1
|
Tuersuntuoheti A, Li Q, Teng Y, Li X, Huang R, Lu Y, Li K, Liang J, Miao S, Wu W, Song W. YWK-II/APLP2 inhibits TGF-β signaling by interfering with the TGFBR2-Hsp90 interaction. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119548. [PMID: 37479189 DOI: 10.1016/j.bbamcr.2023.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Transforming growth factor-β (TGF-β) regulates multiple cellular biological processes by activating TGF-β type I receptors (TGFBR1) and type II receptors (TGFBR2), and Hsp90 stabilizes these receptors through specific interactions. In many malignancies, one of the most deregulated signaling pathways is the TGF-β signaling pathway, which is often inactivated by mutations or deregulation of TGF-β type II receptors (TGFBR2). However, the molecular mechanisms are not well understood. In this study, we show that YWK-II/APLP2, an immediately early response gene for TGF-β signaling, inhibits TGF-β signaling by promoting the degradation of the TGFBR2 protein. Knockdown of YWK-II/APLP2 increases the TGFBR2 protein level and sensitizes cells to TGF-β stimulation, while YWK-II/APLP2 overexpression destabilizes TGFBR2 and desensitizes cells to TGF-β. Mechanistically, YWK-II/APLP2 is associated with TGFBR2 in a TGF-β activity-dependent manner, binds to Hsp90 to interfere with the interaction between TGFBR2 and Hsp90, and leads to enhanced ubiquitination and degradation of TGFBR2. Taken together, YWK-II/APLP2 is involved in negatively regulating the duration and intensity of TGF-β/Smad signaling and suggests that aberrantly high expression of YWK-II/APLP2 in malignancies may antagonize the growth inhibition mediated by TGF-β signaling and play a role in carcinogenesis.
Collapse
Affiliation(s)
- Amannisa Tuersuntuoheti
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qinshan Li
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yu Teng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Chauvin M, Garambois V, Colombo PE, Chentouf M, Gros L, Brouillet JP, Robert B, Jarlier M, Dumas K, Martineau P, Navarro-Teulon I, Pépin D, Chardès T, Pèlegrin A. Anti-Müllerian hormone (AMH) autocrine signaling promotes survival and proliferation of ovarian cancer cells. Sci Rep 2021; 11:2231. [PMID: 33500516 PMCID: PMC7838181 DOI: 10.1038/s41598-021-81819-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
In ovarian carcinoma, anti-Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets. Here, AMH dose-dependent effect on signaling and proliferation was analyzed in four ovarian cancer cell lines, including sex cord stromal/granulosa cell tumors and high grade serous adenocarcinomas (COV434-AMHRII, SKOV3-AMHRII, OVCAR8 and KGN). As previously shown, incubation with exogenous AMH at concentrations above the physiological range (12.5-25 nM) decreased cell viability. Conversely, physiological concentrations of endogenous AMH improved cancer cell viability. Partial AMH depletion by siRNAs was sufficient to reduce cell viability in all four cell lines, by 20% (OVCAR8 cells) to 40% (COV434-AMHRII cells). In the presence of AMH concentrations within the physiological range (5 to 15 pM), the newly developed anti-AMH B10 antibody decreased by 25% (OVCAR8) to 50% (KGN) cell viability at concentrations ranging between 3 and 333 nM. At 70 nM, B10 reduced clonogenic survival by 57.5%, 57.1%, 64.7% and 37.5% in COV434-AMHRII, SKOV3-AMHRII, OVCAR8 and KGN cells, respectively. In the four cell lines, B10 reduced AKT phosphorylation, and increased PARP and caspase 3 cleavage. These results were confirmed in ovarian cancer cells isolated from patients' ascites, demonstrating the translational potential of these results. Furthermore, B10 reduced COV434-MISRII tumor growth in vivo and significantly enhanced the median survival time compared with vehicle (69 vs 60 days; p = 0.0173). Our data provide evidence for a novel pro-survival autocrine role of AMH in the context of ovarian cancer, which was targeted therapeutically using an anti-AMH antibody to successfully repress tumor growth.
Collapse
Affiliation(s)
- Maëva Chauvin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Véronique Garambois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Pierre-Emmanuel Colombo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Myriam Chentouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Jean-Paul Brouillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
- Département de Biochimie et Biologie Moléculaire, CHU de Nîmes, Nîmes, France
| | - Bruno Robert
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Marta Jarlier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Karen Dumas
- SurgiMAb, 10 Parc Club du Millénaire, 1025 Avenue Henri Becquerel, 34000, Montpellier, France
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Isabelle Navarro-Teulon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - David Pépin
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France.
