1
|
Ral GTPase is essential for actin dynamics and Golgi apparatus distribution in mouse oocyte maturation. Cell Div 2021; 16:3. [PMID: 34112192 PMCID: PMC8194175 DOI: 10.1186/s13008-021-00071-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.
Collapse
|
2
|
|
3
|
Li CY, Prochazka J, Goodwin AF, Klein OD. Fibroblast growth factor signaling in mammalian tooth development. Odontology 2013; 102:1-13. [DOI: 10.1007/s10266-013-0142-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
|
4
|
Identification and characterization of the RLIP/RALBP1 interacting protein Xreps1 in Xenopus laevis early development. PLoS One 2012; 7:e33193. [PMID: 22413001 PMCID: PMC3297634 DOI: 10.1371/journal.pone.0033193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022] Open
Abstract
Background The FGF/Ras/Ral/RLIP pathway is required for the gastrulation process during the early development of vertebrates. The Ral Interacting Protein (RLIP also known as RalBP1) interacts with GTP-bound Ral proteins. RLIP/RalBP1 is a modular protein capable of participating in many cellular functions. Methodology/Principal Findings To investigate the role of RLIP in early development, a two-hybrid screening using a library of maternal cDNAs of the amphibian Xenopus laevis was performed. Xreps1 was isolated as a partner of RLIP/RalBP1 and its function was studied. The mutual interacting domains of Xreps1 and Xenopus RLIP (XRLIP) were identified. Xreps1 expressed in vivo, or synthesized in vitro, interacts with in vitro expressed XRLIP. Interestingly, targeting of Xreps1 or the Xreps1-binding domain of XRLIP (XRLIP(469–636)) to the plasma membrane through their fusion to the CAAX sequence induces a hyperpigmentation phenotype of the embryo. This hyperpigmented phenotype induced by XRLIP(469–636)-CAAX can be rescued by co-expression of a deletion mutant of Xreps1 restricted to the RLIP-binding domain (Xreps1(RLIP-BD)) but not by co-expression of a cDNA coding for a longer form of Xreps1. Conclusion/Significance We demonstrate here that RLIP/RalBP1, an effector of Ral involved in receptor-mediated endocytosis and in the regulation of actin dynamics during embryonic development, also interacts with Reps1. Although these two proteins are present early during embryonic development, they are active only at the end of gastrulation. Our results suggest that the interaction between RLIP and Reps1 is negatively controlled during the cleavage stage of development, which is characterized by rapid mitosis. Later in development, Reps1 is required for the normal function of the ectodermic cell, and its targeting into the plasma membrane affects the stability of the ectoderm.
Collapse
|
5
|
Fillatre J, Delacour D, Van Hove L, Bagarre T, Houssin N, Soulika M, Veitia RA, Moreau J. Dynamics of the subcellular localization of RalBP1/RLIP through the cell cycle: the role of targeting signals and of protein-protein interactions. FASEB J 2012; 26:2164-74. [PMID: 22319010 DOI: 10.1096/fj.11-196451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The small G protein Ras regulates many cell processes, such as gene expression, proliferation, apoptosis, and cell differentiation. Its mutations are associated with one-third of all cancers. Ras functions are mediated, at least in part, by Ral proteins and their downstream effector the Ral-binding protein 1 (RalBP1). RalBP1 is involved in endocytosis and in regulating the dynamics of the actin cytoskeleton. It also regulates early development since it is required for the completion of gastrulation in Xenopus laevis. RalBP1 has also been reported to be the main transporter of glutathione electrophiles, and it is involved in multidrug resistance. Such a variety of functions could be explained by a differential regulation of RalBP1 localization. In this study, we have detected endogenous RalBP1 in the nucleus of interphasic cells. This nuclear targeting is mediated by nuclear localization sequences that map to the N-terminal third of the protein. Moreover, in X. laevis embryos, a C-terminal coiled-coil sequence mediates RalBP1 retention in the nucleus. We have also observed RalBP1 at the level of the actin cytoskeleton, a localization that depends on interaction of the protein with active Ral. During mitosis RalBP1 also associates with the mitotic spindle and the centrosome, a localization that could be negatively regulated by active Ral. Finally, we demonstrate the presence of post-transcriptional and post-translational isoforms of RalBP1 lacking the Ral-binding domain, which opens new possibilities for the existence of Ral-independent functions.
