1
|
Lolicato F, Steringer JP, Saleppico R, Beyer D, Fernandez-Sobaberas J, Unger S, Klein S, Riegerová P, Wegehingel S, Müller HM, Schmitt XJ, Kaptan S, Freund C, Hof M, Šachl R, Chlanda P, Vattulainen I, Nickel W. Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space. eLife 2024; 12:RP88579. [PMID: 38252473 PMCID: PMC10945597 DOI: 10.7554/elife.88579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergGermany
- Department of Physics, University of HelsinkiHelsinkiFinland
| | | | | | - Daniel Beyer
- Heidelberg University Biochemistry CenterHeidelbergGermany
| | | | | | - Steffen Klein
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | | | | | - Xiao J Schmitt
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Shreyas Kaptan
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | | | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergGermany
| |
Collapse
|
2
|
Singh V, Macharová S, Riegerová P, Steringer JP, Müller HM, Lolicato F, Nickel W, Hof M, Šachl R. Determining the Functional Oligomeric State of Membrane-Associated Protein Oligomers Forming Membrane Pores on Giant Lipid Vesicles. Anal Chem 2023. [PMID: 37148264 DOI: 10.1021/acs.analchem.2c05692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Several peripheral membrane proteins are known to form membrane pores through multimerization. In many cases, in biochemical reconstitution experiments, a complex distribution of oligomeric states has been observed that may, in part, be irrelevant to their physiological functions. This phenomenon makes it difficult to identify the functional oligomeric states of membrane lipid interacting proteins, for example, during the formation of transient membrane pores. Using fibroblast growth factor 2 (FGF2) as an example, we present a methodology applicable to giant lipid vesicles by which functional oligomers can be distinguished from nonspecifically aggregated proteins without functionality. Two distinct populations of fibroblast growth factor 2 were identified with (i) dimers to hexamers and (ii) a broad population of higher oligomeric states of membrane-associated FGF2 oligomers significantly distorting the original unfiltered histogram of all detectable oligomeric species of FGF2. The presented statistical approach is relevant for various techniques for characterizing membrane-dependent protein oligomerization.
Collapse
Affiliation(s)
- Vandana Singh
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu, 2027/3, 121 16 Prague, Czech Republic
| | - Sabína Macharová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Hans-Michael Müller
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| |
Collapse
|
3
|
Yin X, Qiu L, Long D, Lv Z, Liu Q, Wang S, Zhang W, Zhang K, Xie M. The ancient CgPEPCK-1, not CgPECK-2, evolved into a multifunctional molecule as an intracellular enzyme and extracellular PRR. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104722. [PMID: 37116769 DOI: 10.1016/j.dci.2023.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a well-known lyase involved in gluconeogenesis, while their evolution and function differentiation have not been fully understood. In this study, by constructing a phylogenetic tree to examine PEPCKs throughout the evolution from poriferans to vertebrates, Mollusk was highlighted as the only phylum to exhibit two distinct lineages, Mollusca_PEPCK-1 and Mollusca_PEPCK-2. Further study of two representative members from Crassostrea gigas (CgPEPCK-1 and CgPEPCK-2) showed that they both shared conserved sequences and structural characteristics of the catalytic enzyme, while CgPEPCK-2 displayed a higher expression level than CgPEPCK-1 in all tested tissues, and CgPEPCK-1 was specifically implicated in the immune defense against LPS stimulation and Vibrio splendidus infection. Functional analysis revealed that CgPEPCK-2 had stronger enzymatic activity than CgPEPCK-1, while CgPEPCK-1 exhibited stronger binding activity with various PAMPs, and only the protein of CgPEPCK-1 increased significantly in hemolymph during immune stimulation. All results supported that distinct sequence and function differentiations of the PEPCK gene family should have occurred since Mollusk. The more advanced evolutionary branch Mollusca_PEPCK-2 should preserve its essential function as a catalytic enzyme to be more specialized and efficient, while the ancient branch Mollusca_PEPCK-1 probably contained some members, such as CgPEPCK-1, that should be integrated into the immune system as an extracellular immune recognition receptor.
Collapse
Affiliation(s)
- Xiaoting Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Dandan Long
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Zhao Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Qing Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Senyu Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiqian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengxi Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
4
|
Luo Y, Deng D, Lin L, Zhou Y, Wang L, Zou X, Wang X. FGF2 isoforms play distinct roles in tubular epithelial-to-mesenchymal transition in diabetic nephropathy. Exp Cell Res 2022; 420:113355. [PMID: 36115414 DOI: 10.1016/j.yexcr.2022.113355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of different isoforms of Fibroblast growth factor-2 (FGF2) in tubular epithelial-to-mesenchymal transition (EMT) in diabetic nephropathy remains unknown. We aimed to evaluate the role of FGF2 isoforms in the pathogenesis of EMT. MATERIALS AND METHODS Western blot and immunofluorescence were used to assess the expression of FGF2 isoforms in db/db mice and high glucose-stimulated HK2 cells. The effects of specific FGF2 isoforms on EMT were explored via overexpression or knockdown of the corresponding isoform in HK2 cells cultivated in high glucose. RESULTS Expression of low molecular weight (LMW) FGF2 was up-regulated while high molecular weight (HMW) FGF2 was down-regulated in the kidney of db/db mice and HK2 cells cultured in high glucose that underwent EMT. Overexpression of the LMW FGF2 enhanced EMT changes, while overexpression of the HMW FGF2 attenuated EMT. Knockdown of HMW FGF2 in HK2 cells promoted the EMT process. CONCLUSIONS The expression and function of LMW and HMW FGF2 differed in the process of EMT in tubular cells. LMW FGF2 contributed to EMT, while HMW FGF2 played a protective role in the EMT process.
Collapse
Affiliation(s)
- Yingying Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Danfang Deng
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Lamei Lin
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Yikun Zhou
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Lan Wang
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Xinrong Zou
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China.
| |
Collapse
|
5
|
Unconventional secretion mediated by direct protein self-translocation across the plasma membranes of mammalian cells. Trends Biochem Sci 2022; 47:699-709. [PMID: 35490075 DOI: 10.1016/j.tibs.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
In recent years, a surprisingly complex picture emerged about endoplasmic reticulum (ER)/Golgi-independent secretory pathways, and several routes have been discovered that differ with regard to their molecular mechanisms and machineries. Fibroblast growth factor 2 (FGF2) is secreted by a pathway of unconventional protein secretion (UPS) that is based on direct self-translocation across the plasma membrane. Building on previous research, a component of this process has been identified to be glypican-1 (GPC1), a GPI-anchored heparan sulfate proteoglycan located on cell surfaces. These findings not only shed light on the molecular mechanism underlying this process but also reveal an intimate relationship between FGF2 and GPC1 that might be of critical relevance for the prominent roles they both have in tumor progression and metastasis.
