1
|
Wang J, Fu C, Chang S, Stephens C, Li H, Wang D, Fu YC, Green KJ, Yan J, Yi R. PIEZO1-mediated calcium signaling reinforces mechanical properties of hair follicle stem cells to promote quiescence. SCIENCE ADVANCES 2025; 11:eadt2771. [PMID: 40435254 PMCID: PMC12118625 DOI: 10.1126/sciadv.adt2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025]
Abstract
The mechanisms by which epithelial stem cells (SCs) sense mechanical cues within their niche and convert the information into biochemical signals to govern their function are not well understood. Here, we show that hair follicle SCs (HF-SCs) sense mechanical forces through cell adhesion and maintain quiescence in a PIEZO1-dependent mechanism. PIEZO1 interacts with E-cadherin in HF-SCs, and mechanical pulling of E-cadherin with a force of ~20 pN triggers PIEZO1-dependent, localized calcium flickers. Deletion of Piezo1 leads to reduced cumulative calcium influx and compromises quiescence. Single-cell genomic analyses identify a transcriptional network involving AP1 and NFATC1, which functions downstream of PIEZO1 and regulates the expression of extracellular matrix, cell adhesion, and actin cytoskeleton genes to reinforce the unique mechanical property of HF-SCs. These findings establish the force threshold necessary for PIEZO1 activation and reveal PIEZO1-dependent calcium influx as a key mechanism for sensing mechanical cues in the niche and regulating HF-SC activity.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Chaoyu Fu
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Sophie Chang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Christopher Stephens
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Haimin Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Yuheng C. Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
2
|
Orii R, Tanimoto H. Structural response of microtubule and actin cytoskeletons to direct intracellular load. J Cell Biol 2025; 224:e202403136. [PMID: 39545874 PMCID: PMC11572716 DOI: 10.1083/jcb.202403136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/16/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Microtubule and actin are the two major cytoskeletal polymers that form organized functional structures in the interior of eukaryotic cells. Although the structural mechanics of the cytoskeleton has been extensively studied by direct manipulations in in vitro reconstitution systems, such unambiguous characterizations inside the living cell are sparse. Here, we report a comprehensive analysis of how the microtubule and actin cytoskeletons structurally respond to direct intracellular load. Ferrofluid-based intracellular magnetic tweezers reveal rheological properties of the microtubule complex primarily determined by filamentous actin. The strain fields of the microtubule complex and actin meshwork follow the same scaling, suggesting that the two cytoskeletal systems behave as an integrated elastic body. The structural responses of single microtubules to contact and remote forces further evidence that the individual microtubules are enclosed by the elastic medium of actin. These results, directly characterizing the microtubule and actin cytoskeletons as an interacting continuum throughout the cytoplasm, serve as a cornerstone for the physical understanding of intracellular organization.
Collapse
Affiliation(s)
- Ryota Orii
- Department of Science, Yokohama City University, Yokohama, Japan
| | | |
Collapse
|
3
|
Kumar SS, Mountjoy KG. Measuring GPCR-Induced Intracellular Calcium Signaling Using a Quantitative High-Throughput Assay. Methods Mol Biol 2025; 2861:3-22. [PMID: 39395093 DOI: 10.1007/978-1-0716-4164-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Alterations in intracellular calcium are integral to signal transduction pathways for many G-protein-coupled receptors, but this signaling is not well studied. This is mostly due to a lack of reliable, robust, high-throughput, quantitative methods to monitor intracellular calcium concentrations in live cells. Recently, we developed a reliable, robust, quantitative method to measure intracellular calcium levels in which HEK293 cell suspensions loaded with Fura-2/AM are placed in 96-well plates. Minimum and maximum intracellular calcium levels, which are required for converting fluorescence into calcium concentrations, are calibrated using EGTA to chelate calcium and ionomycin to load calcium into cells, respectively. Fluorescence is monitored with a PHERAstar FS plate reader. We provide a detailed method for this high-throughput assay that can be used to quantitate intracellular calcium in endogenous and exogenously (stable or transient) expressed GPCRs in HEK293 cells.
