Caenorhabditis elegans and zebrafish. The latter part of this review focusses on the TPR-deficient UCS proteins of fungi. While these are reasonably well studied in yeasts, there is little precise information as to how they might engage in interactions with the Hsp70/Hsp90 chaperones or might assist in myosin operations during the hyphal growth of filamentous fungi.
Collapse
Affiliation(s)
- Peter William Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence: (P.W.P.); (S.H.M.)
| | | | - Stefan Heber Millson
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
- Correspondence: (P.W.P.); (S.H.M.)
| |
Collapse
|
7
|
Li Q, Zhou Z, Sun Y, Sun C, Klappe K, van IJzendoorn SC. A Functional Relationship Between UNC45A and MYO5B Connects Two Rare Diseases With Shared Enteropathy. Cell Mol Gastroenterol Hepatol 2022; 14:295-310. [PMID: 35421597 PMCID: PMC9218578 DOI: 10.1016/j.jcmgh.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS UNC45A is a myosin (co-)chaperone, and mutations in the UNC45A gene were recently identified in osteo-oto-hepato-enteric (O2HE) syndrome patients presenting with congenital diarrhea and intrahepatic cholestasis. Congenital diarrhea and intrahepatic cholestasis are also the prime symptoms in patients with microvillus inclusion disease (MVID) and mutations in MYO5B, encoding the recycling endosome-associated myosin Vb. The aim of this study was to determine whether UNC45A and myosin Vb are functionally linked. METHODS CRISPR-Cas9 gene editing and site-directed mutagenesis were performed with intestinal epithelial and hepatocellular cell lines, followed by Western blotting, quantitative polymerase chain reaction, and scanning electron and/or confocal fluorescence microscopy to determine the relationship between (mutants of) UNC45A and myosin Vb. RESULTS UNC45A depletion in intestinal and hepatic cells reduced myosin Vb protein expression, and in intestinal epithelial cells, it affected 2 myosin Vb-dependent processes that underlie MVID pathogenesis: rat sarcoma-associated binding protein (RAB)11A-positve recycling endosome positioning and microvilli development. Reintroduction of UNC45A in UNC45A-depleted cells restored myosin Vb expression, and reintroduction of UNC45A or myosin Vb, but not the O2HE patient UNC45A-c.1268T>A variant, restored recycling endosome positioning and microvilli development. The O2HE patient-associated p.V423D substitution, encoded by the UNC45A-c.1268T>A variant, impaired UNC45A protein stability but as such not the ability of UNC45A to promote myosin Vb expression and microvilli development. CONCLUSIONS A functional relationship exists between UNC45A and myosin Vb, thereby connecting 2 rare congenital diseases with overlapping enteropathy at the molecular level. Protein instability rather than functional impairment underlies the pathogenicity of the O2HE syndrome-associated UNC45A-p.V423D mutation.
Collapse
Affiliation(s)
| | | | | | | | | | - Sven C.D. van IJzendoorn
- Correspondence Address correspondence to: Sven C. D. van IJzendoorn, PhD, Department of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
8
|
Karunendiran A, Nguyen CT, Barzda V, Stewart BA. Disruption of Drosophila larval muscle structure and function by UNC45 knockdown. BMC Mol Cell Biol 2021; 22:38. [PMID: 34256704 PMCID: PMC8278773 DOI: 10.1186/s12860-021-00373-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Proper muscle function is heavily dependent on highly ordered protein complexes. UNC45 is a USC (named since this region is shared by three proteins UNC45/CRO1/She4P) chaperone that is necessary for myosin incorporation into the thick filaments. UNC45 is expressed throughout the entire Drosophila life cycle and it has been shown to be important during late embryogenesis when initial muscle development occurs. However, the effects of UNC45 manipulation at later developmental times, after muscle development, have not yet been studied. Main results UNC45 was knocked down with RNAi in a manner that permitted survival to the pupal stage, allowing for characterization of sarcomere organization in the well-studied third instar larvae. Second harmonic generation (SHG) microscopy revealed changes in the striated pattern of body wall muscles as well as a reduction of signal intensity. This observation was confirmed with immunofluorescence and electron microscopy imaging, showing diminished UNC45 signal and disorganization of myosin and z-disk proteins. Concomitant alterations in both synaptic physiology and locomotor function were also found. Both nerve-stimulated response and spontaneous vesicle release were negatively affected, while larval movement was impaired. Conclusions This study highlights the dependency of normal sarcomere structure on UNC45 expression. We confirm the known role of UNC45 for myosin localization and further show the I-Z-I complex is also disrupted. This suggests a broad need for UNC45 to maintain sarcomere integrity. Newly discovered changes in synaptic physiology reveal the likely presence of a homeostatic response to partially maintain synaptic strength and muscle function.
Collapse
Affiliation(s)
- Abiramy Karunendiran
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Christine T Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada. .,Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
9
|
Habicht J, Mooneyham A, Hoshino A, Shetty M, Zhang X, Emmings E, Yang Q, Coombes C, Gardner MK, Bazzaro M. UNC-45A breaks the microtubule lattice independently of its effects on non-muscle myosin II. J Cell Sci 2021; 134:jcs.248815. [PMID: 33262310 DOI: 10.1242/jcs.248815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Juri Habicht
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Asumi Hoshino
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaonan Zhang
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Edith Emmings
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany
| | - Qing Yang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Hellerschmied D, Lehner A, Franicevic N, Arnese R, Johnson C, Vogel A, Meinhart A, Kurzbauer R, Deszcz L, Gazda L, Geeves M, Clausen T. Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin. Nat Commun 2019; 10:4781. [PMID: 31636255 PMCID: PMC6803673 DOI: 10.1038/s41467-019-12667-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Myosin is a motor protein that is essential for a variety of processes ranging from intracellular transport to muscle contraction. Folding and assembly of myosin relies on a specific chaperone, UNC-45. To address its substrate-targeting mechanism, we reconstitute the interplay between Caenorhabditis elegans UNC-45 and muscle myosin MHC-B in insect cells. In addition to providing a cellular chaperone assay, the established system enabled us to produce large amounts of functional muscle myosin, as evidenced by a biochemical and structural characterization, and to directly monitor substrate binding to UNC-45. Data from in vitro and cellular chaperone assays, together with crystal structures of binding-deficient UNC-45 mutants, highlight the importance of utilizing a flexible myosin-binding domain. This so-called UCS domain can adopt discrete conformations to efficiently bind and fold substrate. Moreover, our data uncover the molecular basis of temperature-sensitive UNC-45 mutations underlying one of the most prominent motility defects in C. elegans. Myosin, a motor protein essential for intracellular transport to muscle contraction, requires a chaperone UNC-45 for folding and assembly. Here authors use in vitro reconstitution and structural biology to characterize the interplay between UNC-45 and muscle myosin MHC-B.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| | | | - Nina Franicevic
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Renato Arnese
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Chloe Johnson
- School of Biosciences, University of Kent, Canterbury, UK
| | - Antonia Vogel
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Michael Geeves
- School of Biosciences, University of Kent, Canterbury, UK
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Medical University Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Escalante SG, Brightmore JA, Piper PW, Millson SH. UCS protein function is partially restored in the Saccharomyces cerevisiae she4 mutant with expression of the human UNC45-GC, but not UNC45-SM. Cell Stress Chaperones 2018; 23:609-615. [PMID: 29288355 PMCID: PMC6045556 DOI: 10.1007/s12192-017-0870-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 11/29/2022] Open
Abstract
A dedicated UNC45, Cro1, She4 (UCS) domain-containing protein assists in the Hsp90-mediated folding of the myosin head. Only weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and striated muscle UNC45s; UNC45-GC and UNC45-SM, respectively). In vertebrates, UNC45-GC facilitates cytoskeletal functions, whereas the 55% identical UNC45-SM assists assembly of the contractile apparatus of cardiac and skeletal muscles. A Saccharomyces cerevisiae she4Δ mutant, totally lacking any UCS protein, was engineered to express as its sole Hsp90 either the Hsp90α or the Hsp90β isoforms of human cytosolic Hsp90. A transient induction of the human UNC45-GC, but not UNC45-SM, could rescue the defective endocytosis in these she4Δ cells at 39 °C, irrespective of whether they possessed Hsp90α or Hsp90β. UNC45-GC-mediated rescue of the localisation of a Myo5-green fluorescent protein (GFP) fusion to cortical patches at 39 °C was more efficient in the yeast containing Hsp90α, though this may relate to more efficient functioning of Hsp90α as compared to Hsp90β in these strains. Furthermore, inducible expression of UNC45-GC, but not UNC45-SM, could partially rescue survival at a more extreme temperature (45 °C) that normally causes she4Δ mutant yeast cells to lyse. The results indicate that UCS protein function has been most conserved-yeast to man-in the UNC45-GC, not UNC45-SM. This may reflect UNC45-GC being the vertebrate UCS protein that assists formation of the actomyosin complexes needed for cytokinesis, cell morphological change, and organelle trafficking-events also facilitated by the myosins in yeast.