Collapse
|
6
|
Lolicato F, Nickel W. A Role for Liquid-Ordered Plasma Membrane Nanodomains Coordinating the Unconventional Secretory Pathway of Fibroblast Growth Factor 2? Front Cell Dev Biol 2022; 10:864257. [PMID: 35433697 PMCID: PMC9010882 DOI: 10.3389/fcell.2022.864257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a tumor cell survival factor that belongs to a subgroup of extracellular proteins lacking N-terminal signal peptides. Whereas this phenomenon was already recognized in the early 1990s, detailed insights into the molecular mechanisms underlying alternative pathways of protein secretion from eukaryotic cells were obtained only recently. Today, we know about a number of alternative secretory mechanisms, collectively termed unconventional protein secretion (UPS). FGF2 belongs to a subgroup of cargo proteins secreted by direct translocation across the plasma membrane. This feature has been classified as type I UPS and is shared with other unconventionally secreted proteins, such as HIV-Tat and Tau. FGF2 translocation across the membrane is initiated through sequential interactions with the Na,K-ATPase, Tec kinase, and phosphoinositide PI(4,5)P2 at the inner plasma membrane leaflet. Whereas the first two are auxiliary factors of this pathway, the interaction of FGF2 with PI(4,5)P2 triggers the core mechanism of FGF2 membrane translocation. It is based on a lipidic membrane pore that is formed by PI(4,5)P2-induced oligomerization of FGF2. Membrane-inserted FGF2 oligomers are recognized as translocation intermediates that are resolved at the outer plasma membrane leaflet by glypican-1, a heparan sulfate proteoglycan that captures and disassembles FGF2 oligomers on cell surfaces. Here, we discuss recent findings suggesting the molecular machinery mediating FGF2 membrane translocation to be highly organized in liquid-ordered plasma membrane nanodomains, the core process underlying this unusual pathway of protein secretion.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
7
|
Sparn C, Dimou E, Meyer A, Saleppico R, Wegehingel S, Gerstner M, Klaus S, Ewers H, Nickel W. Glypican-1 drives unconventional secretion of Fibroblast Growth Factor 2. eLife 2022; 11:75545. [PMID: 35348113 PMCID: PMC8986318 DOI: 10.7554/elife.75545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fibroblast Growth Factor 2 (FGF2) is a tumor cell survival factor that is transported into the extracellular space by an unconventional secretory mechanism. Cell surface heparan sulfate proteoglycans are known to play an essential role in this process. Unexpectedly, we found that among the diverse sub-classes consisting of syndecans, perlecans, glypicans and others, Glypican-1 (GPC1) is the principle and rate-limiting factor that drives unconventional secretion of FGF2. By contrast, we demonstrate GPC1 to be dispensable for FGF2 signaling into cells. We provide first insights into the structural basis for GPC1-dependent FGF2 secretion, identifying disaccharides with N-linked sulfate groups to be enriched in the heparan sulfate chains of GPC1 to which FGF2 binds with high affinity. Our findings have broad implications for the role of GPC1 as a key molecule in tumor progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Helge Ewers
- Institut für Chemie und Biochemie, Freie Universität Berlin
| | | |
Collapse
|
8
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
9
|
Pallotta MT, Nickel W. FGF2 and IL-1β – explorers of unconventional secretory pathways at a glance. J Cell Sci 2020; 133:133/21/jcs250449. [DOI: 10.1242/jcs.250449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT
Fibroblast growth factor 2 (FGF2) and interleukin 1β (IL-1β) were among the earliest examples of a subclass of proteins with extracellular functions that were found to lack N-terminal secretory signal peptides and were shown to be secreted in an ER- and Golgi-independent manner. Many years later, a number of alternative secretory pathways have been discovered, processes collectively termed unconventional protein secretion (UPS). In the course of these studies, unconventional secretion of FGF2 and IL-1β were found to be based upon distinct pathways, mechanisms and molecular machineries. Following a concise introduction into various pathways mediating unconventional secretion and transcellular spreading of proteins, this Cell Science at a Glance poster article aims at a focused analysis of recent key discoveries providing unprecedented detail about the molecular mechanisms and machineries driving FGF2 and IL-1β secretion. These findings are also highly relevant for other unconventionally secreted cargoes that, like FGF2 and IL1β, exert fundamental biological functions in biomedically relevant processes, such as tumor-induced angiogenesis and inflammation.
Collapse
Affiliation(s)
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg 69120, Germany
| |
Collapse
|
10
|
Merezhko M, Uronen RL, Huttunen HJ. The Cell Biology of Tau Secretion. Front Mol Neurosci 2020; 13:569818. [PMID: 33071756 PMCID: PMC7539664 DOI: 10.3389/fnmol.2020.569818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
The progressive accumulation and spread of misfolded tau protein in the nervous system is the hallmark of tauopathies, progressive neurodegenerative diseases with only symptomatic treatments available. A growing body of evidence suggests that spreading of tau pathology can occur via cell-to-cell transfer involving secretion and internalization of pathological forms of tau protein followed by templated misfolding of normal tau in recipient cells. Several studies have addressed the cell biological mechanisms of tau secretion. It now appears that instead of a single mechanism, cells can secrete tau via three coexisting pathways: (1) translocation through the plasma membrane; (2) membranous organelles-based secretion; and (3) ectosomal shedding. The relative importance of these pathways in the secretion of normal and pathological tau is still elusive, though. Moreover, glial cells contribute to tau propagation, and the involvement of different cell types, as well as different secretion pathways, complicates the understanding of prion-like propagation of tauopathy. One of the important regulators of tau secretion in neuronal activity, but its mechanistic connection to tau secretion remains unclear and may involve all three secretion pathways of tau. This review article summarizes recent advancements in the field of tau secretion with an emphasis on cell biological aspects of the secretion process and discusses the role of neuronal activity and glial cells in the spread of pathological forms of tau.
Collapse
Affiliation(s)
- Maria Merezhko
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Henri J Huttunen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Legrand C, Saleppico R, Sticht J, Lolicato F, Müller HM, Wegehingel S, Dimou E, Steringer JP, Ewers H, Vattulainen I, Freund C, Nickel W. The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P 2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun Biol 2020; 3:141. [PMID: 32214225 PMCID: PMC7096399 DOI: 10.1038/s42003-020-0871-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
FGF2 is a tumor cell survival factor that is exported from cells by an ER/Golgi-independent secretory pathway. This unconventional mechanism of protein secretion is based on direct translocation of FGF2 across the plasma membrane. The Na,K-ATPase has previously been shown to play a role in this process, however, the underlying mechanism has remained elusive. Here, we define structural elements that are critical for a direct physical interaction between FGF2 and the α1 subunit of the Na,K-ATPase. In intact cells, corresponding FGF2 mutant forms were impaired regarding both recruitment at the inner plasma membrane leaflet and secretion. Ouabain, a drug that inhibits both the Na,K-ATPase and FGF2 secretion, was found to impair the interaction of FGF2 with the Na,K-ATPase in cells. Our findings reveal the Na,K-ATPase as the initial recruitment factor for FGF2 at the inner plasma membrane leaflet being required for efficient membrane translocation of FGF2 to cell surfaces. Legrand et al. identify two lysine residues on molecular surface of Fibroblast Growth Factor 2 (FGF2) essential for its interaction with α1 subunit of the Na,K-ATPase. They further conclude that this interaction precedes interaction of the FGF2 with PI(4,5)P2 and facilitates its unconventional secretion across the membrane, which is impaired by Ouabain, an Na,K-ATPase inhibitor.
Collapse
Affiliation(s)
- Cyril Legrand
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Roberto Saleppico
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Jana Sticht
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.,Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.,Department of Physics, University of Helsinki, FL-00014, Helsinki, Finland.,Computational Physics Laboratory, Tampere University, Fl-33100, Tampere, Finland
| | - Hans-Michael Müller
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Sabine Wegehingel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Eleni Dimou
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FL-00014, Helsinki, Finland.,Computational Physics Laboratory, Tampere University, Fl-33100, Tampere, Finland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
13
|
Furini G, Burhan I, Huang L, Savoca MP, Atobatele A, Johnson T, Verderio EAM. Insights into the heparan sulphate-dependent externalisation of transglutaminase-2 (TG2) in glucose-stimulated proximal-like tubular epithelial cells. Anal Biochem 2020; 603:113628. [PMID: 32074489 DOI: 10.1016/j.ab.2020.113628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 02/09/2023]
Abstract
The extracellular matrix crosslinking enzyme transglutaminase 2 (TG2) is highly implicated in tissue fibrosis that precedes end-stage kidney failure. TG2 is unconventionally secreted through extracellular vesicles in a way that depends on the heparan sulphate (HS) proteoglycan syndecan-4 (Sdc4), the deletion of which reduces experimental kidney fibrosis as a result of lower extracellular TG2 in the tubule-interstitium. Here we establish a model of TG2 externalisation in NRK-52E tubular epithelial cells subjected to glucose stress. HS-binding TG2 mutants had reduced extracellular TG2 in transfected NRK-52E, suggesting that TG2-externalisation depends on an intact TG2 heparin binding site. Inhibition of N-ethylmaleimide sensitive factor (NSF) vesicle-fusing ATPase, which was identified in the recently elucidated TG2 kidney membrane-interactome, led to significantly lower TG2-externalisation, thus validating the involvement of membrane fusion in TG2 secretion. As cyclin-G-associated kinase (GAK) had emerged as a further TG2-partner in the fibrotic kidney, we investigated whether glucose-induced TG2-externalisation was accompanied by TG2 phosphorylation in consensus sequences of cyclin-dependent kinase (CDK). Glucose stress led to intense TG2 phosphorylation in serine/threonine CDK-target. TG2 phosphorylation by tyrosine kinases was also increased by glucose. Although the precise role of glucose-induced TG2 phosphorylation is unknown, these novel data suggest that phosphorylation may be involved in TG2 membrane-trafficking.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Izhar Burhan
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Linghong Huang
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Maria Pia Savoca
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Adeola Atobatele
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Tim Johnson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Elisabetta A M Verderio
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK; BiGeA, University of Bologna, Bologna, 40126, Italy.
| |
Collapse
|
14
|
Zhao GH, Qiu YQ, Yang CW, Chen IS, Chen CY, Lee SJ. The cardenolides ouabain and reevesioside A promote FGF2 secretion and subsequent FGFR1 phosphorylation via converged ERK1/2 activation. Biochem Pharmacol 2019; 172:113741. [PMID: 31812679 DOI: 10.1016/j.bcp.2019.113741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022]
Abstract
Na+/K+-ATPase α1 was reported to directly interact with and recruit FGF2 (fibroblast growth factor 2), a vital cell signaling protein implicated in angiogenesis, to the inner plasma membrane for subsequent secretion. Cardenolides, a class of cardiac glycosides, were reported to downregulate FGF2 secretion upon binding to Na+/K+-ATPase α1 in a cell system with ectopically expressed FGF2 and Na+/K+-ATPase α1. Herein, we disclose that the cardenolides ouabain and reevesioside A significantly enhance the secretion/release of FGF2 and the phosphorylation of FGFR1 (fibroblast growth factor receptor 1) in a time- and dose-dependent manner, in A549 carcinoma cells. A pharmacological approach was used to elucidate the pertinent upstream effectors. Only the ERK1/2 inhibitor U0126 but not the other inhibitors examined (including those inhibiting the unconventional secretion of FGF2) was able to reduce ouabain-induced FGF2 secretion and FGFR1 activation. ERK1/2 phosphorylation was increased upon ouabain treatment, a process found to be mediated through upstream effectors including ouabain-induced phosphorylated EGFR and a reduced MKP1 protein level. Therefore, at least two independent lines of upstream effectors are able to mediate ouabain-induced ERK1/2 phosphorylation and the subsequent FGF2 secretion and FGFR1 activation. These finding constitute unprecedent insights into the regulation of FGF2 secretion by cardenolides.