Collapse
Affiliation(s)
- Shree S Kumar
- Faculty of Medical and Health Sciences, Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathleen G Mountjoy
- Faculty of Medical and Health Sciences, Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Liu L, Zheng W, Wei Y, Li Q, Chen N, Xia Q, Wang L, Hu J, Zhou X, Sun Y, Li B. Mechanical stress-induced autophagy is cytoskeleton dependent. Cell Prolif 2024; 57:e13728. [PMID: 39155403 PMCID: PMC11628738 DOI: 10.1111/cpr.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The cytoskeleton is essential for mechanical signal transduction and autophagy. However, few studies have directly demonstrated the contribution of the cytoskeleton to mechanical stress-induced autophagy. We explored the role of the cytoskeleton in response to compressive force-induced autophagy in human cell lines. Inhibition and activation of cytoskeletal polymerization using small chemical molecules revealed that cytoskeletal microfilaments are required for changes in the number of autophagosomes, whereas microtubules play an auxiliary role in mechanical stress-induced autophagy. The intrinsic mechanical properties and special intracellular distribution of microfilaments may account for a large proportion of compression-induced autophagy. Our experimental data support that microfilaments are core components of mechanotransduction signals.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Wei Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yuhui Wei
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| | - Qian Li
- Frontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Nan Chen
- School of Chemistry and Materials SciencesShanghai Normal UniversityShanghaiChina
| | - Qinglin Xia
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Lihua Wang
- Institute of Materiobiology, College of ScienceShanghai UniversityShanghaiChina
| | - Jun Hu
- Institute of Materiobiology, College of ScienceShanghai UniversityShanghaiChina
| | - Xingfei Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and TechnologyNingbo UniversityZhejiangChina
| | - Yanhong Sun
- Institute of Materiobiology, College of ScienceShanghai UniversityShanghaiChina
| | - Bin Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
5
|
Roeterink RMA, Casadevall I Solvas X, Collins DJ, Scott DJ. Force versus Response: Methods for Activating and Characterizing Mechanosensitive Ion Channels and GPCRs. Adv Healthc Mater 2024; 13:e2402167. [PMID: 39402780 DOI: 10.1002/adhm.202402167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Indexed: 12/18/2024]
Abstract
Mechanotransduction is the process whereby cells convert mechanical signals into electrochemical responses, where mechanosensitive proteins mediate this interaction. To characterize these critical proteins, numerous techniques have been developed that apply forces and measure the subsequent cellular responses. While these approaches have given insight into specific aspects of many such proteins, subsequent validation and cross-comparison between techniques remain difficult given significant variations in reported activation thresholds and responses for the same protein across different studies. Accurately determining mechanosensitivity responses for various proteins, however, is essential for understanding mechanotransduction and potential physiological implications, including therapeutics. This critical review provides an assessment of current and emerging approaches used for mechanosensitive ion channel and G-Coupled Receptors (GPCRs) stimulation and measurement, with a specific focus on the ability to quantitatively measure mechanosensitive responses.
Collapse
Affiliation(s)
- Renate M A Roeterink
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
6
|
Katsuta H, Sokabe M, Hirata H. From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission. Front Cell Dev Biol 2024; 12:1444827. [PMID: 39193363 PMCID: PMC11347286 DOI: 10.3389/fcell.2024.1444827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
The contractile apparatus, stress fiber (SF), is connected to the cell adhesion machinery, focal adhesion (FA), at the termini of SF. The SF-FA complex is essential for various mechanical activities of cells, including cell adhesion to the extracellular matrix (ECM), ECM rigidity sensing, and cell migration. This mini-review highlights the importance of SF mechanics in these cellular activities. Actin-crosslinking proteins solidify SFs by attenuating myosin-driven flows of actin and myosin filaments within the SF. In the solidified SFs, viscous slippage between actin filaments in SFs and between the filaments and the surrounding cytosol is reduced, leading to efficient transmission of myosin-generated contractile force along the SFs. Hence, SF solidification via actin crosslinking ensures exertion of a large force to FAs, enabling FA maturation, ECM rigidity sensing and cell migration. We further discuss intracellular mechanisms for tuning crosslinker-modulated SF mechanics and the potential relationship between the aberrance of SF mechanics and pathology including cancer.