Collapse
Affiliation(s)
- Susana Gómez Escalante
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL, UK
| | - Joseph A Brightmore
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL, UK
| | - Peter W Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL, UK.
| | - Stefan H Millson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL, UK
| |
Collapse
|
12
|
Bujalowski PJ, Nicholls P, Garza E, Oberhauser AF. The central domain of UNC-45 chaperone inhibits the myosin power stroke. FEBS Open Bio 2018; 8:41-48. [PMID: 29321955 PMCID: PMC5757175 DOI: 10.1002/2211-5463.12346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/07/2022] Open
Abstract
The multidomain UNC-45B chaperone is crucial for the proper folding and function of sarcomeric myosin. We recently found that UNC-45B inhibits the translocation of actin by myosin. The main functions of the UCS and TPR domains are known but the role of the central domain remains obscure. Here, we show-using in vitro myosin motility and ATPase assays-that the central domain alone acts as an inhibitor of the myosin power stroke through a mechanism that allows ATP turnover. Hence, UNC-45B is a unique chaperone in which the TPR domain recruits Hsp90; the UCS domain possesses chaperone-like activities; and the central domain interacts with myosin and inhibits the actin translocation function of myosin. We hypothesize that the inhibitory function plays a critical role during the assembly of myofibrils under stress and during the sarcomere development process.
Collapse
Affiliation(s)
- Paul J Bujalowski
- Department of Biochemistry and Molecular Biology The University of Texas Medical Branch Galveston TX USA
| | - Paul Nicholls
- Baylor College of Medicine The University of Texas Medical Branch Galveston TX USA
| | - Eleno Garza
- Department of Neuroscience and Cell Biology The University of Texas Medical Branch Galveston TX USA
| | - Andres F Oberhauser
- Department of Biochemistry and Molecular Biology The University of Texas Medical Branch Galveston TX USA.,Department of Neuroscience and Cell Biology The University of Texas Medical Branch Galveston TX USA.,Sealy Center for Structural Biology and Molecular Biophysics The University of Texas Medical Branch Galveston TX USA
| |
Collapse
|
13
|
Fission yeast myosin Myo2 is down-regulated in actin affinity by light chain phosphorylation. Proc Natl Acad Sci U S A 2017; 114:E7236-E7244. [PMID: 28808035 DOI: 10.1073/pnas.1703161114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Studies in fission yeast Schizosaccharomyces pombe have provided the basis for the most advanced models of the dynamics of the cytokinetic contractile ring. Myo2, a class-II myosin, is the major source of tension in the contractile ring, but how Myo2 is anchored and regulated to produce force is poorly understood. To enable more detailed biochemical/biophysical studies, Myo2 was expressed in the baculovirus/Sf9 insect cell system with its two native light chains, Rlc1 and Cdc4. Milligram yields of soluble, unphosphorylated Myo2 were obtained that exhibited high actin-activated ATPase activity and in vitro actin filament motility. The fission yeast specific chaperone Rng3 was thus not required for expression or activity. In contrast to nonmuscle myosins from animal cells that require phosphorylation of the regulatory light chain for activation, phosphorylation of Rlc1 markedly reduced the affinity of Myo2 for actin. Another unusual feature of Myo2 was that, unlike class-II myosins, which generally form bipolar filamentous structures, Myo2 showed no inclination to self-assemble at approximately physiological salt concentrations, as analyzed by sedimentation velocity ultracentrifugation. This lack of assembly supports the hypothesis that clusters of Myo2 depend on interactions at the cell cortex in structural units called nodes for force production during cytokinesis.
Collapse
|
14
|
Iizuka Y, Mooneyham A, Sieben A, Chen K, Maile M, Hellweg R, Schütz F, Teckle K, Starr T, Thayanithy V, Vogel RI, Lou E, Lee MK, Bazzaro M. UNC-45A is required for neurite extension via controlling NMII activation. Mol Biol Cell 2017; 28:1337-1346. [PMID: 28356421 PMCID: PMC5426848 DOI: 10.1091/mbc.e16-06-0381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 01/13/2023] Open
Abstract
UNC-45A is a novel regulator of neuronal differentiation. UNC-45A localizes at the growth cone, binds to NMIIA and NMIIB, and is disposable for neuronal survival but is required for neurite initiation and extension via regulating NMII activation. Thus UNC-45A is a potential master regulator of a number of NMII-mediated cellular processes. UNC-45A is a highly conserved member of the UNC-45/CRO1/She4p family of proteins, which act as chaperones for conventional and nonconventional myosins. NMII mediates contractility and actin-based motility, which are fundamental for proper growth cone motility and neurite extension. The presence and role of UNC-45A in neuronal differentiation have been largely unknown. Here we demonstrate that UNC-45A is a novel growth cone–localized, NMII-associated component of the multiprotein complex regulating growth cone dynamics. We show that UNC-45A is dispensable for neuron survival but required for neurite elongation. Mechanistically, loss of UNC-45A results in increased levels of NMII activation. Collectively our results provide novel insights into the molecular mechanisms of neurite growth and define UNC-45A as a novel and master regulator of NMII-mediated cellular processes in neurons.
Collapse
Affiliation(s)
- Yoshie Iizuka
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Andrew Sieben
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Kevin Chen
- Department of Biology, University of Maryland, Baltimore, MD 21250
| | - Makayla Maile
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Raffaele Hellweg
- Breast Unit, University of Heidelberg, 69120 Heidelberg, Germany
| | - Florian Schütz
- Breast Unit, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kebebush Teckle
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Timothy Starr
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Venugopal Thayanithy
- Division of Hematology, Oncology and Transplantation, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Rachel Isaksson Vogel
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
15
|
Gomez-Escalante S, Piper PW, Millson SH. Mutation of the Ser18 phosphorylation site on the sole Saccharomyces cerevisiae UCS protein, She4, can compromise high-temperature survival. Cell Stress Chaperones 2017; 22:135-141. [PMID: 27888470 PMCID: PMC5225067 DOI: 10.1007/s12192-016-0750-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/11/2016] [Accepted: 11/15/2016] [Indexed: 01/27/2023] Open
Abstract
Folding of the myosin head often requires the joint actions of Hsp90 and a dedicated UNC45, Cro1, She4 (UCS) domain-containing cochaperone protein. Relatively weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and smooth muscle UNC45s; UNC45-GC and UNC45-SM respectively). In vertebrates, UNC45-GC facilitates cytoskeletal function whereas the 55% identical UNC45-SM assists in the assembly of the contractile apparatus of cardiac and skeletal muscles. UNC45-SM, unlike UNC45-GC, shares with yeast She4 an IDSL sequence motif known to be a site of in vivo serine phosphorylation in yeast. Investigating this further, we found that both a non-phosphorylatable (S18A) and a phosphomimetic (S18E) mutant form of She4 could rescue the type 1 myosin localisation and endocytosis defects of the yeast she4Δ mutant at 39 °C. Nevertheless, at higher temperature (45 °C), only She4 (S18A), not She4(S18E), could substantially rescue the cell lysis defect of she4Δ mutant cells. In the yeast two-hybrid system, the non-phosphorylatable S18A and S251A mutant forms of She4 and UNC45-SM still displayed the stress-enhanced in vivo interaction with Hsp90 seen with the wild-type She4 and UNC45-SM. Such high-temperature enforcement to interaction was though lost with the phosphomimetic mutant forms (She4(S18E) and UNC45-SM (S251E)), an indication that phosphorylation might suppress these increases in She4/Hsp90 and UNC45-SM/Hsp90 interaction with stress.