Collapse
Affiliation(s)
- Guan-Hao Zhao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Ya-Qi Qiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chin-Yu Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
15
|
Increased in vitro migration of human umbilical cord mesenchymal stem cells toward acellular foreskin treated with bacterial derivatives of monophosphoryl lipid A or supernatant of Lactobacillus acidophilus. Hum Cell 2019; 33:10-22. [PMID: 31811569 DOI: 10.1007/s13577-019-00308-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Migration and homing are known as critical steps toward regeneration of damaged tissues via cell therapies. Among various cellular sources of stem cells, the umbilical cord has been thus recognized as an interesting one endowed with high benefits. Accordingly, the main objective of the present study was to determine whether monophosphoryl lipid A (MPLA) or supernatant of Lactobacillus acidophilus (SLA) could increase migration of human umbilical cord mesenchymal stem cells (hUMSCs) toward acellular foreskin or not. In this study, the hUMSCs were isolated and cultured through acellular MPLA- or SLA-treated foreskin. Expression of some migration genes (i.e., VCAM-1, MMP-2, VLA-4, CXCR-4, and VEGF) was also investigated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Moreover; vimentin, cytokeratin 5 (CK5), and matrix metalloproteinases-2 (MMP-2) were detected via immunohistochemistry (IHC) analysis. The hUMSCs in the presence of MPLA- or SLA-treated foreskin showed more tissue tropism compared with those in the control group. Besides, the scanning electron microscopy (SEM) results established that the hUMSCs had more migratory activity in the presence of MPLA- or SLA-treated foreskin than the untreated one. The IHC analysis results correspondingly indicated that expression of vimentin, CK5, and MMP-2 proteins had augmented in both treatments compared with those in the control group. It was concluded that MPLA had revealed more prominent results than SLA, even though both treatments could be regarded as inducing factors in migration. Ultimately, it was suggested to introduce the use of MPLA and probiotic components as a promising approach to improve therapies in regenerative medicine.
Collapse
|
16
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Shrestha K, Meidan R. The cAMP-EPAC Pathway Mediates PGE2-Induced FGF2 in Bovine Granulosa Cells. Endocrinology 2018; 159:3482-3491. [PMID: 30085093 DOI: 10.1210/en.2018-00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
Abstract
During the periovulatory period, the profile of fibroblast growth factor 2 (FGF2) coincides with elevated prostaglandin E2 (PGE2) levels. We investigated whether PGE2 can directly stimulate FGF2 production in bovine granulosa cells and, if so, which prostaglandin E2 receptor (PTGER) type and signaling cascades are involved. PGE2 temporally stimulated FGF2. Accordingly, endoperoxide-synthase2-silenced cells, exhibiting low endogenous PGE2 levels, had reduced FGF2. Furthermore, elevation of viable granulosa cell numbers by PGE2 was abolished with FGF2 receptor 1 inhibitor, suggesting that FGF2 mediates this action of PGE2. Epiregulin (EREG), a known PGE2-inducible gene, was studied alongside FGF2. PTGER2 agonist elevated cAMP as well as FGF2 and EREG levels. However, a marked difference between cAMP-induced downstream signaling was observed for FGF2 and EREG. Whereas FGF2 upregulated by PGE2, PTGER2 agonist, or forskolin was unaffected by the protein kinase A (PKA) inhibitor H89, EREG was significantly inhibited. FGF2 was dose-dependently stimulated by the exchange protein directly activated by cAMP (EPAC) activator; a similar induction was observed for EREG. However, forskolin-stimulated FGF2, but not EREG, was inhibited in EPAC1-silenced cells. These findings ascribe a novel autocrine role for PGE2, namely, elevating FGF2 production in granulosa cells. This study also reveals that cAMP-activated EPAC1, rather than PKA, mediates the effect of PGE2/PTGER2 on the expression of FGF2. Stimulation of EREG by PGE2 is also mediated by PTGER2 but, in contrast to FGF2, EREG was found to be PKA sensitive. PGE2-stimulated FGF2 can act to maintain granulosa cell survival; it can also act on ovarian endothelial cells to promote angiogenesis.
Collapse
Affiliation(s)
- Ketan Shrestha
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
18
|
Kim J, Gee HY, Lee MG. Unconventional protein secretion – new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci 2018; 131:131/12/jcs213686. [DOI: 10.1242/jcs.213686] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Most secretory proteins travel through a well-documented conventional secretion pathway involving the endoplasmic reticulum (ER) and the Golgi complex. However, recently, it has been shown that a significant number of proteins reach the plasma membrane or extracellular space via unconventional routes. Unconventional protein secretion (UPS) can be divided into two types: (i) the extracellular secretion of cytosolic proteins that do not bear a signal peptide (i.e. leaderless proteins) and (ii) the cell-surface trafficking of signal-peptide-containing transmembrane proteins via a route that bypasses the Golgi. Understanding the UPS pathways is not only important for elucidating the mechanisms of intracellular trafficking pathways but also has important ramifications for human health, because many of the proteins that are unconventionally secreted by mammalian cells and microorganisms are associated with human diseases, ranging from common inflammatory diseases to the lethal genetic disease of cystic fibrosis. Therefore, it is timely and appropriate to summarize and analyze the mechanisms of UPS involvement in disease pathogenesis, as they may be of use for the development of new therapeutic approaches. In this Review, we discuss the intracellular trafficking pathways of UPS cargos, particularly those related to human diseases. We also outline the disease mechanisms and the therapeutic potentials of new strategies for treating UPS-associated diseases.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
19
|
Steringer JP, Nickel W. A direct gateway into the extracellular space: Unconventional secretion of FGF2 through self-sustained plasma membrane pores. Semin Cell Dev Biol 2018; 83:3-7. [PMID: 29458182 DOI: 10.1016/j.semcdb.2018.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 10/17/2022]
Abstract
As illustrated by a diverse set of examples in this special issue, multiple mechanisms of protein secretion have been identified in eukaryotes that do not involve the endoplasmic reticulum (ER) and the Golgi apparatus. Here we focus on the type I pathway with Fibroblast Growth Factor 2 (FGF2) being the most prominent example. Unconventional secretion of FGF2 from cells is mediated by direct protein translocation across the plasma membrane. A unique feature of this process is the ability of FGF2 to form its own membrane translocation intermediate through oligomerization and membrane insertion. This process depends on the phosphoinositide PI(4,5)P2 at the inner leaflet and results in the formation of lipidic membrane pores in the plasma membrane. Various lines of evidence suggest that these pores are characterized by a toroidal architecture with FGF2 oligomers being accommodated in the center of these structures. At the outer leaflet of the plasma membrane, membrane proximal heparan sulfate proteoglycans are required for the final step of FGF2 translocation into the extracellular space. Based upon mutually exclusive interactions of FGF2 with PI(4,5)P2 versus heparan sulfates, an assembly/disassembly pathway has been proposed to be the underlying principle of directional transport of FGF2 across the plasma membrane. Thus, the core mechanism of unconventional secretion of FGF2 is based upon three discrete steps with (i) PI(4,5)P2 dependent oligomerization of FGF2 at the inner leaflet, (ii) insertion of membrane spanning FGF2 oligomers into the plasma membrane and (iii) disassembly at the outer leaflet mediated by heparan sulfates that subsequently retain FGF2 on cell surfaces. This process has recently been reconstituted with an inside-out membrane model system using giant unilamellar vesicles providing a compelling explanation of how FGF2 reaches the extracellular space in an ER/Golgi independent manner. This review is part of a Special Issue of SCDB on "unconventional protein secretion" edited by Walter Nickel and Catherine Rabouille.