Collapse
Affiliation(s)
- Hiroki Katsuta
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Sokabe
- Human Information Systems Laboratories, Kanazawa Institute of Technology, Hakusan, Japan
| | - Hiroaki Hirata
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan, Japan
| |
Collapse
|
7
|
Wang Y, Han X, Deng L, Wang X. Tunneling nanotube-transmitted mechanical signal and its cellular response. Biochem Biophys Res Commun 2024; 693:149368. [PMID: 38091838 DOI: 10.1016/j.bbrc.2023.149368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
Tunneling nanotubes (TNTs) are elastic tubular structures that physically link cells, facilitating the intercellular transfer of organelles, chemical signals, and electrical signals. Despite TNTs serving as a multifunctional pathway for cell-cell communication, the transmission of mechanical signals through TNTs and the response of TNT-connected cells to these forces remain unexplored. In this study, external mechanical forces were applied to induce TNT bending between rat kidney (NRK) cells using micromanipulation. These forces, transmitted via TNTs, induced reduced curvature of the actin cortex and increased membrane tension at the TNT-connected sites. Additionally, TNT bending results in an elevation of intracellular calcium levels in TNT-connected cells, a response attenuated by gadolinium ions, a non-selective mechanosensitive calcium channel blocker. The degree of TNT deflection positively correlated with decreased actin cortex curvature and increased calcium levels. Furthermore, stretching TNT due to the separation of TNT-connected cells resulted in decreased actin cortex curvature and increased intracellular calcium in TNT-connected cells. The levels of these cellular responses depended on the length changes of TNTs. Moreover, TNT connections influence cell migration by regulating cell rotation, which involves the activation of mechanosensitive calcium channels. In conclusion, our study revealed the transmission of mechanical signals through TNTs and the subsequent responses of TNT-connected cells, highlighting a previously unrecognized communication function of TNTs. This research provides valuable insights into the role of TNTs in long-distance intercellular mechanical signaling.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu, China; School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Xiaoning Han
- Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu, China; School of Medical and Health Engineering, Changzhou, Jiangsu, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu, China; School of Medical and Health Engineering, Changzhou, Jiangsu, China.
| | - Xiang Wang
- Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu, China; School of Medical and Health Engineering, Changzhou, Jiangsu, China.
| |
Collapse
|
8
|
Okura K, Matsumoto T, Narita A, Tatsumi H. Mechanical Stress Decreases the Amplitude of Twisting and Bending Fluctuations of Actin Filaments. J Mol Biol 2023; 435:168295. [PMID: 37783285 DOI: 10.1016/j.jmb.2023.168295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
A variety of biological roles of mechanical forces have been proposed in cell biology, such as cell signaling pathways for survival, development, growth, and differentiation. Mechanical forces alter the mechanical conditions within cells and their environment, which strongly influences the reorganization of the actin cytoskeleton. Single-molecule imaging studies of actin filaments have led to the hypothesis that the actin filament acts as a mechanosensor; e.g., increases in actin filament tension alter their conformation and affinity for regulatory proteins. However, our understanding of the molecular mechanisms underlying how tension modulates the mechanical behavior of a single actin filament is still incomplete. In this study, a direct measurement of the twisting and bending of a fluorescently labeled single actin filament under different tension levels by force application (0.8-3.4 pN) was performed using single-molecule fluorescence polarization (SMFP) microscopy. The results showed that the amplitude of twisting and bending fluctuations of a single actin filament decreased with increasing tension. Electron micrograph analysis of tensed filaments also revealed that the fluctuations in the crossover length of actin filaments decreased with increasing filament tension. Possible molecular mechanisms underlying these results involving the binding of actin-binding proteins, such as cofilin, to the filament are discussed.