- INSERM, U1194, 34298, Montpellier, France.
- Université de Montpellier, 34298, Montpellier, France.
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France.
| |
Collapse
|
3
|
Sliker BH, Goetz BT, Peters HL, Poelaert BJ, Borgstahl GEO, Solheim JC. Beta 2-microglobulin regulates amyloid precursor-like protein 2 expression and the migration of pancreatic cancer cells. Cancer Biol Ther 2019; 20:931-940. [PMID: 30810435 DOI: 10.1080/15384047.2019.1580414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Beta 2-microglobulin (β2m) is a component of the major histocompatibility complex (MHC) class I molecule, which presents tumor antigens to T lymphocytes to trigger cancer cell destruction. Notably, β2m has been reported as persistently expressed, rather than down regulated, in some tumor types. For renal cell and oral squamous cell carcinomas, β2m expression has been linked to increased migratory capabilities. The migratory ability of pancreatic cancer cells contributes to their metastatic tendencies and lethal nature. Therefore, in this study, we examined the impact of β2m on pancreatic cancer cell migration. We found that β2m protein is amply expressed in several human pancreatic cancer cell lines (S2-013, PANC-1, and MIA PaCa-2). Reducing β2m expression by short interfering RNA (siRNA) transfection significantly slowed the migration of the PANC-1 and S2-013 cancer cell lines, but increased the migration of the MIA PaCa-2 cell line. The amyloid precursor-like protein 2 (APLP2) has been documented as contributing to pancreatic cancer cell migration, invasiveness, and metastasis. We have previously shown that β2m/HLA class I/peptide complexes associate with APLP2 in S2-013 cells, and in this study we also detected their association in PANC-1 cells but not MIA PaCa-2 cells. In addition, siRNA down regulation of β2m expression diminished the expression of APLP2 in S2-013 and PANC-1 but heightened the level of APLP2 in MIA PaCa-2 cells, consistent with our migration data and co-immunoprecipitation data. Thus, our findings indicate that β2m regulates pancreatic cancer cell migration, and furthermore suggest that APLP2 is an intermediary in this process.
Collapse
Affiliation(s)
- Bailee H Sliker
- a Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Benjamin T Goetz
- a Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Haley L Peters
- a Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Brittany J Poelaert
- a Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Gloria E O Borgstahl
- a Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,d Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , NE , USA
| | - Joyce C Solheim
- a Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,e Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
4
|
Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget 2017; 7:19430-44. [PMID: 26840089 PMCID: PMC4991393 DOI: 10.18632/oncotarget.7103] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/22/2022] Open
Abstract
Amyloid precursor protein (APP) and its family members amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimer's disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, and APLP2 and APP are linked to increased tumor cell proliferation, migration, and invasion. In this present review, we discuss the unfolding account of these APP family members’ roles in cancer progression and metastasis.
Collapse
|
5
|
Regulators in the apoptotic pathway during spermatogenesis: Killers or guards? Gene 2016; 582:97-111. [DOI: 10.1016/j.gene.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 01/24/2023]
|
6
|
Liu H, Zou X, Li T, Wang X, Yuan W, Chen Y, Han W. Enhanced production of secretory glycoprotein VSTM1-v2 with mouse IgGκ signal peptide in optimized HEK293F transient transfection. J Biosci Bioeng 2015; 121:133-9. [PMID: 26140918 DOI: 10.1016/j.jbiosc.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/14/2015] [Accepted: 05/25/2015] [Indexed: 01/28/2023]
Abstract
VSTM1-v2 is a secretory glycoprotein identified by our laboratory. Our previous study revealed that VSTM1-v2 could promote differentiation and activation of Th17 cells. To explore the role of VSTM1-v2 in the immune system further, a source of abundant high-quality recombinant protein is warranted. However, high-level expression of bioactive VSTM1-v2 is difficult due to its weak secretion capacity. To obtain sufficient recombinant VSTM1-v2, we developed an improved expression and purification system by replacing the native signal peptide with a mouse IgGκ signal peptide that did not alter the protein cleavage site. We also optimized parameters for a transient gene expression system in HEK293F cells suspended in serum-free media with polyethyleneimine. Finally, 3.6 mg/L recombinant VSTM1-v2 protein with N-glycosylation and no less than 95% purity was obtained through one-step purification with Ni affinity chromatography. The final yield after purification was increased by more than 7-fold compared to the yield from our previously reported HEK293T system (from 0.5 mg/L to 3.6 mg/L). More importantly, VSTM1-v2 protein exhibited excellent bioactivity. In conclusion, the improved system is not only a dependable source of abundant bioactive VSTM1-v2 for functional studies but also demonstrates a highly efficient approach for enhancing the production of proteins in a short time period, especially for secretory proteins with poor yields.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, 38 Xueyuan Road, Beijing 100191, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Xiajuan Zou