Collapse
Affiliation(s)
- Susana Gomez-Escalante
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN,, UK
| | - Peter W Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN,, UK.
| | - Stefan H Millson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN,, UK
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL,, UK
| |
Collapse
|
16
|
Hu J, Guo T, Pan WQ, Gan T, Wei J, Wang JP, Leng XJ, Li XQ. Cloning, molecular characterization, and expression analysis of the unc45 myosin chaperone b(unc45b)gene of grass carp (Ctenopharyngodon idellus). J Muscle Res Cell Motil 2016; 37:71-81. [PMID: 27334505 DOI: 10.1007/s10974-016-9445-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Abstract
Unc45 myosin chaperone b(unc45b)gene is a molecular chaperone that mediates the folding, assembly and accumulation of thick-filament myosin in the formation of sarcomere, which plays an important role in the development of striated muscle and the stability of sarcomere. In this study, the complete cDNA sequence of unc45b gene of grass carp was obtained by rapid amplification of cDNA ends (RACE), and the characteristics of the unc45b protein predicted from gene sequence was analyzed by bioinformatics methods. The differential expression pattern in tissues was also detected by quantitative real-time PCR. The results showed that the full-length of unc45b gene of grass carp is 3163 bp, which contains a 60 bp 5'UTR, a 298 bp 3'UTR, and a 2865 bp open reading frame (ORF) encoding a 934 amino acid peptide. The deduced unc45b protein exhibits a homology of 92, 86, 86 % with the protein of zebrafish (Danio rerio), channel catfish (Ietalurus punctatus) and tilapia (Oreochromis niloticus) respectively, and the protein contains UCS myosin head binding domain and TPR peptide repeat domain. The protein is a hydrophilic and non-secretory protein with a molecular mass and isoeletronic point of 103,699.8 and 7.39 Da. The structural elements of the protein includes α-helixes and loops, and the unc45b gene highly expresses in skeletal muscle and heart in grass carp. This study laid a foundation for further research in explaining the myofibril accumulation in crisped grass carp.
Collapse
Affiliation(s)
- Jing Hu
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Ting Guo
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Wen-Qian Pan
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Tian Gan
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Jing Wei
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Jun-Peng Wang
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Xiang-Jun Leng
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China.
| | - Xiao-Qin Li
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center, No. 999, Huchenghuan Road, Shanghai, 201306, China.
| |
Collapse
|
17
|
Abstract
The UCS (UNC-45/CRO1/She4p) family of proteins has emerged as chaperones that are specific for the folding, assembly and function of myosin. These proteins participate in various important myosin-dependent cellular processes that include myofibril organization and muscle functions, cell differentiation, cardiac and skeletal muscle development, cytokinesis and endocytosis. Mutations in the genes that code for UCS proteins cause serious defects in these actomyosin-based processes. Homologs of UCS proteins can be broadly divided into (1) animal UCS proteins, generally known as UNC-45 proteins, which contain an N-terminal tetratricopeptide repeat (TPR) domain in addition to the canonical UCS domain, and (2) fungal UCS proteins, which lack the TPR domain. Structurally, except for TPR domain, both sub-classes of UCS proteins comprise of several irregular armadillo (ARM) repeats that are divided into two-domain architecture: a combined central-neck domain and a C-terminal UCS domain. Structural analyses suggest that UNC-45 proteins form elongated oligomers that serve as scaffolds to recruit Hsp90 and/or Hsp70 to form a multi-protein chaperoning complex that assists myosin heads to fold and simultaneously organize them into myofibrils. Similarly, fungal UCS proteins may dimerize to promote folding of non-muscle myosins as well as determine their step size along actin filaments. These findings confirm UCS proteins as a new class of myosin-specific chaperones and co-chaperones for Hsp90. This chapter reviews the implications of the outcome of studies on these proteins in cellular processes such as muscle formation, and disease states such as myopathies and cancer.
Collapse
Affiliation(s)
- Weiming Ni
- Department of Genetics, Howard Hughes Medical Institute, Yale School of Medicine, 06520, New Haven, CT, USA,
| | | |
Collapse
|
18
|
Thermally-induced structural changes in an armadillo repeat protein suggest a novel thermosensor mechanism in a molecular chaperone. FEBS Lett 2014; 589:123-30. [PMID: 25436418 DOI: 10.1016/j.febslet.2014.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/12/2023]
Abstract
Molecular chaperones are commonly identified by their ability to suppress heat-induced protein aggregation. The muscle-specific molecular chaperone UNC-45B is known to be involved in myosin folding and is trafficked to the sarcomeres A-band during thermal stress. Here, we identify temperature-dependent structural changes in the UCS chaperone domain of UNC-45B that occur within a physiologically relevant heat-shock range. We show that distinct changes to the armadillo repeat protein topology result in exposure of hydrophobic patches, and increased flexibility of the molecule. These rearrangements suggest the existence of a novel thermosensor within the chaperone domain of UNC-45B. We propose that these changes may function to suppress aggregation under stress by allowing binding to a wide variety of aggregation prone loops on its client.
Collapse
|
19
|
Jilani Y, Lu S, Lei H, Karnitz LM, Chadli A. UNC45A localizes to centrosomes and regulates cancer cell proliferation through ChK1 activation. Cancer Lett 2014; 357:114-120. [PMID: 25444911 DOI: 10.1016/j.canlet.2014.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
The UCS family of proteins regulates cellular functions through their interactions with myosin. Here we show that one member of this family, UNC45A, is also a novel centrosomal protein. UNC45A is required for cellular proliferation of cancer cell in vitro and for tumor growth in vivo through its ability to bind and regulate ChK1 nuclear-cytoplasmic localization in an Hsp90-independent manner. Immunocytochemical and biochemical fractionation studies revealed that UNC45A and ChK1 co-localize to the centrosome. Inhibition of UNC45A expression reduced ChK1 activation and its tethering to the centrosome, events required for proper centrosome function. Lack of UNC45A caused the accumulation of multi-nucleated cells, consistent with a defect in Chk1 regulation of centrosomes. These findings identify a novel centrosomal function for UNC45A and its role in cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Yasmeen Jilani
- Molecular Oncology and Biomarkers Program, GRU Cancer Center, Georgia Regents University, 1410 Laney Walker Blvd, CN-3151, Augusta, GA 30912, USA
| | - Su Lu
- Molecular Oncology and Biomarkers Program, GRU Cancer Center, Georgia Regents University, 1410 Laney Walker Blvd, CN-3151, Augusta, GA 30912, USA
| | - Huang Lei
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ahmed Chadli
- Molecular Oncology and Biomarkers Program, GRU Cancer Center, Georgia Regents University, 1410 Laney Walker Blvd, CN-3151, Augusta, GA 30912, USA.
| |
Collapse
|
20
|
Smith DA, Carland CR, Guo Y, Bernstein SI. Getting folded: chaperone proteins in muscle development, maintenance and disease. Anat Rec (Hoboken) 2014; 297:1637-1649. [PMID: 25125177 PMCID: PMC4135391 DOI: 10.1002/ar.22980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 09/26/2024]
Abstract
Chaperone proteins are critical for protein folding and stability, and hence are necessary for normal cellular organization and function. Recent studies have begun to interrogate the role of this specialized class of proteins in muscle biology. During development, chaperone-mediated folding of client proteins enables their integration into nascent functional sarcomeres. In addition to assisting with muscle differentiation, chaperones play a key role in the maintenance of muscle tissues. Furthermore, disruption of the chaperone network can result in neuromuscular disease. In this review, we discuss how chaperones are involved in myofibrillogenesis, sarcomere maintenance, and muscle disorders. We also consider the possibilities of therapeutically targeting chaperones to treat muscle disease.