Collapse
Affiliation(s)
- Jonathan Fillatre
- Mécanismes Moléculaires du Développement, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité. 15, rue Hélène Brion. 75205 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ferro E, Trabalzini L. RalGDS family members couple Ras to Ral signalling and that's not all. Cell Signal 2010; 22:1804-10. [PMID: 20478380 DOI: 10.1016/j.cellsig.2010.05.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/07/2010] [Indexed: 11/26/2022]
Abstract
Ras proteins function as molecular switches that are activated in response to signalling pathways initiated by various extracellular stimuli and subsequently bind to numerous effector proteins leading to the activation of several signalling cascades within the cell. Ras and Ras-related proteins belong to a large superfamily of small GTPases characterized by significant sequence and function similarities. Several evidence indicate the existence of complex signalling networks that link Ras with its relatives in the family. A key role in this cross-talk is played by guanine nucleotide exchange factors (GEFs) that serve both as regulators and as effectors of Ras family proteins. The members of the RalGDS family, RalGDS, RGL, RGL2/Rlf and RGL3, can interact with activated Ras through their Ras Binding Domain (RBD), but may function as effectors for other Ras family members. They possess a REM-CDC25 homology region like RasGEFs, but specifically activate only RalA and RalB and not Ras or other Ras-related small GTPases. In this review we provide an update on this recently discovered family of GEFs, highlighting their crucial role in coupling activated Ras to activation of Ral, thus regulating several fundamental cell processes, and also discussing some evidence supporting Ras-independent additional functions of RalGDS proteins.
Collapse
Affiliation(s)
- Elisa Ferro
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, Via Fiorentina, 1, 53100 Siena, Italy
| | | |
Collapse
|
7
|
Abstract
The migration of single cells and epithelial sheets is of great importance for gastrulation and organ formation in developing embryos and, if misregulated, can have dire consequences e.g. during cancer metastasis. A keystone of cell migration is the regulation of adhesive contacts, which are dynamically assembled and disassembled via endocytosis. Here, we discuss some of the basic concepts about the function of endocytic trafficking during cell migration: transport of integrins from the cell rear to the leading edge in fibroblasts; confinement of signalling to the front of single cells by endocytic transport of growth factors; regulation of movement coherence in multicellular sheets by cadherin turnover; and shaping of extracellular chemokine gradients. Taken together, endocytosis enables migrating cells and tissues to dynamically modulate their adhesion and signalling, allowing them to efficiently migrate through their extracellular environment.
Collapse
Affiliation(s)
- Florian Ulrich
- Skirball Institute of Biomolecular Medicine, New York, USA
| | | |
Collapse
|
8
|
Boissel L, Houssin N, Chikh A, Rynditch A, Van Hove L, Moreau J. Recruitment of Cdc42 through the GAP domain of RLIP participates in remodeling of the actin cytoskeleton and is involved in Xenopus gastrulation. Dev Biol 2007; 312:331-43. [DOI: 10.1016/j.ydbio.2007.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 09/07/2007] [Accepted: 09/17/2007] [Indexed: 12/23/2022]
|
9
|
Babbs C, Heller R, Everman DB, Crocker M, Twigg SRF, Schwartz CE, Giele H, Wilkie AOM. A new locus for split hand/foot malformation with long bone deficiency (SHFLD) at 2q14.2 identified from a chromosome translocation. Hum Genet 2007; 122:191-9. [PMID: 17569090 DOI: 10.1007/s00439-007-0390-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Split hand/foot malformation (SHFM) with long bone deficiency (SHFLD) is a distinct entity in the spectrum of ectrodactylous limb malformations characterised by associated tibial a/hypoplasia. Pedigrees with multiple individuals affected by SHFLD often include non-penetrant intermediate relatives, making genetic mapping difficult. Here we report a sporadic patient with SHFLD who carries a de novo chromosomal translocation t(2;18)(q14.2;p11.2). Characterisation of the breakpoints revealed that neither disrupts any known gene; however, the chromosome 2 breakpoint lies between GLI2 and INHBB, two genes known to be involved in limb development. To investigate whether mutation of a gene in proximity to the chromosome 2 breakpoint underlies the SHFLD, we sought independent evidence of mutations in GLI2, INHBB and two other genes (RALB and FLJ14816) in 44 unrelated patients with SHFM, SHFLD or isolated long bone deficiency. No convincing pathogenic mutations were found, raising the possibility that a long-range cis acting regulatory element may be disrupted by this translocation. The previous description of a translocation with a 2q14.2 breakpoint associated with ectrodactyly, and the mapping of the ectrodactylous Dominant hemimelia mouse mutation to a region of homologous synteny, suggests that 2q14.2 represents a novel locus for SHFLD.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Base Sequence
- Blotting, Southern
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Chromosomes, Human, Pair 2/genetics
- Computational Biology
- DNA Mutational Analysis
- DNA Primers/genetics
- Foot Deformities, Congenital/genetics
- Foot Deformities, Congenital/pathology
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/pathology
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Tibia/abnormalities
- Tibia/pathology
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Christian Babbs
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
González-García A, Pritchard CA, Paterson HF, Mavria G, Stamp G, Marshall CJ. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 2005; 7:219-26. [PMID: 15766660 DOI: 10.1016/j.ccr.2005.01.029] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/07/2004] [Accepted: 01/25/2005] [Indexed: 02/04/2023]
Abstract
To investigate the role of signaling by the small GTPase Ral, we have generated mice deficient for RalGDS, a guanine nucleotide exchange factor that activates Ral. We show that RalGDS is dispensable for mouse development but plays a substantial role in Ras-induced oncogenesis. Lack of RalGDS results in reduced tumor incidence, size, and progression to malignancy in multistage skin carcinogenesis, and reduced transformation by Ras in tissue culture. RalGDS does not appear to participate in the regulation of cell proliferation, but instead controls survival of transformed cells. Experiments performed in cells isolated from skin tumors suggest that RalGDS mediates cell survival through the activation of the JNK/SAPK pathway. These studies identify RalGDS as a key component in Ras-dependent carcinogenesis in vivo.