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Ting Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, 38 Xueyuan Road, Beijing 100191, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaolin Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, 38 Xueyuan Road, Beijing 100191, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Wanqiong Yuan
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, 38 Xueyuan Road, Beijing 100191, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, 38 Xueyuan Road, Beijing 100191, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health, 38 Xueyuan Road, Beijing 100191, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
7
|
Silva JV, Yoon S, Domingues S, Guimarães S, Goltsev AV, da Cruz E Silva EF, Mendes JFF, da Cruz E Silva OAB, Fardilha M. Amyloid precursor protein interaction network in human testis: sentinel proteins for male reproduction. BMC Bioinformatics 2015; 16:12. [PMID: 25591988 PMCID: PMC4384327 DOI: 10.1186/s12859-014-0432-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyloid precursor protein (APP) is widely recognized for playing a central role in Alzheimer's disease pathogenesis. Although APP is expressed in several tissues outside the human central nervous system, the functions of APP and its family members in other tissues are still poorly understood. APP is involved in several biological functions which might be potentially important for male fertility, such as cell adhesion, cell motility, signaling, and apoptosis. Furthermore, APP superfamily members are known to be associated with fertility. Knowledge on the protein networks of APP in human testis and spermatozoa will shed light on the function of APP in the male reproductive system. RESULTS We performed a Yeast Two-Hybrid screen and a database search to study the interaction network of APP in human testis and sperm. To gain insights into the role of APP superfamily members in fertility, the study was extended to APP-like protein 2 (APLP2). We analyzed several topological properties of the APP interaction network and the biological and physiological properties of the proteins in the APP interaction network were also specified by gene ontologyand pathways analyses. We classified significant features related to the human male reproduction for the APP interacting proteins and identified modules of proteins with similar functional roles which may show cooperative behavior for male fertility. CONCLUSIONS The present work provides the first report on the APP interactome in human testis. Our approach allowed the identification of novel interactions and recognition of key APP interacting proteins for male reproduction, particularly in sperm-oocyte interaction.
Collapse
Affiliation(s)
- Joana Vieira Silva
- Laboratory of Signal Transduction, Centre for Cell Biology, Health Sciences Department and Biology Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sooyeon Yoon
- Department of Physics, I3N, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sara Domingues
- Laboratory of Neurosciences, Centre for Cell Biology, Health Sciences Department and Biology Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sofia Guimarães
- Laboratory of Neurosciences, Centre for Cell Biology, Health Sciences Department and Biology Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Alexander V Goltsev
- Department of Physics, I3N, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Edgar Figueiredo da Cruz E Silva
- Laboratory of Signal Transduction, Centre for Cell Biology, Health Sciences Department and Biology Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| | | | - Odete Abreu Beirão da Cruz E Silva
- Laboratory of Neurosciences, Centre for Cell Biology, Health Sciences Department and Biology Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Centre for Cell Biology, Health Sciences Department and Biology Department, University of Aveiro, 3810-193, Aveiro, Portugal.
- Centro de Biologia Celular, SACS, Edifício 30, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
8
|
Novel regulators of spermatogenesis. Semin Cell Dev Biol 2014; 29:31-42. [PMID: 24594193 DOI: 10.1016/j.semcdb.2014.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/07/2023]
Abstract
Spermatogenesis is a multistep process that supports the production of millions of sperm daily. Understanding of the molecular mechanisms that regulate spermatogenesis has been a major focus for decades. Yet, the regulators involved in different cellular processes of spermatogenesis remain largely unknown. Human diseases that result in defective spermatogenesis have provided hints on the molecular mechanisms regulating this process. In this review, we have summarized recent findings on the function and signaling mechanisms of several genes that are known to be associated with disease or pathological processes, including CFTR, CD147, YWK-II and CT genes, and discuss their potential roles in regulating different processes of spermatogenesis.