Collapse
Affiliation(s)
- Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Steringer JP, Nickel W. The molecular mechanism underlying unconventional secretion of Fibroblast Growth Factor 2 from tumour cells. Biol Cell 2017; 109:375-380. [PMID: 28799166 DOI: 10.1111/boc.201700036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
Fibroblast Growth Factor 2 (FGF2) is a potent cell survival factor involved in tumour-induced angiogenesis. FGF2 is secreted from cells through an unconventional secretory mechanism based upon direct translocation across the plasma membrane. The molecular mechanism underlying this process depends on a surprisingly small set of trans-acting factors that are physically associated with the plasma membrane. FGF2 membrane translocation is mediated by the ability of FGF2 to oligomerise and to insert into the plasma membrane in a PI(4,5)P2 -dependent manner. Membrane-inserted FGF2 oligomers are dynamic translocation intermediates that are disassembled at the extracellular leaflet mediated by membrane proximal heparan sulphate proteoglycans. This process results in the exposure of FGF2 on cell surfaces as part of its unconventional mechanism of secretion. Although the trans-acting factors and cis-elements in FGF2 required for unconventional secretion have been known for a while, the core mechanism of this mysterious process has now been reconstituted with purified components establishing the molecular basis of FGF2 secretion from tumour cells.
Collapse
Affiliation(s)
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
21
|
Brough D, Pelegrin P, Nickel W. An emerging case for membrane pore formation as a common mechanism for the unconventional secretion of FGF2 and IL-1β. J Cell Sci 2017; 130:3197-3202. [PMID: 28871048 DOI: 10.1242/jcs.204206] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular proteins with important signalling roles in processes, such as inflammation and angiogenesis, are known to employ unconventional routes of protein secretion. Although mechanisms of unconventional protein secretion are beginning to emerge, the precise molecular details have remained elusive for the majority of cargo proteins secreted by unconventional means. Recent findings suggest that for two examples of unconventionally secreted proteins, interleukin 1β (IL-1β) and fibroblast growth factor 2 (FGF2), the common molecular principle of pore formation may be shared. Under specific experimental conditions, secretion of IL-1β and FGF2 is triggered by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]-dependent formation of pores across the plasma membrane. However, the underlying mechanisms are different, with FGF2 known to directly interact with PI(4,5)P2, whereas in the case of IL-1β secretion, it is proposed that the N-terminal fragment of gasdermin D interacts with PI(4,5)P2 to form the pore. Thus, although implemented in different ways, these findings suggest that pore formation may be shared by the unconventional secretion mechanisms for FGF2 and IL-1β in at least some cases. In this Opinion article, we discuss the unconventional mechanisms of FGF2 and IL-1β release with a particular emphasis on recent discoveries suggesting the importance of pore formation on the plasma membrane.
Collapse
Affiliation(s)
- David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Pablo Pelegrin
- Grupo de Inflamación Molecular, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Steringer JP, Lange S, Čujová S, Šachl R, Poojari C, Lolicato F, Beutel O, Müller HM, Unger S, Coskun Ü, Honigmann A, Vattulainen I, Hof M, Freund C, Nickel W. Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components. eLife 2017; 6. [PMID: 28722655 PMCID: PMC5601999 DOI: 10.7554/elife.28985] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
FGF2 is secreted from cells by an unconventional secretory pathway. This process is mediated by direct translocation across the plasma membrane. Here, we define the minimal molecular machinery required for FGF2 membrane translocation in a fully reconstituted inside-out vesicle system. FGF2 membrane translocation is thermodynamically driven by PI(4,5)P2-induced membrane insertion of FGF2 oligomers. The latter serve as dynamic translocation intermediates of FGF2 with a subunit number in the range of 8-12 FGF2 molecules. Vectorial translocation of FGF2 across the membrane is governed by sequential and mutually exclusive interactions with PI(4,5)P2 and heparan sulfates on opposing sides of the membrane. Based on atomistic molecular dynamics simulations, we propose a mechanism that drives PI(4,5)P2 dependent oligomerization of FGF2. Our combined findings establish a novel type of self-sustained protein translocation across membranes revealing the molecular basis of the unconventional secretory pathway of FGF2. DOI:http://dx.doi.org/10.7554/eLife.28985.001
Collapse
Affiliation(s)
| | - Sascha Lange
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Sabína Čujová
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Chetan Poojari
- Department of Physics, University of Helsinki, Helsinki, Finland.,Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Fabio Lolicato
- Department of Physics, University of Helsinki, Helsinki, Finland.,Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Oliver Beutel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Sebastian Unger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Deutsches Zentrum fur Diabetesforschung, Neuherberg, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland.,Department of Physics, Tampere University of Technology, Tampere, Finland.,MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Denmark, United Kingdom
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Christian Freund
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
23
|
Rabouille C. Pathways of Unconventional Protein Secretion. Trends Cell Biol 2016; 27:230-240. [PMID: 27989656 DOI: 10.1016/j.tcb.2016.11.007] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/02/2023]
Abstract
Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein secretion (UPS) is complex and comprises cargos without a signal peptide or a transmembrane domain that can translocate across the plasma membrane, and cargos that reach the plasma membrane by bypassing the Golgi despite entering the endoplasmic reticulum (ER). With a few exceptions, unconventional secretion is largely triggered by stress. Here I review new results and concepts that are beginning to define these pathways.
Collapse
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute of the KNAW and UMC Utrecht, Utrecht, The Netherlands; Department of Cell Biology, UMC Utrecht, Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, Groningen, The Netherlands.
| |
Collapse
|
24
|
La Venuta G, Wegehingel S, Sehr P, Müller HM, Dimou E, Steringer JP, Grotwinkel M, Hentze N, Mayer MP, Will DW, Uhrig U, Lewis JD, Nickel W. Small Molecule Inhibitors Targeting Tec Kinase Block Unconventional Secretion of Fibroblast Growth Factor 2. J Biol Chem 2016; 291:17787-803. [PMID: 27382052 DOI: 10.1074/jbc.m116.729384] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a potent mitogen promoting both tumor cell survival and tumor-induced angiogenesis. It is secreted by an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. Key steps of this process are (i) phosphoinositide-dependent membrane recruitment, (ii) FGF2 oligomerization and membrane pore formation, and (iii) extracellular trapping mediated by membrane-proximal heparan sulfate proteoglycans. Efficient secretion of FGF2 is supported by Tec kinase that stimulates membrane pore formation based upon tyrosine phosphorylation of FGF2. Here, we report the biochemical characterization of the direct interaction between FGF2 and Tec kinase as well as the identification of small molecules that inhibit (i) the interaction of FGF2 with Tec, (ii) tyrosine phosphorylation of FGF2 mediated by Tec in vitro and in a cellular context, and (iii) unconventional secretion of FGF2 from cells. We further demonstrate the specificity of these inhibitors for FGF2 because tyrosine phosphorylation of a different substrate of Tec is unaffected in their presence. Building on previous evidence using RNA interference, the identified compounds corroborate the role of Tec kinase in unconventional secretion of FGF2. In addition, they are valuable lead compounds with great potential for drug development aiming at the inhibition of FGF2-dependent tumor growth and metastasis.
Collapse
Affiliation(s)
- Giuseppe La Venuta
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Sabine Wegehingel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Peter Sehr
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Hans-Michael Müller
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Eleni Dimou
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Julia P Steringer
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mareike Grotwinkel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Nikolai Hentze
- the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias P Mayer
- the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - David W Will
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Ulrike Uhrig
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Joe D Lewis
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany,
| |
Collapse
|
25
|
Mechanisms of FGF gradient formation during embryogenesis. Semin Cell Dev Biol 2015; 53:94-100. [PMID: 26454099 DOI: 10.1016/j.semcdb.2015.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.
Collapse
|
26
|
La Venuta G, Zeitler M, Steringer JP, Müller HM, Nickel W. The Startling Properties of Fibroblast Growth Factor 2: How to Exit Mammalian Cells without a Signal Peptide at Hand. J Biol Chem 2015; 290:27015-27020. [PMID: 26416892 DOI: 10.1074/jbc.r115.689257] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For a long time, protein transport into the extracellular space was believed to strictly depend on signal peptide-mediated translocation into the lumen of the endoplasmic reticulum. More recently, this view has been challenged, and the molecular mechanisms of unconventional secretory processes are beginning to emerge. Here, we focus on unconventional secretion of fibroblast growth factor 2 (FGF2), a secretory mechanism that is based upon direct protein translocation across plasma membranes. Through a combination of genome-wide RNAi screening approaches and biochemical reconstitution experiments, the basic machinery of FGF2 secretion was identified and validated. This includes the integral membrane protein ATP1A1, the phosphoinositide phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and Tec kinase, as well as membrane-proximal heparan sulfate proteoglycans on cell surfaces. Hallmarks of unconventional secretion of FGF2 are: (i) sequential molecular interactions with the inner leaflet along with Tec kinase-dependent tyrosine phosphorylation of FGF2, (ii) PI(4,5)P2-dependent oligomerization and membrane pore formation, and (iii) extracellular trapping of FGF2 mediated by heparan sulfate proteoglycans on cell surfaces. Here, we discuss new developments regarding this process including the mechanism of FGF2 oligomerization during membrane pore formation, the functional role of ATP1A1 in FGF2 secretion, and the possibility that other proteins secreted by unconventional means make use of a similar mechanism to reach the extracellular space. Furthermore, given the prominent role of extracellular FGF2 in tumor-induced angiogenesis, we will discuss possibilities to develop highly specific inhibitors of FGF2 secretion, a novel approach that may yield lead compounds with a high potential to develop into anti-cancer drugs.