Collapse
Affiliation(s)
- Daniel A. Smith
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Carmen R. Carland
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Yiming Guo
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Sanford I. Bernstein
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| |
Collapse
|
21
|
Lee CF, Melkani GC, Bernstein SI. The UNC-45 myosin chaperone: from worms to flies to vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:103-44. [PMID: 25376491 DOI: 10.1016/b978-0-12-800177-6.00004-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNC-45 (uncoordinated mutant number 45) is a UCS (UNC-45, CRO1, She4p) domain protein that is critical for myosin stability and function. It likely aides in folding myosin during cellular differentiation and maintenance, and protects myosin from denaturation during stress. Invertebrates have a single unc-45 gene that is expressed in both muscle and nonmuscle tissues. Vertebrates possess one gene expressed in striated muscle (unc-45b) and another that is more generally expressed (unc-45a). Structurally, UNC-45 is composed of a series of α-helices connected by loops. It has an N-terminal tetratricopeptide repeat domain that binds to Hsp90 and a central domain composed of armadillo repeats. Its C-terminal UCS domain, which is also comprised of helical armadillo repeats, interacts with myosin. In this chapter, we present biochemical, structural, and genetic analyses of UNC-45 in Caenorhabditis elegans, Drosophila melanogaster, and various vertebrates. Further, we provide insights into UNC-45 functions, its potential mechanism of action, and its roles in human disease.
Collapse
Affiliation(s)
- Chi F Lee
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Girish C Melkani
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
22
|
Abstract
Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.
Collapse
|
23
|
Stark BC, James ML, Pollard LW, Sirotkin V, Lord M. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast. PLoS One 2013; 8:e79593. [PMID: 24244528 PMCID: PMC3828377 DOI: 10.1371/journal.pone.0079593] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 12/25/2022] Open
Abstract
UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Michael L. James
- Department of Cell and Developmental Biology, State University of New York - Upstate Medical University, Syracuse, New York, United States of America
| | - Luther W. Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York - Upstate Medical University, Syracuse, New York, United States of America
| | - Matthew Lord
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
24
|
Li H, Zhong Y, Wang Z, Gao J, Xu J, Chu W, Zhang J, Fang S, Du SJ. Smyd1b is required for skeletal and cardiac muscle function in zebrafish. Mol Biol Cell 2013; 24:3511-21. [PMID: 24068325 PMCID: PMC3826989 DOI: 10.1091/mbc.e13-06-0352] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myofibrillogenesis is critical for muscle cell differentiation and contraction. This study shows that Smyd1b plays a key role in myofibrillogenesis in muscle cells. Knockdown of smyd1b results in up-regulation of hsp90α1 and unc45b gene expression, increased myosin degradation, and disruption of sarcomere organization in zebrafish embryos. Smyd1b is a member of the Smyd family that is specifically expressed in skeletal and cardiac muscles. Smyd1b plays a key role in thick filament assembly during myofibrillogenesis in skeletal muscles of zebrafish embryos. To better characterize Smyd1b function and its mechanism of action in myofibrillogenesis, we analyzed the effects of smyd1b knockdown on myofibrillogenesis in skeletal and cardiac muscles of zebrafish embryos. The results show that knockdown of smyd1b causes significant disruption of myofibril organization in both skeletal and cardiac muscles of zebrafish embryos. Microarray and quantitative reverse transcription-PCR analyses show that knockdown of smyd1b up-regulates heat shock protein 90 (hsp90) and unc45b gene expression. Biochemical analysis reveals that Smyd1b can be coimmunoprecipitated with heat shock protein 90 α-1 and Unc45b, two myosin chaperones expressed in muscle cells. Consistent with its potential function in myosin folding and assembly, knockdown of smyd1b significantly reduces myosin protein accumulation without affecting mRNA expression. This likely results from increased myosin degradation involving unc45b overexpression. Together these data support the idea that Smyd1b may work together with myosin chaperones to control myosin folding, degradation, and assembly into sarcomeres during myofibrillogenesis.
Collapse
Affiliation(s)
- Huiqing Li
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202 Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892 Department of Bioengineering and Environmental Science, Changsha University, Hunan 410003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pokrzywa W, Hoppe T. Chaperoning myosin assembly in muscle formation and aging. WORM 2013; 2:e25644. [PMID: 24778937 PMCID: PMC3875649 DOI: 10.4161/worm.25644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/05/2013] [Indexed: 01/06/2023]
Abstract
The activity and assembly of various myosin subtypes is coordinated by conserved UCS (UNC-45/CRO1/She4p) domain proteins. One founding member of the UCS family is the Caenorhabditis elegans UNC-45 protein important for the organization of striated muscle filaments. Our recent structural and biochemical results demonstrated that UNC-45 forms a protein chain with defined periodicity of myosin interaction domains. Intriguingly, the UNC-45 chain serves as docking platform for myosin molecules, which promotes ordered spacing and incorporation of myosin into contractile muscle sarcomeres. The physiological relevance of this observation was demonstrated in C. elegans by transgenic expression of UNC-45 chain formation mutants, which provokes defects in muscle structure and size. Collaborating with the molecular chaperones, Hsp70 and Hsp90, chain formation of UNC-45 links myosin folding with myofilament assembly. Here, we discuss our recent findings on the dynamic regulation of UNC-45 structure and stability in the context of muscle regeneration mechanisms that are affected in myopathic diseases and during aging.
Collapse
Affiliation(s)
- Wojciech Pokrzywa
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| |
Collapse
|
26
|
Fratev F, Ósk Jónsdóttir S, Pajeva I. Structural insight into the UNC-45-myosin complex. Proteins 2013; 81:1212-21. [DOI: 10.1002/prot.24270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/06/2013] [Accepted: 01/31/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - Svava Ósk Jónsdóttir
- Department of Toxicology and Risk Assessment; Technical University of Denmark; National Food Institute; DK-2860 S⊘borg; Denmark
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering; Bulgarian Academy of Sciences; 1113 Sofia; Bulgaria
| |
Collapse
|
27
|
The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 2013; 152:183-95. [PMID: 23332754 PMCID: PMC3549490 DOI: 10.1016/j.cell.2012.12.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 12/11/2012] [Indexed: 01/16/2023]
Abstract
The UCS (UNC-45/CRO1/She4) chaperones play an evolutionarily conserved role in promoting myosin-dependent processes, including cytokinesis, endocytosis, RNA transport, and muscle development. To investigate the protein machinery orchestrating myosin folding and assembly, we performed a comprehensive analysis of Caenorhabditis elegans UNC-45. Our structural and biochemical data demonstrate that UNC-45 forms linear protein chains that offer multiple binding sites for cooperating chaperones and client proteins. Accordingly, Hsp70 and Hsp90, which bind to the TPR domain of UNC-45, could act in concert and with defined periodicity on captured myosin molecules. In vivo analyses reveal the elongated canyon of the UCS domain as a myosin-binding site and show that multimeric UNC-45 chains support organization of sarcomeric repeats. In fact, expression of transgenes blocking UNC-45 chain formation induces dominant-negative defects in the sarcomere structure and function of wild-type worms. Together, these findings uncover a filament assembly factor that directly couples myosin folding with myofilament formation.