Collapse
Affiliation(s)
- Kaoru Okura
- Department of Applied Bioscience, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Tomoharu Matsumoto
- Department of Biological Science, Graduate School of Sciences, Nagoya University, 464-8601 Nagoya, Japan
| | - Akihiro Narita
- Department of Biological Science, Graduate School of Sciences, Nagoya University, 464-8601 Nagoya, Japan
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Ishikawa, Japan.
| |
Collapse
|
9
|
Odagiri K, Fujisaki H, Takada H, Ogawa R. Mathematical model for promotion of wound closure with ATP release. Biophys Physicobiol 2023; 20:e200023. [PMID: 38496238 PMCID: PMC10941958 DOI: 10.2142/biophysico.bppb-v20.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/22/2023] [Indexed: 03/19/2024] Open
Abstract
To computationally investigate the recent experimental finding such that extracellular ATP release caused by exogeneous mechanical forces promote wound closure, we introduce a mathematical model, the Cellular Potts Model (CPM), which is a popular discretized model on a lattice, where the movement of a "cell" is determined by a Monte Carlo procedure. In the experiment, it was observed that there is mechanosensitive ATP release from the leading cells facing the wound gap and the subsequent extracellular Ca2+ influx. To model these phenomena, the Reaction-Diffusion equations for extracellular ATP and intracellular Ca2+ concentrations are adopted and combined with CPM, where we also add a polarity term because the cell migration is enhanced in the case of ATP release. From the numerical simulations using this hybrid model, we discuss effects of the collective cell migration due to the ATP release and the Ca2+ influx caused by the mechanical forces and the consequent promotion of wound closure.
Collapse
Affiliation(s)
- Kenta Odagiri
- School of Network and Information, Senshu University, Kawasaki, Kanagawa 214-8580, Japan
- AMED-CREST, Bunkyo, Tokyo 113-8603, Japan
| | - Hiroshi Fujisaki
- AMED-CREST, Bunkyo, Tokyo 113-8603, Japan
- Department of Physics, Nippon Medical School, Musashino, Tokyo 180-0023, Japan
| | - Hiroya Takada
- AMED-CREST, Bunkyo, Tokyo 113-8603, Japan
- Department of Anti-Aging and Preventive Medicine, Nippon Medical School, Bunkyo, Tokyo 113-8603, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo, Tokyo 113-8603, Japan
| | - Rei Ogawa
- AMED-CREST, Bunkyo, Tokyo 113-8603, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo, Tokyo 113-8603, Japan
| |
Collapse
|
10
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
11
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Català-Castro F, Schäffer E, Krieg M. Exploring cell and tissue mechanics with optical tweezers. J Cell Sci 2022; 135:jcs259355. [PMID: 35942913 DOI: 10.1242/jcs.259355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular and tissue biosystems emerge from the assembly of their constituent molecules and obtain a set of specific material properties. To measure these properties and understand how they influence cellular function is a central goal of mechanobiology. From a bottoms-up, physics or engineering point-of-view, such systems are a composition of basic mechanical elements. However, the sheer number and dynamic complexity of them, including active molecular machines and their emergent properties, makes it currently intractable to calculate how biosystems respond to forces. Because many diseases result from an aberrant mechanotransduction, it is thus essential to measure this response. Recent advances in the technology of optical tweezers have broadened their scope from single-molecule applications to measurements inside complex cellular environments, even within tissues and animals. Here, we summarize the basic optical trapping principles, implementations and calibration procedures that enable force measurements using optical tweezers directly inside cells of living animals, in combination with complementary techniques. We review their versatility to manipulate subcellular organelles and measure cellular frequency-dependent mechanics in the piconewton force range from microseconds to hours. As an outlook, we address future challenges to fully unlock the potential of optical tweezers for mechanobiology.