Collapse
Affiliation(s)
| | - Marcel Zeitler
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | - Walter Nickel
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Zeitler M, Steringer JP, Müller HM, Mayer MP, Nickel W. HIV-Tat Protein Forms Phosphoinositide-dependent Membrane Pores Implicated in Unconventional Protein Secretion. J Biol Chem 2015; 290:21976-84. [PMID: 26183781 DOI: 10.1074/jbc.m115.667097] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 12/20/2022] Open
Abstract
HIV-Tat has been demonstrated to be secreted from cells in a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent manner. Here we show that HIV-Tat forms membrane-inserted oligomers, a process that is accompanied by changes in secondary structure with a strong increase in antiparallel β sheet content. Intriguingly, oligomerization of HIV-Tat on membrane surfaces leads to the formation of membrane pores, as demonstrated by physical membrane passage of small fluorescent tracer molecules. Although membrane binding of HIV-Tat did not strictly depend on PI(4,5)P2 but, rather, was mediated by a range of acidic membrane lipids, a functional interaction between PI(4,5)P2 and HIV-Tat was critically required for efficient membrane pore formation by HIV-Tat oligomers. These properties are strikingly similar to what has been reported previously for fibroblast growth factor 2 (FGF2), providing strong evidence of a common core mechanism of unconventional secretion shared by HIV-Tat and fibroblast growth factor 2.
Collapse
Affiliation(s)
- Marcel Zeitler
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| | - Julia P Steringer
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| | - Hans-Michael Müller
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| | - Matthias P Mayer
- the Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie der Universität Heidelberg Allianz, 69120 Heidelberg, Germany
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany and
| |
Collapse
|
28
|
Müller HM, Steringer JP, Wegehingel S, Bleicken S, Münster M, Dimou E, Unger S, Weidmann G, Andreas H, García-Sáez AJ, Wild K, Sinning I, Nickel W. Formation of disulfide bridges drives oligomerization, membrane pore formation, and translocation of fibroblast growth factor 2 to cell surfaces. J Biol Chem 2015; 290:8925-37. [PMID: 25694424 DOI: 10.1074/jbc.m114.622456] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a key signaling molecule in tumor-induced angiogenesis. FGF2 is secreted by an unconventional secretory mechanism that involves phosphatidylinositol 4,5-bisphosphate-dependent insertion of FGF2 oligomers into the plasma membrane. This process is regulated by Tec kinase-mediated tyrosine phosphorylation of FGF2. Molecular interactions driving FGF2 monomers into membrane-inserted FGF2 oligomers are unknown. Here we identify two surface cysteines that are critical for efficient unconventional secretion of FGF2. They represent unique features of FGF2 as they are absent from all signal-peptide-containing members of the FGF protein family. We show that phosphatidylinositol 4,5-bisphosphate-dependent FGF2 oligomerization concomitant with the generation of membrane pores depends on FGF2 surface cysteines as either chemical alkylation or substitution with alanines impairs these processes. We further demonstrate that the FGF2 variant forms lacking the two surface cysteines are not secreted from cells. These findings were corroborated by experiments redirecting a signal-peptide-containing FGF family member from the endoplasmic reticulum/Golgi-dependent secretory pathway into the unconventional secretory pathway of FGF2. Cis elements known to be required for unconventional secretion of FGF2, including the two surface cysteines, were transplanted into a variant form of FGF4 without signal peptide. The resulting FGF4/2 hybrid protein was secreted by unconventional means. We propose that the formation of disulfide bridges drives membrane insertion of FGF2 oligomers as intermediates in unconventional secretion of FGF2.
Collapse
Affiliation(s)
- Hans-Michael Müller
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Julia P Steringer
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sabine Wegehingel
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Stephanie Bleicken
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Maximilian Münster
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Eleni Dimou
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sebastian Unger
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Georg Weidmann
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Helena Andreas
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Klemens Wild
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany,
| |
Collapse
|
29
|
Zacherl S, La Venuta G, Müller HM, Wegehingel S, Dimou E, Sehr P, Lewis JD, Erfle H, Pepperkok R, Nickel W. A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. J Biol Chem 2014; 290:3654-65. [PMID: 25533462 DOI: 10.1074/jbc.m114.590067] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies proposed a role for the Na/K-ATPase in unconventional secretion of fibroblast growth factor 2 (FGF2). This conclusion was based upon pharmacological inhibition of FGF2 secretion in the presence of ouabain. However, neither independent experimental evidence nor a potential mechanism was provided. Based upon an unbiased RNAi screen, we now report the identification of ATP1A1, the α1-chain of the Na/K-ATPase, as a factor required for efficient secretion of FGF2. As opposed to ATP1A1, down-regulation of the β1- and β3-chains (ATP1B1 and ATP1B3) of the Na/K-ATPase did not affect FGF2 secretion, suggesting that they are dispensable for this process. These findings indicate that it is not the membrane potential-generating function of the Na/K-ATPase complex but rather a so far unidentified role of potentially unassembled α1-chains that is critical for unconventional secretion of FGF2. Consistently, in the absence of β-chains, we found a direct interaction between the cytoplasmic domain of ATP1A1 and FGF2 with submicromolar affinity. Based upon these observations, we propose that ATP1A1 is a recruitment factor for FGF2 at the inner leaflet of plasma membranes that may control phosphatidylinositol 4,5-bisphosphate-dependent membrane translocation as part of the unconventional secretory pathway of FGF2.
Collapse
Affiliation(s)
- Sonja Zacherl
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Giuseppe La Venuta
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Hans-Michael Müller
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Sabine Wegehingel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Eleni Dimou
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Peter Sehr
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Joe D Lewis
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Holger Erfle
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Rainer Pepperkok
- the European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, and
| | - Walter Nickel
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany,
| |
Collapse
|
30
|
Steringer JP, Müller HM, Nickel W. Unconventional secretion of fibroblast growth factor 2--a novel type of protein translocation across membranes? J Mol Biol 2014; 427:1202-10. [PMID: 25051502 DOI: 10.1016/j.jmb.2014.07.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022]
Abstract
N-terminal signal peptides are a hallmark of the vast majority of soluble secretory proteins that are transported along the endoplasmic reticulum/Golgi-dependent pathway. They are recognized by signal recognition particle, a process that initiates membrane translocation into the lumen of the endoplasmic reticulum followed by vesicular transport to the cell surface and release into the extracellular space. Beyond this well-established mechanism of protein secretion from eukaryotic cells, a number of extracellular proteins with critical physiological functions in immune surveillance and tissue organization are known to be secreted in a manner independent of signal recognition particle. Such processes have collectively been termed "unconventional protein secretion" and, while known for more than two decades, their underlying mechanisms are only beginning to emerge. Different types of unconventional secretory mechanisms have been described with the best-characterized example being based on direct translocation of cytoplasmic proteins across plasma membranes. The aim of this review is to critically assess our current knowledge of this type of unconventional secretion focusing on fibroblast growth factor 2 (FGF2) as the most established example.