Collapse
|
28
|
Comyn SA, Pilgrim D. Lack of developmental redundancy between Unc45 proteins in zebrafish muscle development. PLoS One 2012; 7:e48861. [PMID: 23144999 PMCID: PMC3492250 DOI: 10.1371/journal.pone.0048861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/03/2012] [Indexed: 01/09/2023] Open
Abstract
Since the majority of protein-coding genes in vertebrates have intra-genomic homologues, it has been difficult to eliminate the potential of functional redundancy from analyses of mutant phenotypes, whether produced by genetic lesion or transient knockdown. Further complicating these analyses, not all gene products have activities that can be assayed in vitro, where the efficiency of the various family members can be compared against constant substrates. Two vertebrate UNC-45 homologues, unc45a and unc45b, affect distinct stages of muscle differentiation when knocked down in cell culture and are functionally redundant in vitro. UNC-45 proteins are members of the UCS (UNC-45/CRO1/She4p) protein family that has been shown to regulate myosin-dependent functions from fungi to vertebrates through direct interaction with the myosin motor domain. To test whether the same functional relationship exists between these unc45 paralogs in vivo, we examined the developmental phenotypes of doubly homozygous unc45b−/−; unc45a−/− mutant zebrafish embryos. We focused specifically on the combined effects on morphology and gene expression resulting from the zygotic lack of both paralogs. We found that unc45b−/− and unc45b−/−; unc45a−/− embryos were phenotypically indistinguishable with both mutants displaying identical cardiac, skeletal muscle, and jaw defects. We also found no evidence to support a role for zygotic Unc45a function in myoblast differentiation. In contrast to previous in vitro work, this rules out a model of functional redundancy between Unc45a and Unc45b in vivo. Instead, our phylogenetic and phenotypic analyses provide evidence for the role of functional divergence in the evolution of the UCS protein family.
Collapse
Affiliation(s)
| | - David Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
29
|
Chen D, Li S, Singh R, Spinette S, Sedlmeier R, Epstein HF. Dual function of the UNC-45b chaperone with myosin and GATA4 in cardiac development. J Cell Sci 2012; 125:3893-903. [PMID: 22553207 DOI: 10.1242/jcs.106435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cardiac development requires interplay between the regulation of gene expression and the assembly of functional sarcomeric proteins. We report that UNC-45b recessive loss-of-function mutations in C3H and C57BL/6 inbred mouse strains cause arrest of cardiac morphogenesis at the formation of right heart structures and failure of contractile function. Wild-type C3H and C57BL/6 embryos at the same stage, E9.5, form actively contracting right and left atria and ventricles. The known interactions of UNC-45b as a molecular chaperone are consistent with diminished accumulation of the sarcomeric myosins, but not their mRNAs, and the resulting decreased contraction of homozygous mutant embryonic hearts. The novel finding that GATA4 accumulation is similarly decreased at the protein but not mRNA levels is also consistent with the function of UNC-45b as a chaperone. The mRNAs of known downstream targets of GATA4 during secondary cardiac field development, the cardiogenic factors Hand1, Hand2 and Nkx-2.5, are also decreased, consistent with the reduced GATA4 protein accumulation. Direct binding studies show that the UNC-45b chaperone forms physical complexes with both the alpha and beta cardiac myosins and the cardiogenic transcription factor GATA4. Co-expression of UNC-45b with GATA4 led to enhanced transcription from GATA promoters in naïve cells. These novel results suggest that the heart-specific UNC-45b isoform functions as a molecular chaperone mediating contractile function of the sarcomere and gene expression in cardiac development.
Collapse
Affiliation(s)
- Daisi Chen
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, TX 77555-0641, USA
| | | | | | | | | | | |
Collapse
|
30
|
At the Start of the Sarcomere: A Previously Unrecognized Role for Myosin Chaperones and Associated Proteins during Early Myofibrillogenesis. Biochem Res Int 2012; 2012:712315. [PMID: 22400118 PMCID: PMC3287041 DOI: 10.1155/2012/712315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/10/2011] [Indexed: 01/03/2023] Open
Abstract
The development of striated muscle in vertebrates requires the assembly of contractile myofibrils, consisting of highly ordered bundles of protein filaments. Myofibril formation occurs by the stepwise addition of complex proteins, a process that is mediated by a variety of molecular chaperones and quality control factors. Most notably, myosin of the thick filament requires specialized chaperone activity during late myofibrillogenesis, including that of Hsp90 and its cofactor, Unc45b. Unc45b has been proposed to act exclusively as an adaptor molecule, stabilizing interactions between Hsp90 and myosin; however, recent discoveries in zebrafish and C. elegans suggest the possibility of an earlier role for Unc45b during myofibrillogenesis. This role may involve functional control of nonmuscle myosins during the earliest stages of myogenesis, when premyofibril scaffolds are first formed from dynamic cytoskeletal actin. This paper will outline several lines of evidence that converge to build a model for Unc45b activity during early myofibrillogenesis.
Collapse
|
31
|
Mammen AL, Mahoney JA, St. Germain A, Badders N, Taylor JP, Rosen A, Spinette S. A novel conserved isoform of the ubiquitin ligase UFD2a/UBE4B is expressed exclusively in mature striated muscle cells. PLoS One 2011; 6:e28861. [PMID: 22174917 PMCID: PMC3235170 DOI: 10.1371/journal.pone.0028861] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/16/2011] [Indexed: 12/29/2022] Open
Abstract
Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish), UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3' introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis.
Collapse
Affiliation(s)
- Andrew L. Mammen
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Rheumatology, Baltimore, Maryland, United States of America
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, Maryland, United States of America
| | - James A. Mahoney
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Rheumatology, Baltimore, Maryland, United States of America
| | - Amanda St. Germain
- Department of Biology, Rhode Island College, Providence, Rhode Island, United States of America
| | - Nisha Badders
- Department of Developmental Neurobiology, St. Jude's Children's Research Hospital, Memphis, Tennessee, United States of America
| | - J. Paul Taylor
- Department of Developmental Neurobiology, St. Jude's Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Antony Rosen
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Rheumatology, Baltimore, Maryland, United States of America
| | - Sarah Spinette
- Department of Biology, Rhode Island College, Providence, Rhode Island, United States of America
| |
Collapse
|
32
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
33
|
Differential turnover of myosin chaperone UNC-45A isoforms increases in metastatic human breast cancer. J Mol Biol 2011; 412:365-78. [PMID: 21802425 DOI: 10.1016/j.jmb.2011.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 01/10/2023]
Abstract
UNC-45A is a molecular chaperone targeted to non-muscle myosins and is essential for cell division. Here, we show that UNC-45A mRNA and protein expression was elevated in human breast carcinomas and cell lines derived from breast carcinoma metastases. Moreover, small hairpin RNA knockdowns of endogenously overexpressed UNC-45A in the most metastatic cell line led to significant decreases in the rates of cell proliferation and invasion, concomitant with reduction in the interaction of myosin II with actin filaments. Exploring the mechanism of these findings further, we found that UNC-45A is alternatively expressed at the mRNA and protein levels as two isoforms. The two isoforms differ only by a proline-rich 15-amino-acid sequence near the amino-terminus. In the increased expression with metastatic activity, the ratio of the isoform mRNAs remained constant, but the 929-amino-acid protein isoform showed increases up to about 3-fold in comparison to the 944-amino-acid isoform. The differential accumulation was explained by cellular labeling experiments that showed that the 944 isoform is degraded at a 5-fold greater rate than the 929 isoform and that this degradation required the ubiquitin-proteasome system.
Collapse
|
34
|
X-ray crystal structure of the UCS domain-containing UNC-45 myosin chaperone from Drosophila melanogaster. Structure 2011; 19:397-408. [PMID: 21397190 PMCID: PMC3060410 DOI: 10.1016/j.str.2011.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/07/2023]
Abstract
UCS proteins, such as UNC-45, influence muscle contraction and other myosin-dependent motile processes. We report the first X-ray crystal structure of a UCS domain-containing protein, the UNC-45 myosin chaperone from Drosophila melanogaster (DmUNC-45). The structure reveals that the central and UCS domains form a contiguous arrangement of 17 consecutive helical layers that arrange themselves into five discrete armadillo repeat subdomains. Small-angle X-ray scattering data suggest that free DmUNC-45 adopts an elongated conformation and exhibits flexibility in solution. Protease sensitivity maps to a conserved loop that contacts the most carboxy-terminal UNC-45 armadillo repeat subdomain. Amino acid conservation across diverse UCS proteins maps to one face of this carboxy-terminal subdomain, and the majority of mutations that affect myosin-dependent cellular activities lie within or around this region. Our crystallographic, biophysical, and biochemical analyses suggest that DmUNC-45 function is afforded by its flexibility and by structural integrity of its UCS domain.