Collapse
|
9
|
Peters HL, Yan Y, Solheim JC. APLP2 regulates the expression of MHC class I molecules on irradiated Ewing's sarcoma cells. Oncoimmunology 2013; 2:e26293. [PMID: 24353913 PMCID: PMC3862638 DOI: 10.4161/onci.26293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023] Open
Abstract
Ewing's sarcoma (EWS) is a pediatric cancer that is conventionally treated by surgery, chemotherapy, and radiation therapy. Innovative immunotherapies to treat EWS are currently under development. Unfortunately for EWS patients, when the disease is found to be resistant to current therapeutic approaches, the prognosis is predictably grim. Radiation therapy and immunotherapy could potentially synergize in the eradication of EWS, as some studies have previously shown that irradiation increases the presence of immune receptors, including MHC class I molecules, on the surface of tumor cells. However, EWS cells have been reported to express low levels of MHC class I molecules, a phenotype that would inhibit T-cell mediated lysis. We have previously demonstrated that the transgene-driven overexpression of amyloid β (A4) precursor-like protein 2 (APLP2) reduces the expression of MHC class I molecules on the surface of human cervical carcinoma HeLa cells. We thus examined whether endogenously expressed APLP2 downregulates MHC class I expression on EWS cells, particularly upon irradiation. We found that irradiation induces the relocalization of APLP2 and MHC class I molecules on the surface of EWS cells, redistributing cells from subpopulations with relatively low APLP2 and high MHC class I into subpopulations with relatively high APLP2 and low MHC class I surface expression. Consistent with these findings, the transfection of an APLP2-targeting siRNA into EWS cells increased MHC class I expression on the cell surface. Furthermore, APLP2 was found by co-immunoprecipitation to bind to MHC class I molecules. Taken together, these findings suggest that APLP2 inhibits MHC class I expression on the surface of irradiated EWS cells by a mechanism that involves APLP2/MHC class I interactions. Thus, therapeutic strategies that limit APLP2 expression may boost the ability of T cells to recognize and eradicate EWS in patients.
Collapse
Affiliation(s)
- Haley L Peters
- Eppley Institute; University of Nebraska Medical Center; Omaha, NE USA
| | - Ying Yan
- Eppley Institute; University of Nebraska Medical Center; Omaha, NE USA
| | - Joyce C Solheim
- Eppley Institute; University of Nebraska Medical Center; Omaha, NE USA ; Department of Biochemistry and Molecular Biology; University of Nebraska Medical Center; Omaha, NE USA ; Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha, NE USA
| |
Collapse
|
10
|
Peters HL, Yan Y, Nordgren TM, Cutucache CE, Joshi SS, Solheim JC. Amyloid precursor-like protein 2 suppresses irradiation-induced apoptosis in Ewing sarcoma cells and is elevated in immune-evasive Ewing sarcoma cells. Cancer Biol Ther 2013; 14:752-60. [PMID: 23792571 DOI: 10.4161/cbt.25183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Despite surgery, chemotherapy, and radiotherapy treatments, the children, adolescents, and young adults who are diagnosed with metastasized Ewing sarcoma face a dismal prognosis. Amyloid precursor-like protein 2 (APLP2) has recently been implicated in the survival of cancer cells and in our current study, APLP2's contribution to the survival of Ewing sarcoma cells was examined. APLP2 was readily detected in all Ewing sarcoma cell lines analyzed by western blotting, with the TC71 Ewing sarcoma cells expressing the lowest level of APLP2 among the lines. While irradiation induces apoptosis in TC71 Ewing sarcoma cells (as we determined by quantifying the proportion of cells in the sub-G 1 population), transfection of additional APLP2 into TC71 decreased irradiation-induced apoptosis. Consistent with these findings, in parallel studies, we noted that isolates of the TC71 cell line that survived co-culture with lymphokine-activated killer (LAK) cells (which kill by inducing apoptosis in target cells) displayed increased expression of APLP2, in addition to smaller sub-G 1 cell populations after irradiation. Together, these findings suggest that APLP2 lowers the sensitivity of Ewing sarcoma cells to radiotherapy-induced apoptosis and that APLP2 expression is increased in Ewing sarcoma cells able to survive exposure to cytotoxic immune cells.