Collapse
Affiliation(s)
- Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Hans-Michael Müller
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Luft C, Freeman J, Elliott D, Al-Tamimi N, Kriston-Vizi J, Heintze J, Lindenschmidt I, Seed B, Ketteler R. Application of Gaussia luciferase in bicistronic and non-conventional secretion reporter constructs. BMC BIOCHEMISTRY 2014; 15:14. [PMID: 25007711 PMCID: PMC4099409 DOI: 10.1186/1471-2091-15-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/05/2014] [Indexed: 11/28/2022]
Abstract
Background Secreted luciferases are highly useful bioluminescent reporters for cell-based assays and drug discovery. A variety of secreted luciferases from marine organisms have been described that harbor an N-terminal signal peptide for release along the classical secretory pathway. Here, we have characterized the secretion of Gaussia luciferase in more detail. Results We describe three basic mechanisms by which GLUC can be released from cells: first, classical secretion by virtue of the N-terminal signal peptide; second, internal signal peptide-mediated secretion and third, non-conventional secretion in the absence of an N-terminal signal peptide. Non-conventional release of dNGLUC is not stress-induced, does not require autophagy and can be enhanced by growth factor stimulation. Furthermore, we have identified the golgi-associated, gamma adaptin ear containing, ARF binding protein 1 (GGA1) as a suppressor of release of dNGLUC. Conclusions Due to its secretion via multiple secretion pathways GLUC can find multiple applications as a research tool to study classical and non-conventional secretion. As GLUC can also be released from a reporter construct by internal signal peptide-mediated secretion it can be incorporated in a novel bicistronic secretion system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robin Ketteler
- Medical Research Council, Laboratory for Moleclar and Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
32
|
Hosp J, Sagane Y, Danks G, Thompson EM. The evolving proteome of a complex extracellular matrix, the Oikopleura house. PLoS One 2012; 7:e40172. [PMID: 22792236 PMCID: PMC3390340 DOI: 10.1371/journal.pone.0040172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/01/2012] [Indexed: 11/20/2022] Open
Abstract
Extracellular matrices regulate biological processes at the level of cells, tissues, and in some cases, entire multicellular organisms. The subphylum Urochordata exemplifies the latter case, where animals are partially or completely enclosed in “houses” or “tunics”. Despite this common strategy, we show that the house proteome of the appendicularian, Oikopleura, has very little in common with the proteome of the sister class, ascidian, Ciona. Of 80 identified house proteins (oikosins), ∼half lack domain modules or similarity to known proteins, suggesting de novo appearance in appendicularians. Gene duplication has been important in generating almost 1/3 of the current oikosin complement, with serial duplications up to 8 paralogs in one family. Expression pattern analyses revealed that individual oikosins are produced from specific fields of cells within the secretory epithelium, but in some cases, migrate up to at least 20 cell diameters in extracellular space to combine in defined house structures. Interestingly, peroxidasin and secretory phospholipase A2 domains, implicated in innate immune defence are secreted from the anlage associated with the food-concentrating filter, suggesting that this extra-organismal structure may play, in part, such a role in Oikopleura. We also show that sulfation of proteoglycans is required for the hydration and inflation of pre-house rudiments into functional houses. Though correct proportioning in the production of oikosins would seem important in repetitive assembly of the complex house structure, the genomic organization of oikosin loci appears incompatible with common enhancers or locus control regions exerting such a coordinate regulatory role. Thus, though all tunicates employ extracellular matrices based on a cellulose scaffold as a defining feature of the subphylum, they have evolved radically different protein compositions associated with this common underlying structural theme.
Collapse
Affiliation(s)
- Julia Hosp
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Yoshimasa Sagane
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gemma Danks
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
33
|
Steringer JP, Bleicken S, Andreas H, Zacherl S, Laussmann M, Temmerman K, Contreras FX, Bharat TAM, Lechner J, Müller HM, Briggs JAG, García-Sáez AJ, Nickel W. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J Biol Chem 2012; 287:27659-69. [PMID: 22730382 DOI: 10.1074/jbc.m112.381939] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate.
Collapse
Affiliation(s)
- Julia P Steringer
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Heparin and glycosaminoglycans (GAGs) related structurally to heparin, notably heparan sulphate, bind to most, if not all, chemokines and many growth factors. The chemokine and growth factor interactions with GAGs localise the peptide mediators to specific sites in tissues and influence their stability and function. This chapter discusses the nature of these interactions and the effect on the function of a number of chemokines (PF-4, interleukin-8, RANTES and SDF-1) and growth factors (FGF, HGF, VEGF) in normal physiology and the disease setting. Novel therapeutic interventions that target chemokine and growth factor interactions with GAGs are also discussed.
Collapse
|
35
|
Reynard O, Reid SP, Page A, Mateo M, Alazard-Dany N, Raoul H, Basler CF, Volchkov VE. Unconventional secretion of Ebola virus matrix protein VP40. J Infect Dis 2011; 204 Suppl 3:S833-9. [PMID: 21987759 DOI: 10.1093/infdis/jir305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Ebola virus matrix protein VP40 plays an essential role in virus assembly and budding. In this study we reveal that transient VP40 expression results in the release into the culture medium of substantial amounts of soluble monomeric VP40 in addition to the release of virus-like particles containing an oligomeric form of this protein as previously described. We show that VP40 secretion is endoplasmic reticulum/Golgi-independent and is not associated with cell death. Soluble VP40 was observed during Ebola virus infection of cells and was also found in the serum of virus-infected animals albeit in lower amounts. Unconventional secretion of VP40 may therefore play a role in Ebola virus pathogenicity.
Collapse
Affiliation(s)
- Olivier Reynard
- Filovirus Laboratory, Inserm U758, Human Virology Department, Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gupta S, Wardhan V, Verma S, Gayali S, Rajamani U, Datta A, Chakraborty S, Chakraborty N. Characterization of the Secretome of Chickpea Suspension Culture Reveals Pathway Abundance and the Expected and Unexpected Secreted Proteins. J Proteome Res 2011; 10:5006-15. [PMID: 21923182 DOI: 10.1021/pr200493d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sonika Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Vijay Wardhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Shikha Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Uma Rajamani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
37
|
Lee JG, Ko MK, Kay EP. Endothelial mesenchymal transformation mediated by IL-1β-induced FGF-2 in corneal endothelial cells. Exp Eye Res 2011; 95:35-9. [PMID: 21855543 DOI: 10.1016/j.exer.2011.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/05/2011] [Accepted: 08/03/2011] [Indexed: 11/29/2022]
Abstract
This review describes the molecular mechanism of endothelial mesenchymal transformation (EMT) mediated by fibroblast growth factor-2 (FGF-2) in corneal endothelial cells (CECs). Corneal fibrosis is not frequently observed in corneal endothelium/Descemet's membrane complex; but when this pathologic tissue is produced, it causes a loss of vision by physically blocking light transmittance. Herein, we will address the cellular activities of FGF-2 and its signaling pathways during the EMT process. Furthermore, we will discuss the role of inflammation on FGF-2-mediated EMT. Interleukin-1β (IL-1β) greatly upregulates FGF-2 production in CECs, thus leading to FGF-2-mediated EMT; the whole spectrum of the injury-mediated inflammation (IL-1β pathway) and the subsequent EMT process (FGF-2 pathway) will be briefly discussed. Intervention in the two pathways will provide the means to block EMT before inflammation causes an irreversible change, such as the production of retrocorneal fibrous membrane observed in human eyes.
Collapse
Affiliation(s)
- Jeong Goo Lee
- Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
38
|
Aktas RG, Kayton RJ. Ultrastructural immunolocalization of basic fibroblast growth factor in endothelial cells: morphologic evidence for unconventional secretion of a novel protein. J Mol Histol 2011; 42:417-25. [PMID: 21830143 DOI: 10.1007/s10735-011-9345-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/23/2011] [Indexed: 11/25/2022]
Abstract
Basic fibroblast growth factor (bFGF) is one of the most potent angiogenic factors. Unlike many other growth factors, bFGF lacks a classic peptide sequence for its secretion. Recent studies suggest that there is an unconventional secretory pathway for this growth factor. The aim of this study was to identify the specific location of bFGF in endothelial cells and to find morphologic evidences concerning its synthesis, storage and release from endothelial cells. The capillaries in hippocampus, adrenal gland, kidney, peripheral nerves as well as the vessels in connective tissues were analysed by using immunogold labeling techniques at electron microscope level. Results show that endogenous bFGF is mainly located in the nuclei of endothelial cells. Slight immunoreactivity is found in the cytoplasm. Immunolabeling is notably absent in pinocytotic vesicles, Golgi complexes, endoplasmic reticulum, nuclear membrane and intercellular junctions. These results provide morphologic evidence suggesting that endothelial cells might export bFGF via unique cellular pathways that are clearly distinct from classical signal peptide mediated secretion and/or release of this protein could be directly through mechanically induced disruptions of these cells. The current study support the recent hypothesis related with unconventional secretory pathway for bFGF as some other "cargo" proteins.
Collapse
Affiliation(s)
- Ranan Gulhan Aktas
- Histology and Embryology, School of Medicine, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.
| | | |
Collapse
|
39
|
Abstract
Unconventional secretory proteins represent a subpopulation of extracellular factors that are exported from eukaryotic cells by mechanisms that do not depend on the endoplasmic reticulum and the Golgi complex. Various pathways have been implicated in unconventional secretion including those involving intracellular membrane-bound intermediates and others that are based on direct protein translocation across plasma membranes. Interleukin 1β (IL1β) and fibroblast growth factor 2 (FGF2) are classical examples of unconventional secretory proteins with IL1β believed to be present in intracellular vesicles prior to secretion. By contrast, FGF2 represents an example of a non-vesicular mechanism of unconventional secretion. Here, the author discusses the current knowledge about the molecular machinery being involved in FGF2 secretion. To reveal both differential and common requirements, this review further aims at a comprehensive comparison of this mechanism with other unconventional secretory processes. In particular, a potentially general role of tyrosine phosphorylation as a regulatory signal in unconventional protein secretion will be discussed.