Collapse
|
35
|
Scaffolds and chaperones in myofibril assembly: putting the striations in striated muscle. Biophys Rev 2011; 3:25-32. [PMID: 21666840 DOI: 10.1007/s12551-011-0043-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sarcomere assembly in striated muscles has long been described as a series of steps leading to assembly of individual proteins into thick filaments, thin filaments and Z-lines. Decades of previous work focused on the order in which various structural proteins adopted the striated organization typical of mature myofibrils. These studies led to the view that actin and α-actinin assemble into premyofibril structures separately from myosin filaments, and that these structures are then assembled into myofibrils with centered myosin filaments and actin filaments anchored at the Z-lines. More recent studies have shown that particular scaffolding proteins and chaperone proteins are required for individual steps in assembly. Here, we review the evidence that N-RAP, a LIM domain and nebulin repeat protein, scaffolds assembly of actin and α-actinin into I-Z-I structures in the first steps of assembly; that the heat shock chaperone proteins Hsp90 & Hsc70 cooperate with UNC-45 to direct the folding of muscle myosin and its assembly into thick filaments; and that the kelch repeat protein Krp1 promotes lateral fusion of premyofibril structures to form mature striated myofibrils. The evidence shows that myofibril assembly is a complex process that requires the action of particular catalysts and scaffolds at individual steps. The scaffolds and chaperones required for assembly are potential regulators of myofibrillogenesis, and abnormal function of these proteins caused by mutation or pathological processes could in principle contribute to diseases of cardiac and skeletal muscles.
Collapse
|
36
|
Lee CF, Melkani GC, Yu Q, Suggs JA, Kronert WA, Suzuki Y, Hipolito L, Price MG, Epstein HF, Bernstein SI. Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability. J Cell Sci 2011; 124:699-705. [PMID: 21285246 DOI: 10.1242/jcs.078964] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
UNC-45 is a chaperone that facilitates folding of myosin motor domains. We have used Drosophila melanogaster to investigate the role of UNC-45 in muscle development and function. Drosophila UNC-45 (dUNC-45) is expressed at all developmental stages. It colocalizes with non-muscle myosin in embryonic blastoderm of 2-hour-old embryos. At 14 hours, it accumulates most strongly in embryonic striated muscles, similarly to muscle myosin. dUNC-45 localizes to the Z-discs of sarcomeres in third instar larval body-wall muscles. We produced a dunc-45 mutant in which zygotic expression is disrupted. This results in nearly undetectable dUNC-45 levels in maturing embryos as well as late embryonic lethality. Muscle myosin accumulation is robust in dunc-45 mutant embryos at 14 hours. However, myosin is dramatically decreased in the body-wall muscles of 22-hour-old mutant embryos. Furthermore, electron microscopy showed only a few thick filaments and irregular thick-thin filament lattice spacing. The lethality, defective protein accumulation, and ultrastructural abnormalities are rescued with a wild-type dunc-45 transgene, indicating that the mutant phenotypes arise from the dUNC-45 deficiency. Overall, our data indicate that dUNC-45 is important for myosin accumulation and muscle function. Furthermore, our results suggest that dUNC-45 acts post-translationally for proper myosin folding and maturation.
Collapse
Affiliation(s)
- Chi F Lee
- Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bernick EP, Zhang PJ, Du S. Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol 2010; 11:70. [PMID: 20849610 PMCID: PMC2954953 DOI: 10.1186/1471-2121-11-70] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/17/2010] [Indexed: 02/01/2023] Open
Abstract
Background Unc-45 is a myosin chaperone and a Hsp90 co-chaperone that plays a key role in muscle development. Genetic and biochemical studies in C. elegans have demonstrated that Unc-45 facilitates the process of myosin folding and assembly in body wall muscles. Loss or overexpression of Unc-45 in C. elegans results in defective myofibril organization. In the zebrafish Danio rerio, unc-45b, a homolog of C. elegans unc-45, is expressed in both skeletal and cardiac muscles. Earlier studies indicate that mutation or knockdown of unc-45b expression in zebrafish results in a phenotype characterized by a loss of both thick and thin filament organization in skeletal and cardiac muscle. The effects of unc-45b knockdown on other sarcomeric structures and the phenotype of Unc-45b overexpression, however, are poorly understood in vertebrates. Results Both knockdown and overexpression provide useful tools to study gene function during animal development. Using such methods, we characterized the role of Unc-45b in myofibril assembly of skeletal muscle in Danio rerio. We showed that, in addition to thick and thin filament defects, knockdown of unc-45b expression disrupted sarcomere organization in M-lines and Z-lines of skeletal muscles in zebrafish embryos. Western blotting analysis showed that myosin protein levels were significantly decreased in unc-45b knockdown embryos. Similarly, embryos overexpressing Unc-45b also exhibited severely disorganized myosin thick filaments. Disruption of thick filament organization by Unc-45b overexpression depends on the C-terminal UCS domain in Unc-45b required for interaction with myosin. Deletion of the C-terminal UCS domain abolished the disruptive activity of Unc-45b in myosin thick filament organization. In contrast, deletion of the N-terminal TPR domain required for binding with Hsp90α had no effect. Conclusion Collectively, these studies indicate that the expression levels of Unc-45b must be precisely regulated to ensure normal myofibril organization. Loss or overexpression of Unc-45b leads to defective myofibril organization.
Collapse
Affiliation(s)
- Elena P Bernick
- University of Maryland School of Medicine Interdisciplinary Training Program in Muscle Biology, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
38
|
Epping MT, Meijer LAT, Bos JL, Bernards R. UNC45A confers resistance to histone deacetylase inhibitors and retinoic acid. Mol Cancer Res 2009; 7:1861-70. [PMID: 19843631 DOI: 10.1158/1541-7786.mcr-09-0187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To identify potential biomarkers of therapy response, we have previously done a large-scale gain-of-function genetic screen to identify genes whose expression confers resistance to histone deacetylase inhibitors (HDACI). This genetic screen identified two genes with a role in retinoic acid signaling, suggesting that HDACIs target retinoic acid signaling as part of their anticancer effect. We study here a third gene identified in this genetic screen, UNC45A, and assess its role in retinoic acid signaling and responses to HDACIs using cell-based proliferation and differentiation assays and transcriptional reporter gene assays. The vertebrate Unc45 genes are known for their roles in muscle development and the assembly and cochaperoning of the muscle motor protein myosin. Here, we report that human UNC45A (GCUNC45) can render transformed cells resistant to treatment with HDACIs. We show that UNC45A also inhibits signaling through the retinoic acid receptor alpha. Expression of UNC45A inhibits retinoic acid-induced proliferation arrest and differentiation of human neuroblastoma cells and inhibits the induction of endogenous retinoic acid receptor target genes. These data establish an unexpected role for UNC45A in causing resistance to both HDACI drugs and retinoic acid. Moreover, our data lend further support to the notion that HDACIs exert their anticancer effect, at least in part, through an effect on retinoic acid signaling.
Collapse
Affiliation(s)
- Mirjam T Epping
- Netherlands Cancer Institute, Division of Molecular Carcinogenesis, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
39
|
Abstract
The organization of sarcomeric structures during muscle development involves regulated multistep assembly pathways. The myosin assembly factor UNC-45 functions both as a molecular chaperone and as an Hsp90 co-chaperone for myosin throughout muscle thick-filament formation. Consequently, mutations in unc-45 result in paralyzed worms with severe myofibril disorganization in striated body wall muscles. Our data suggest that functional muscle formation in Caenorhabditis elegans is linked to ubiquitin-dependent UNC-45 turnover, regulated by the E3 enzymes UFD-2 and CHN-1 in cooperation with the ubiquitin-selective chaperone CDC-48 (also known as p97 in human). Missense mutations in the gene encoding p97 are known to cause a dominant, late-onset hereditary inclusion body myopathy. Remarkably, we identified a conserved role of CDC-48/p97 in the process of myofiber differentiation and maintenance, which appears to have important implications for understanding defects in muscle formation and maintenance during pathological conditions.