Collapse
Affiliation(s)
- Ana González-García
- Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Chen JA, Voigt J, Gilchrist M, Papalopulu N, Amaya E. Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus. Mech Dev 2005; 122:307-31. [PMID: 15763210 DOI: 10.1016/j.mod.2004.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/22/2004] [Accepted: 11/13/2004] [Indexed: 10/25/2022]
Abstract
The formation of mesoderm is an important developmental process of vertebrate embryos, which can be broken down into several steps; mesoderm induction, patterning, morphogenesis and differentiation. Although mesoderm formation in Xenopus has been intensively studied, much remains to be learned about the molecular events responsible for each of these steps. Furthermore, the interplay between mesoderm induction, patterning and morphogenesis remains obscure. Here, we describe an enhanced functional screen in Xenopus designed for large-scale identification of genes controlling mesoderm formation. In order to improve the efficiency of the screen, we used a Xenopus tropicalis unique set of cDNAs, highly enriched in full-length clones. The screening strategy incorporates two mesodermal markers, Xbra and Xmyf-5, to assay for cell fate specification and patterning, respectively. In addition we looked for phenotypes that would suggest effects in morphogenesis, such as gastrulation defects and shortened anterior-posterior axis. Out of 1728 full-length clones we isolated 82 for their ability to alter the phenotype of tadpoles and/or the expression of Xbra and Xmyf-5. Many of the clones gave rise to similar misexpression phenotypes (synphenotypes) and many of the genes within each synphenotype group appeared to be involved in similar pathways. We determined the expression pattern of the 82 genes and found that most of the genes were regionalized and expressed in mesoderm. We expect that many of the genes identified in this screen will be important in mesoderm formation.
Collapse
Affiliation(s)
- Jun-An Chen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | |
Collapse
|
12
|
Lebreton S, Boissel L, Iouzalen N, Moreau J. RLIP mediates downstream signalling from RalB to the actin cytoskeleton during Xenopus early development. Mech Dev 2004; 121:1481-94. [PMID: 15511640 DOI: 10.1016/j.mod.2004.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 07/13/2004] [Accepted: 07/26/2004] [Indexed: 10/26/2022]
Abstract
The Ras protein activates at least three different pathways during early development. Two of them regulate mesodermal gene expression and the third is thought to participate in the control of actin cytoskeleton dynamics via the Ral protein. From a yeast two-hybrid screen of a Xenopus maternal cDNA library, we identified the Xenopus orthologue of the Ral interacting protein (RLIP, RIP1 or RalBP1), a putative effector of small G protein Ral. Previously, we observed that a constitutively activated form of Ral GTPase (XralB G23V) induced bleaching of the animal hemisphere and disruption of the cortical actin cytoskeleton. To demonstrate that RLIP is the effector of RalB in early development, we show that the artificial targeting of RLIP to the membrane induces a similar phenotype to that of activated RalB. We show that overexpression of the Ral binding domain (RalBD) of XRLIP, which binds to the effector site of Ral, acts in competition with the endogenous effector of Ral and protects against the destructive effect of XralB G23V on the actin cytoskeleton. In contrast, the XRLIP has a synergistic effect on the activated form of XralB, which is dependent on the RalBD of RLIP. We provide evidence for the involvement of RLIP by way of its RalBD on the dynamics of the actin cytoskeleton and propose that signalling from Ral to RLIP is required for gastrulation.
Collapse
Affiliation(s)
- Stéphanie Lebreton
- Mécanismes Moléculaires du Développement, Institut Jacques Monod, CNRS, Universités Paris VI et Paris VII, 2 Place Jussieu, 75251 Paris 05, France
| | | | | | | |
Collapse
|