Collapse
Affiliation(s)
- Walter Nickel
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
40
|
Suzuki Y, Kobayashi M, Miyashita H, Ohta H, Sonoda H, Sato Y. Isolation of a small vasohibin-binding protein (SVBP) and its role in vasohibin secretion. J Cell Sci 2010; 123:3094-101. [PMID: 20736312 DOI: 10.1242/jcs.067538] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upon stimulation with angiogenic factors, vascular endothelial cells (ECs) secrete a negative-feedback regulator of angiogenesis, vasohibin-1 (VASH1). Because VASH1 lacks a classical signal sequence, it is not clear how ECs secrete VASH1. We isolated a small vasohibin-binding protein (SVBP) composed of 66 amino acids. The level of Svbp mRNA was relatively high in the bone marrow, spleen and testes of mice. In cultured ECs, Vash1 mRNA was induced by VEGF, and Svbp mRNA was expressed constitutively. The interaction between VASH1 and SVBP was confirmed using the BIAcore system and immunoprecipitation analysis. Immunocytochemical analysis revealed that SVBP colocalized with VASH1 in ECs. In polarized epithelial cells, SVBP accumulated on the apical side, whereas VASH1 was present throughout the cells and partially colocalized with SVBP. Transfection of SVBP enhanced VASH1 secretion, whereas knockdown of endogenous SVBP markedly reduced VASH1 secretion. SVBP increased the solubility of VASH1 protein in detergent solution and inhibited the ubiquitylation of VASH1 protein. Moreover, co-transfection of SVBP significantly augmented the inhibitory effect of VASH1 on EC migration. These results indicate that SVBP acts as a secretory chaperone for VASH1 and contributes to the anti-angiogenic activity of VASH1.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Ghaffari A, Li Y, Kilani RT, Ghahary A. 14-3-3 sigma associates with cell surface aminopeptidase N in the regulation of matrix metalloproteinase-1. J Cell Sci 2010; 123:2996-3005. [PMID: 20699358 DOI: 10.1242/jcs.069484] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are implicated in the degradation of the extracellular matrix during development and tissue repair, as well as in pathological conditions such as tumor invasion and fibrosis. MMP expression by stromal cells is partly regulated by signals from the neighboring epithelial cells. Keratinocyte-releasable 14-3-3sigma, or stratifin, acts as a potent MMP-1-stimulatory factor in fibroblasts. However, its mechanism of transmembrane signaling remains unknown. Ectodomain biotin labeling, serial affinity purification and mass spectroscopy analysis revealed that the stratifin associates with aminopeptidase N (APN), or CD13, at the cell surface. The transient knockdown of APN in fibroblasts eliminated the stratifin-mediated p38 MAP kinase activation and MMP-1 expression, implicating APN in a receptor-mediated transmembrane signaling event. Stratifin deletion studies implicated its C-terminus as a potential APN-binding site. Furthermore, the dephosphorylation of APN ectodomains reduced its binding affinity to the stratifin. The presence of a phosphorylated serine or threonine residue in APN has been implicated. Together, these findings provide evidence that APN is a novel cell surface receptor for stratifin and a potential target in the regulation of MMP-1 expression in epithelial-stromal cell communication.
Collapse
Affiliation(s)
- Abdi Ghaffari
- Department of Surgery, BC Professional Firefighter's Burn and Wound Healing Research Laboratory, University of British Columbia, 344A JBRC, 2660 Oak Street, Vancouver, Canada, BC V6H 3Z6
| | | | | | | |
Collapse
|
42
|
Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R. Plant secretome: unlocking secrets of the secreted proteins. Proteomics 2010; 10:799-827. [PMID: 19953550 DOI: 10.1002/pmic.200900514] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plant secretomics is a newly emerging area of the plant proteomics field. It basically describes the global study of secreted proteins into the extracellular space of plant cell or tissue at any given time and under certain conditions through various secretory mechanisms. A combination of biochemical, proteomics and bioinformatics approaches has been developed to isolate, identify and profile secreted proteins using complementary in vitro suspension-cultured cells and in planta systems. Developed inventories of secreted proteins under normal, biotic and abiotic conditions revealed several different types of novel secreted proteins, including the leaderless secretory proteins (LSPs). On average, LSPs can account for more than 50% of the total identified secretome, supporting, as in other eukaryotes, the existence of novel secretory mechanisms independent of the classical endoplasmic reticulum-Golgi secretory pathway, and suggesting that this non-classical mechanism of protein expression is, for as yet unknown reasons, more massively used than in other eukaryotic systems. Plants LSPs, which seem to be potentially involved in the defense/stress responses, might have dual (extracellular and/or intracellular) roles as most of them have established intracellular functions, yet presently unknown extracellular functions. Evidence is emerging on the role of glycosylation in the apical sorting and trafficking of secretory proteins. These initial secretome studies in plants have considerably advanced our understanding on secretion of different types of proteins and their underlying mechanisms, and opened a door for comparative analyses of plant secretomes with those of other organisms. In this first review on plant secretomics, we summarize and discuss the secretome definition, the applied approaches for unlocking secrets of the secreted proteins in the extracellular fluid, the possible functional significance and secretory mechanisms of LSPs, as well as glycosylation of secreted proteins and challenges involved ahead. Further improvements in existing and developing strategies and techniques will continue to drive forward plant secretomics research to building comprehensive and confident data sets of secreted proteins. This will lead to an increased understanding on how cells couple the concerted action of secreted protein networks to their internal and external environments.
Collapse
|
43
|
Ebert AD, Laussmann M, Wegehingel S, Kaderali L, Erfle H, Reichert J, Lechner J, Beer HD, Pepperkok R, Nickel W. Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion. Traffic 2010; 11:813-26. [PMID: 20230531 DOI: 10.1111/j.1600-0854.2010.01059.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a potent mitogen that is exported from cells by an endoplasmic reticulum (ER)/Golgi-independent mechanism. Unconventional secretion of FGF2 occurs by direct translocation across plasma membranes, a process that depends on the phosphoinositide phosphatidylinositol 4,5-biphosphate (PI(4,5)P(2)) at the inner leaflet as well as heparan sulfate proteoglycans at the outer leaflet of plasma membranes; however, additional core and regulatory components of the FGF2 export machinery have remained elusive. Here, using a highly effective RNAi screening approach, we discovered Tec kinase as a novel factor involved in unconventional secretion of FGF2. Tec kinase does not affect FGF2 secretion by an indirect mechanism, but rather forms a heterodimeric complex with FGF2 resulting in phosphorylation of FGF2 at tyrosine 82, a post-translational modification shown to be essential for FGF2 membrane translocation to cell surfaces. Our findings suggest a crucial role for Tec kinase in regulating FGF2 secretion under various physiological conditions and, therefore, provide a new perspective for the development of a novel class of antiangiogenic drugs targeting the formation of the FGF2/Tec complex.
Collapse
Affiliation(s)
- Antje D Ebert
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 2009; 115:696-705. [PMID: 19903899 DOI: 10.1182/blood-2009-07-231449] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Reticulocytes release small membrane vesicles termed exosomes during their maturation into erythrocytes. Exosomes are intraluminal vesicles of multivesicular endosomes released into the extracellular medium by fusion of these endosomal compartments with the plasma membrane. This secretion pathway contributes to reticulocyte plasma membrane remodeling by eliminating certain membrane glycoproteins. We show in this study that galectin-5, although mainly cytosolic, is also present on the cell surface of rat reticulocytes and erythrocytes. In addition, in reticulocytes, it resides in the endosomal compartment. We document galectin-5 translocation from the cytosol into the endosome lumen, leading to its secretion in association with exosomes. Galectin-5 bound onto the vesicle surface may function in sorting galactose-bearing glycoconjugates. Fittingly, we found that Lamp2, a major cellular glycoprotein presenting galectin-reactive poly-N-acetylactosamine chains, is lost during reticulocyte maturation. It is associated with released exosomes, suggestive of binding to galectin-5. Finally, we reveal that the uptake of rat reticulocyte exosomes by macrophages is dependent on temperature and the mechanoenzyme dynamin and that exosome uptake is decreased by adding galectin-5. These data imply galectin-5 functionality in the exosomal sorting pathway during rat reticulocyte maturation.