Collapse
|
40
|
Faircloth LM, Churchill PF, Caldwell GA, Caldwell KA. The microtubule-associated protein, NUD-1, exhibits chaperone activity in vitro. Cell Stress Chaperones 2009; 14:95-103. [PMID: 18626791 PMCID: PMC2673900 DOI: 10.1007/s12192-008-0061-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022] Open
Abstract
Regulation of cell division requires the concerted function of proteins and protein complexes that properly mediate cytoskeletal dynamics. NudC is an evolutionarily conserved protein of undetermined function that associates with microtubules and interacts with several key regulators of mitosis, such as polo-kinase 1 (Plk1) and dynein. NudC is essential for proper mitotic progression, and homologs have been identified in species ranging from fungi to humans. In this paper, we report the characterization of the Caenorhabditis elegans NudC homolog, NUD-1, as a protein exhibiting molecular chaperone activity. All NudC/NUD-1 proteins share a conserved p23/HSP20 domain predicted by three-dimensional modeling [Garcia-Ranea, Mirey, Camonis, Valencia, FEBS Lett 529(2-3):162-167, 2002]. We demonstrate that nematode NUD-1 is able to prevent the aggregation of two substrate proteins, citrate synthase (CS) and luciferase, at stoichiometric concentrations. Further, NUD-1 also protects the native state of CS from thermal inactivation by significantly reducing the inactivation rate of this enzyme. To further determine if NUD-1/substrate complexes were productive or simply "dead-end" unfolding intermediates, a luciferase refolding assay was utilized. Following thermal denaturation, rabbit reticulocyte lysate and ATP were added and luciferase activity measured. In the presence of NUD-1, nearly all of the luciferase activity was regained, indicating that unfolded intermediates complexed with NUD-1 could be refolded. These studies represent the first functional evidence for a member of this mitotically essential protein family as having chaperone activity and facilitates elucidation of the role such proteins play in chaperone complexes utilized in cell division. C. elegans NUD-1 is a member of an evolutionary conserved protein family of unknown function involved in the regulation of cytoskeletal dynamics. NUD-1 and its mammalian homolog, NudC, function with the dynein motor complex to ensure proper cell division, and knockdown or overexpression of these proteins leads to disruption of mitosis. In this paper, we show that NUD-1 possesses ATP-independent chaperone activity comparable to that of small heat shock proteins and cochaperones and that changes in phosphorylation state functionally alter chaperone activity in a phosphomimetic NUD-1 mutant.
Collapse
Affiliation(s)
- Lindsay M. Faircloth
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Perry F. Churchill
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
41
|
Amorim MJ, Mata J. Rng3, a member of the UCS family of myosin co-chaperones, associates with myosin heavy chains cotranslationally. EMBO Rep 2008; 10:186-91. [PMID: 19098712 DOI: 10.1038/embor.2008.228] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 11/09/2022] Open
Abstract
The production of functional myosin heavy chains in many eukaryotic organisms requires the function of proteins containing UCS domains (UNC-45/CRO1/She4), which bind to the myosin head domain and stimulate its folding. UCS proteins are essential for myosin-related functions such as muscle formation, RNA localization and cytokinesis. Here, we show that the Schizosaccharomyces pombe UCS protein Rng3 associates with polysomes, suggesting that UCS proteins might assist myosin folding cotranslationally. To identify Rng3 cotranslational targets systematically, we purified Rng3-associated RNAs and used DNA microarrays to identify the transcripts. Rng3 copurified with only seven transcripts (around 0.1% of S. pombe genes), including all five messenger RNAs encoding myosin heavy chains. These results suggest that every myosin heavy chain in S. pombe is a cotranslational target of Rng3. Furthermore, our data suggest that microarray-based approaches allow the genome-wide identification of cotranslational chaperone targets, and thus pave the way for the dissection of translation-linked chaperone networks.
Collapse
Affiliation(s)
- Maria J Amorim
- Hopkins Building, Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK
| | | |
Collapse
|
42
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
43
|
Kachur TM, Pilgrim DB. Myosin assembly, maintenance and degradation in muscle: Role of the chaperone UNC-45 in myosin thick filament dynamics. Int J Mol Sci 2008; 9:1863-1875. [PMID: 19325835 PMCID: PMC2635755 DOI: 10.3390/ijms9091863] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/08/2008] [Accepted: 09/13/2008] [Indexed: 12/27/2022] Open
Abstract
Myofibrillogenesis in striated muscle cells requires a precise ordered pathway to assemble different proteins into a linear array of sarcomeres. The sarcomere relies on interdigitated thick and thin filaments to ensure muscle contraction, as well as properly folded and catalytically active myosin head. Achieving this organization requires a series of protein folding and assembly steps. The folding of the myosin head domain requires chaperone activity to attain its functional conformation. Folded or unfolded myosin can spontaneously assemble into short myosin filaments, but further assembly requires the short and incomplete myosin filaments to assemble into the developing thick filament. These longer filaments are then incorporated into the developing sarcomere of the muscle. Both myosin folding and assembly require factors to coordinate the formation of the thick filament in the sarcomere and these factors include chaperone molecules. Myosin folding and sarcomeric assembly requires association of classical chaperones as well as folding cofactors such as UNC-45. Recent research has suggested that UNC-45 is required beyond initial myosin head folding and may be directly or indirectly involved in different stages of myosin thick filament assembly, maintenance and degradation.
Collapse
Affiliation(s)
| | - David B. Pilgrim
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1-780-492-2792
| |
Collapse
|
44
|
Yeast UCS proteins promote actomyosin interactions and limit myosin turnover in cells. Proc Natl Acad Sci U S A 2008; 105:8014-9. [PMID: 18523008 DOI: 10.1073/pnas.0802874105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two functions are proposed for the conserved family of UCS proteins: helping to fold myosin motor proteins and stimulating the motor function of folded myosins. We examined both functions in yeast. The fission yeast UCS protein (Rng3p) concentrates in nodes containing myosin-II (Myo2) and other proteins that condense into the cytokinetic contractile ring. Both the N-terminal (central) and C-terminal (UCS) domains of Rng3p can concentrate independently in contractile rings, but only full-length Rng3p supports contractile ring function in vivo. The presence of Rng3p in ATPase assays doubles the apparent affinity (K(ATPase)) of both native Myo2 and recombinant heads of Myo2 for actin filaments. Rng3p promotes gliding of actin filaments by full-length Myo2 molecules, but not Myo2 heads alone. Myo2 isolated from mutant strains defective for Rng3p function is soluble and supports actin filament gliding. In budding yeast the single UCS protein (She4p) acts on both myosin-I isoforms (Myo3p and Myo5p) and one of two myosin-V isoforms (Myo4p). Myo5p turns over approximately 10 times faster in she4Delta cells than wild-type cells, reducing the level of Myo5p in cells 10-fold and in cortical actin patches approximately 4-fold. Nevertheless, Myo5p isolated from she4Delta cells has wild-type ATPase and motility activities. Thus, a fraction of this yeast myosin can fold de novo in the absence of UCS proteins, but UCS proteins promote myosin stability and interactions with actin.