Collapse
Affiliation(s)
- Haley L Peters
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA
| | | | | | | | | | | |
Collapse
|
11
|
Chen J, Fok KL, Chen H, Zhang XH, Xu WM, Chan HC. Cryptorchidism-induced CFTR down-regulation results in disruption of testicular tight junctions through up-regulation of NF-κB/COX-2/PGE2. Hum Reprod 2012; 27:2585-97. [PMID: 22777528 DOI: 10.1093/humrep/des254] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Does elevated temperature-induced cystic fibrosis transmembrane conductance regulator (CFTR) down-regulation in Sertoli cells in cryptorchid testis disrupt testicular tight junctions (TJs) through the nuclear factor kappa B (NF-κB)/cyclooxygenase-2 (COX-2)/prostaglandin E(2) (PGE(2)) pathway? SUMMARY ANSWER Our results suggest that CFTR may be involved in regulating testicular TJs and the blood-testis barrier (BTB) through its negative regulation of the NF-κB/COX-2/PGE(2) pathway in Sertoli cells, a defect of which may result in the spermatogenesis defect in cryptorchidism. WHAT IS KNOWN ALREADY Cryptorchidism, or undescended testes, is known to result in defective spermatogenesis. Although an elevated testicular temperature is regarded as an important factor affecting spermatogenesis in cryptorchidism, the exact mechanism remains elusive. It is known that the expression of functional CFTR is temperature sensitive. Our previous study has demonstrated that CFTR negatively regulates NF-κB/COX-2/PGE(2) in bronchial epithelial cells. Disruption of TJs by COX-2/PGE(2) has been found in tumour cells. STUDY DESIGN AND METHODS Expression of CFTR, NF-κB, COX-2 and TJ proteins was examined in the testes of a surgical-induced cryptorchidism mouse model and a testicular hyperthermia mouse model, as well as in control or CFTR-inhibited/knocked down primary rat Sertoli cells. PGE(2) production was measured by ELISA. Sertoli cell barrier function was determined by transepethelial resistance (TER) measurements in rat Sertoli cell primary cultures. BTB integrity in the cryptorchidism model was monitored by examining tracker dye injected into seminiferous tubules. MAIN RESULTS Down-regulation of CFTR accompanied by activation of NF-κB, up-regulation of COX-2 and down-regulation of TJ proteins, including ZO-1 and occludin, was observed in a cryptorchidism mouse model. BTB leakage revealed impaired BTB integrity in cryptorchid testes, confirming the destruction of TJs. The inverse correlation of CFTR and COX-2 was further confirmed in a mouse testis hyperthermia model and CFTR knockout mouse model. Culturing primary Sertoli cells at 37°C, which mimics the pathological condition of cryptorchidism, led to a significant decrease in CFTR and increase in COX-2 expression and PGE(2) production compared with the culture at the physiological 32°C. Inhibition or knockdown of CFTR led to increased COX-2 but decreased ZO-1 and occludin expression in Sertoli cells, which could be mimicked by PGE(2), but reversed by NF-κB or COX-2 inhibitor, suggesting that the regulation of TJs by CFTR is mediated by a NF-κB/COX-2/PGE(2) pathway. Inhibition of CFTR or administration of PGE(2) significantly decreased Sertoli cell TER. LIMITATIONS This study has tested only the CFTR/NF-κB/COX-2/PGE(2) pathway in mouse testes in vivo and in rat Sertoli cells in vitro, and thus, it has some limitations. Further investigations in other species, especially humans, are needed. WIDER IMPLICATIONS OF THE FINDINGS Our study may shed more light on one of the aspects of the complicated underlying mechanisms of defective spermatogenesis induced by cryptorchidism.
Collapse
Affiliation(s)
- Jing Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | | | |
Collapse
|
12
|
Wu W, Song W, Li S, Ouyang S, Fok KL, Diao R, Miao S, Chan HC, Wang L. Regulation of apoptosis by Bat3-enhanced YWK-II/APLP2 protein stability. J Cell Sci 2012; 125:4219-29. [PMID: 22641691 DOI: 10.1242/jcs.086553] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
YWK-II protein/APLP2 is a member of an evolutionarily conserved protein family that includes amyloid precursor protein (APP) and amyloid precursor-like protein-1 (APLP1). We have previously demonstrated that YWK-II/APLP2 functions as a novel G(0)-protein-coupled receptor for Müllerian inhibiting substance (MIS) in cell survival. However, factors regulating the stability and turnover of YWK-II/APLP2 have not been identified. Here we present evidence that human leukocyte antigen-B-associated transcript 3 (Bat3), an important regulator involved in apoptosis, can interact with YWK-II/APLP2 and enhance its stability by reducing its ubiquitylation and degradation by the ubiquitin-proteasome system. Coexpression of different Bat3 domain deletion constructs with YWK-II/APLP2 reveals that the proline-rich domain of Bat3 is required for its binding to YWK-II/APLP2. In addition, we find that the protein levels of YWK-II/APLP2 could be enhanced by nuclear export of Bat3 under apoptotic stimulation. We also find elevated levels of Bat3 and YWK-II/APLP2 in human colorectal cancer with a positive correlation between the two. Taken together, these results have revealed a previously undefined mechanism regulating cell apoptosis and suggest that aberrant enhancement of YWK-II/APLP2 by nuclear export of Bat3 may play a role in cancer development by inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen H, Fok KL, Jiang X, Jiang J, Chen Z, Gui Y, Chan HC, Cai Z. CD147 regulates apoptosis in mouse spermatocytes but not spermatogonia. Hum Reprod 2012; 27:1568-76. [DOI: 10.1093/humrep/des050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|