Collapse
|
45
|
Torrado LC, Temmerman K, Müller HM, Mayer MP, Seelenmeyer C, Backhaus R, Nickel W. An intrinsic quality-control mechanism ensures unconventional secretion of fibroblast growth factor 2 in a folded conformation. J Cell Sci 2009; 122:3322-9. [PMID: 19706682 DOI: 10.1242/jcs.049791] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a proangiogenic mitogen that is secreted by an unconventional mechanism, which does not depend on a functional ER-Golgi system. FGF2 is first recruited to the inner leaflet of plasma membranes, in a process that is mediated by the phosphoinositide PtdIns(4,5)P(2). On the extracellular side, membrane-proximal FGF2-binding sites provided by heparan-sulfate proteoglycans are essential for trapping and accumulating FGF2 in the extracellular space. Here we demonstrate that FGF2 membrane translocation can occur in a folded conformation, i.e. unfolded molecules are not obligatory intermediates in FGF2 secretion. Furthermore, we find that initial sorting into its export pathway requires FGF2 to be folded, because the interaction with PtdIns(4,5)P(2) is lost upon unfolding of FGF2. Our combined findings suggest an intrinsic quality-control mechanism that ensures extracellular accumulation of FGF2 in a biologically active form.
Collapse
Affiliation(s)
- Lucía Cespón Torrado
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Caberoy NB, Li W. Unconventional secretion of tubby and tubby-like protein 1. FEBS Lett 2009; 583:3057-62. [PMID: 19695251 DOI: 10.1016/j.febslet.2009.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 12/24/2022]
Abstract
Tubby-like proteins (Tulps) with no signal peptide have been characterized as cytoplasmic proteins with various intracellular functions, including binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2)]. PI(4,5)P(2) has been implicated in unconventional secretion of fibroblast growth factor-2 without a signal peptide. Here, we show that all Tulps are expressed intracellularly and extracellularly. Tubby secretion is partially dependent on its PI(4,5)P(2)-binding activity with an essential secretory signal in the N-terminus. Pathogenic mutation in Tubby mice has no impact on tubby extracellular trafficking. Moreover, unconventional secretion of tubby and Tulp1 is independent of endoplasmic reticulum-Golgi pathway. These data implicate that Tulps may function extracellularly as well.
Collapse
Affiliation(s)
- Nora B Caberoy
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
47
|
Merk M, Baugh J, Zierow S, Leng L, Pal U, Lee SJ, Ebert AD, Mizue Y, Trent JO, Mitchell R, Nickel W, Kavathas PB, Bernhagen J, Bucala R. The Golgi-associated protein p115 mediates the secretion of macrophage migration inhibitory factor. THE JOURNAL OF IMMUNOLOGY 2009; 182:6896-906. [PMID: 19454686 DOI: 10.4049/jimmunol.0803710] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a leaderless protein that is secreted from cells by a specialized, nonclassical export pathway. The release of MIF nevertheless is regulated and its production in response to different inflammatory, mitogenic, and hormonal stimuli plays an important role in diverse physiologic and pathologic processes. We report herein the identification of the Golgi complex-associated protein p115 as an intracellular binding partner for MIF. MIF interacts with p115 in the cytoplasm and the stimulated secretion of MIF results in the accumulation of both proteins in supernatants, which is consistent with MIF release from cells in conjunction with p115. The depletion of p115 from monocytes/macrophages decreases the release of MIF but not other cytokines following inflammatory stimulation or intracellular bacterial infection. Notably, the small molecule MIF inhibitor 4-iodo-6-phenylpyrimidine inhibits MIF secretion by targeting the interaction between MIF and p115. These data reveal p115 to be a critical intermediary component in the regulated secretion of MIF from monocytes/macrophages.
Collapse
Affiliation(s)
- Melanie Merk
- Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang NN, Liu X, Sun J, Wu Y, Li QW. [Nonclassical mechanisms of secretory protein in eukaryotic cells]. YI CHUAN = HEREDITAS 2009; 31:29-35. [PMID: 19138898 DOI: 10.3724/sp.j.1005.2009.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intercellular communication is fundamental in many biological processes involved in cell growth, differentiation, development, and reproduction of living organisms and secretory proteins are among the most important messengers in this network of information. The vast majority of extracellular proteins are exported from cells by the endoplasmic reticulum/Golgi-dependent secretory pathway. However, increasing evidence shows that there are a group of secretory proteins without signal peptides, defined as nonclassical secretory proteins, which are exported via an ER/Golgi-independent pathway to perform extracellular functions. This pathway has been termed nonclassical or unconventional secretion, which is an essential and beneficial supplement of the ER-Golgi secretion pathway. The nonclassical secretion pathway has close relation with cell multiplication, immune response, tumor formation, infection pathology and so on. Here, the characters, the possible secretory mechanism, and the biological significance of nonclassical secretory proteins were reviewed.
Collapse
Affiliation(s)
- Nan-Nan Zhang
- College of Life Sciences, Liaoning Normal University, Dalian 116029, China.
| | | | | | | | | |
Collapse
|
49
|
Scarpellini A, Germack R, Lortat-Jacob H, Muramatsu T, Billett E, Johnson T, Verderio EAM. Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J Biol Chem 2009; 284:18411-23. [PMID: 19398782 DOI: 10.1074/jbc.m109.012948] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transglutaminase type 2 (TG2) is both a protein cross-linking enzyme and a cell adhesion molecule with an elusive unconventional secretion pathway. In normal conditions, TG2-mediated modification of the extracellular matrix modulates cell motility, proliferation and tissue repair, but under continuous cell insult, higher expression and elevated extracellular trafficking of TG2 contribute to the pathogenesis of tissue scarring. In search of TG2 ligands that could contribute to its regulation, we characterized the affinity of TG2 for heparan sulfate (HS) and heparin, an analogue of the chains of HS proteoglycans (HSPGs). By using heparin/HS solid-binding assays and surface plasmon resonance we showed that purified TG2 has high affinity for heparin/HS, comparable to that for fibronectin, and that cell-surface TG2 interacts with heparin/HS. We demonstrated that cell-surface TG2 directly associates with the HS chains of syndecan-4 without the mediation of fibronectin, which has affinity for both syndecan-4 and TG2. Functional inhibition of the cell-surface HS chains of wild-type and syndecan-4-null fibroblasts revealed that the extracellular cross-linking activity of TG2 depends on the HS of HSPG and that syndecan-4 plays a major but not exclusive role. We found that heparin binding did not alter TG2 activity per se. Conversely, fibroblasts deprived of syndecan-4 were unable to effectively externalize TG2, resulting in its cytosolic accumulation. We propose that the membrane trafficking of TG2, and hence its extracellular activity, is linked to TG2 binding to cell-surface HSPG.
Collapse
Affiliation(s)
- Alessandra Scarpellini
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
50
|
Yazid S, Solito E, Christian H, McArthur S, Goulding N, Flower R. Cromoglycate drugs suppress eicosanoid generation in U937 cells by promoting the release of Anx-A1. Biochem Pharmacol 2009; 77:1814-26. [PMID: 19428336 PMCID: PMC2888050 DOI: 10.1016/j.bcp.2009.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 12/15/2022]
Abstract
Using biochemical, epifluorescence and electron microscopic techniques in a U937 model system, we investigated the effect of anti-allergic drugs di-sodium cromoglycate and sodium nedocromil on the trafficking and release of the anti-inflammatory protein Annexin-A1 (Anx-A1) when this was triggered by glucocorticoid (GC) treatment. GCs alone produced a rapid (within 5 min) concentration-dependent activation of PKCα/β (Protein Kinase C; EC 2.7.11.13) and phosphorylation of Anx-A1 on Ser27. Both phosphoproteins accumulated at the plasma membrane and Anx-A1 was subsequently externalised thereby inhibiting thromboxane (Tx) B2 generation. When administered alone, cromoglycate or nedocromil had little effect on this pathway however, in the presence of a fixed sub-maximal concentration of GCs, increasing amounts of the cromoglycate-like drugs caused a striking concentration-dependent enhancement of Anx-A1 and PKCα/β phosphorylation, membrane recruitment and Anx-A1 release from cells resulting in greatly enhanced inhibition of TxB2 generation. GCs also stimulated phosphatase accumulation at the plasma membrane of U937 cells. Both cromoglycate and nedocromil inhibited this enzymatic activity as well as that of a highly purified PP2A phosphatase preparation. We conclude that stimulation by the cromoglycate-like drugs of intracellular Anx-A1 trafficking and release (hence inhibition of eicosanoid release) is secondary to inhibition of a phosphatase PP2A (phosphoprotein phosphatase; EC 3.1.3.16), which probably forms part of a control loop to limit Anx-A1 release. These experiments provide a basis for a novel mechanism of action for the cromolyns, a group of drugs that have long puzzled investigators.
Collapse
Affiliation(s)
- Samia Yazid
- Biochemical Pharmacology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | |
Collapse
|