Collapse
|
45
|
Fox RM, Watson JD, Von Stetina SE, McDermott J, Brodigan TM, Fukushige T, Krause M, Miller DM. The embryonic muscle transcriptome of Caenorhabditis elegans. Genome Biol 2008; 8:R188. [PMID: 17848203 PMCID: PMC2375026 DOI: 10.1186/gb-2007-8-9-r188] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/12/2007] [Indexed: 11/10/2022] Open
Abstract
Fluorescence activated cell sorting and microarray profiling were used to identify 1,312 expressed genes that are enriched in myo-3::GFP-positive muscle cells of Caenorhabditis elegans. Background The force generating mechanism of muscle is evolutionarily ancient; the fundamental structural and functional components of the sarcomere are common to motile animals throughout phylogeny. Recent evidence suggests that the transcription factors that regulate muscle development are also conserved. Thus, a comprehensive description of muscle gene expression in a simple model organism should define a basic muscle transcriptome that is also found in animals with more complex body plans. To this end, we applied microarray profiling of Caenorhabtidis elegans cells (MAPCeL) to muscle cell populations extracted from developing C. elegans embryos. Results We used fluorescence-activated cell sorting to isolate myo-3::green fluorescent protein (GFP) positive muscle cells, and their cultured derivatives, from dissociated early C. elegans embryos. Microarray analysis identified 7,070 expressed genes, 1,312 of which are enriched in the myo-3::GFP positive cell population relative to the average embryonic cell. The muscle enriched gene set was validated by comparisons with known muscle markers, independently derived expression data, and GFP reporters in transgenic strains. These results confirm the utility of MAPCeL for cell type specific expression profiling and reveal that 60% of these transcripts have human homologs. Conclusion This study provides a comprehensive description of gene expression in developing C. elegans embryonic muscle cells. The finding that more than half of these muscle enriched transcripts encode proteins with human homologs suggests that mutant analysis of these genes in C. elegans could reveal evolutionarily conserved models of muscle gene function, with ready application to human muscle pathologies.
Collapse
Affiliation(s)
- Rebecca M Fox
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21Ave. S., Nashville, TN 37232-8240, USA
- Current address: Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Joseph D Watson
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21Ave. S., Nashville, TN 37232-8240, USA
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| | - Stephen E Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21Ave. S., Nashville, TN 37232-8240, USA
| | - Joan McDermott
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room B1-04, Bethesda, MD 20892, USA
| | - Thomas M Brodigan
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room B1-04, Bethesda, MD 20892, USA
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room B1-04, Bethesda, MD 20892, USA
| | - Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room B1-04, Bethesda, MD 20892, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21Ave. S., Nashville, TN 37232-8240, USA
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| |
Collapse
|
46
|
Protein quality control gets muscle into shape. Trends Cell Biol 2008; 18:264-72. [PMID: 18495480 DOI: 10.1016/j.tcb.2008.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 01/08/2023]
Abstract
The synthesis, assembly and organisation of structural and motor proteins during muscle formation requires temporal and spatial control directed by specialized chaperones. For example, alphaB-crystallin, GimC and TRiC facilitate the assembly of sarcomeric proteins such as desmin and actin. Recent studies have demonstrated that the chaperone family of UCS proteins (UNC-45-CRO1-She4p) is required for the proper function of myosin motors. Mutations in the myosin-directed chaperone unc-45, a founding member of this family, lead to disorganisation of striated muscle in Caenorhabditiselegans. In addition to the involvement of client-specific chaperones, myofibrillogenesis also involves ubiquitin-dependent degradation of regulatory muscle proteins. Here, we highlight the interplay between chaperone activity and protein degradation in respect to the formation and maintenance of muscle during physiological and pathological conditions.
Collapse
|
47
|
Anderson MJ, Pham VN, Vogel AM, Weinstein BM, Roman BL. Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Dev Biol 2008; 318:258-67. [PMID: 18462713 DOI: 10.1016/j.ydbio.2008.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/12/2008] [Accepted: 03/13/2008] [Indexed: 01/11/2023]
Abstract
Aortic arch malformations are common congenital disorders that are frequently of unknown etiology. To gain insight into the factors that guide branchial aortic arch development, we examined the process by which these vessels assemble in wild type zebrafish embryos and in kurzschluss(tr12) (kus(tr12)) mutants. In wild type embryos, each branchial aortic arch first appears as an island of angioblasts in the lateral pharyngeal mesoderm, then elaborates by angiogenesis to connect to the lateral dorsal aorta and ventral aorta. In kus(tr12) mutants, angioblast formation and initial sprouting are normal, but aortic arches 5 and 6 fail to form a lumenized connection to the lateral dorsal aorta. Blood enters these blind-ending vessels from the ventral aorta, distending the arteries and precipitating fusion with an adjacent vein. This arteriovenous malformation (AVM), which shunts nearly all blood directly back to the heart, is not exclusively genetically programmed, as its formation correlates with blood flow and aortic arch enlargement. By positional cloning, we have identified a nonsense mutation in unc45a in kus(tr12) mutants. Our results are the first to ascribe a role for Unc45a, a putative myosin chaperone, in vertebrate development, and identify a novel mechanism by which an AVM can form.
Collapse
Affiliation(s)
- Matthew J Anderson
- Tumor Biology Training Program, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
48
|
Etard C, Roostalu U, Strähle U. Shuttling of the chaperones Unc45b and Hsp90a between the A band and the Z line of the myofibril. ACTA ACUST UNITED AC 2008; 180:1163-75. [PMID: 18347070 PMCID: PMC2290844 DOI: 10.1083/jcb.200709128] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of thick filaments in striated muscle involves the chaperones Hsp90a and Unc45. We show that Unc45b and Hsp90a, two zebrafish orthologues, colocalize with myosin during myofibrillogenesis and associate with the Z line when myofibril assembly is completed. In response to stress or damage to the myofiber, Unc45b and Hsp90a dissociate from the Z line and transiently associate with myosin. Although chaperone activity of Unc45b requires the full-length protein, only the central and Unc45-Cro1p-She4p domains are required to anchor it to the Z line, and multiple subdomains mediate association with nascent myosin. We propose that the Z line serves as a reservoir for chaperones, allowing a rapid mobilization in response to muscle damage. Our data are consistent with a differential affinity model as an explanation for the shuttling of the chaperones between the Z line and myosin.
Collapse
Affiliation(s)
- Christelle Etard
- Institute for Toxicology and Genetics, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
| | | | | |
Collapse
|
49
|
Chadli A, Felts SJ, Toft DO. GCUNC45 is the first Hsp90 co-chaperone to show alpha/beta isoform specificity. J Biol Chem 2008; 283:9509-12. [PMID: 18285346 DOI: 10.1074/jbc.c800017200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hsp90 is an essential molecular chaperone required for the normal functioning of many key regulatory proteins in eukaryotic cells. Vertebrates have two closely related isoforms of cytosolic Hsp90 (Hsp90alpha and Hsp90beta). However, specific functions for each isoform are largely unknown, and no Hsp90 co-chaperone has been reported to distinguish between the two isoforms. In this study, we show that the Hsp90 co-chaperone GCUNC45 bound preferentially to the beta isoform of Hsp90 in vitro. GCUNC45 efficiently blocked the progression of progesterone receptor chaperoning in an in vitro functional system when Hsp90beta was used, but did so with much less efficacy when Hsp90alpha was used. Knockdown experiments in HeLa cells showed that GCUNC45 is required for the normal cellular distribution of Hsp90beta, but not Hsp90alpha. This is the first example of a co-chaperone with isoform selectivity, and this approach may open novel avenues to understanding the functional differences between Hsp90 isoforms.
Collapse
Affiliation(s)
- Ahmed Chadli
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
50
|
Heat-shock protein 90alpha1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci U S A 2008; 105:554-9. [PMID: 18182494 DOI: 10.1073/pnas.0707330105] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heat-shock protein 90alpha (Hsp90alpha) is a member of the molecular chaperone family involved in protein folding and assembly. The role of Hsp90alpha in the developmental process, however, remains unclear. Here we report that zebrafish contains two Hsp90alpha genes, Hsp90alpha1, and Hsp90alpha2. Hsp90alpha1 is specifically expressed in developing somites and skeletal muscles of zebrafish embryos. We have demonstrated that Hsp90alpha1 is essential for myofibril organization in skeletal muscles of zebrafish embryos. Knockdown of Hsp90alpha1 resulted in paralyzed zebrafish embryos with poorly organized myofibrils in skeletal muscles. In contrast, knockdown of Hsp90alpha2 had no effect on muscle contraction and myofibril organization. The filament defects could be rescued in a cell autonomous manner by an ectopic expression of Hsp90alpha1. Biochemical analyses revealed that knockdown of Hsp90alpha1 resulted in significant myosin degradation and up-regulation of unc-45b gene expression. These results indicate that Hsp90alpha1 plays an important role in muscle development, likely through facilitating myosin folding and assembly into organized myofibril filaments.
Collapse
|