Collapse
Affiliation(s)
- Frederic Català-Castro
- Neurophotonics and Mechanical Systems Biology, ICFO, Institut de Ciències Fotòniques, 08860 Castelldefels, Spain
| | - Erik Schäffer
- Cellular Nanoscience, ZMBP, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Krieg
- Neurophotonics and Mechanical Systems Biology, ICFO, Institut de Ciències Fotòniques, 08860 Castelldefels, Spain
| |
Collapse
|
13
|
Sugita S, Hozaki M, Matsui TS, Nagayama K, Deguchi S, Nakamura M. Polarized light retardation analysis allows for the evaluation of tension in individual stress fibers. Biochem Biophys Res Commun 2022; 620:49-55. [DOI: 10.1016/j.bbrc.2022.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
14
|
Li X, Li X, Chen Y, Wang Y, Li X, Hao A, Hu Y, Li X. Correlation of vascular change with TRPV1, TRPV4, and TRPA1 in a rat model of inferior gluteal artery perforator flap. Wound Repair Regen 2022; 30:365-375. [PMID: 35384152 DOI: 10.1111/wrr.13011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
Maximum survival area after perforator flap elevation is mainly achieved through vasodilation and angiogenesis, and endothelial Ca2+ signals play a pivotal role in both of them. Transient receptor potential (TRP) channels modulate many endothelial cell functions via mediating the extracellular Ca2+ entry. This study aims to investigate the correlation of TRPV4, TRPV1, and TRPA1 with vascular change after the inferior gluteal artery perforator flap elevation. A total of 50 adult male SD rats were used in this study. Ten rats were used in the part one to assess the flap viability on postoperative day 7. Twenty rats were used in the part two to evaluate blood flow change after flap elevation. The correlation of vascular change with TRPV1, TRPV4, and TRPA1 protein changes was investigated in 20 rats in the part three. The mean flap survival area percentage was 55 ± 5.7%. Blood flow in the overall flap and Zone II after the flap elevation markedly increased from the postoperative day 3. The most marked change of the vasodilation occurred on Days 3 and 5 after flap elevation. The angiogenesis occurred on Day 5 after flap elevation and the microvessel density peaked also on Day 5. Moreover, TRPA1 expression showed a trend towards continuous reduction over time. The expression of TRPV1 and TRPV4 reached the peak value on Day 3. The endothelial NO synthase expression showed an increasing trend at first, followed by a reduction over time, while VEGF expression reached the peak value on Day 3. The vascular changes after flap elevation might be associated with the changes in TRPV4, TRPV1, and TRPA1.
Collapse
Affiliation(s)
- Xiucun Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaolu Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuan Chen
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yifan Wang
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohan Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Aijun Hao
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yong Hu
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xian Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Duque M, Lee-Kubli CA, Tufail Y, Magaram U, Patel J, Chakraborty A, Mendoza Lopez J, Edsinger E, Vasan A, Shiao R, Weiss C, Friend J, Chalasani SH. Sonogenetic control of mammalian cells using exogenous Transient Receptor Potential A1 channels. Nat Commun 2022; 13:600. [PMID: 35140203 PMCID: PMC8828769 DOI: 10.1038/s41467-022-28205-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Ultrasound has been used to non-invasively manipulate neuronal functions in humans and other animals. However, this approach is limited as it has been challenging to target specific cells within the brain or body. Here, we identify human Transient Receptor Potential A1 (hsTRPA1) as a candidate that confers ultrasound sensitivity to mammalian cells. Ultrasound-evoked gating of hsTRPA1 specifically requires its N-terminal tip region and cholesterol interactions; and target cells with an intact actin cytoskeleton, revealing elements of the sonogenetic mechanism. Next, we use calcium imaging and electrophysiology to show that hsTRPA1 potentiates ultrasound-evoked responses in primary neurons. Furthermore, unilateral expression of hsTRPA1 in mouse layer V motor cortical neurons leads to c-fos expression and contralateral limb responses in response to ultrasound delivered through an intact skull. Collectively, we demonstrate that hsTRPA1-based sonogenetics can effectively manipulate neurons within the intact mammalian brain, a method that could be used across species. Ultrasound can be used to non-invasively control neuronal functions. Here the authors report the use of human Transient receptor potential ankyrin 1 (hsTRPA1) to achieve ultrasound sensitivity in mammalian cells, and show that it can be used to manipulate neurons in the mammalian brain.
Collapse
Affiliation(s)
- Marc Duque
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Corinne A Lee-Kubli
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yusuf Tufail
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Uri Magaram
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.,Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Janki Patel
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ahana Chakraborty
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jose Mendoza Lopez
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Aditya Vasan
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rani Shiao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Connor Weiss
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - James Friend
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA. .,Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Vasan A, Orosco J, Magaram U, Duque M, Weiss C, Tufail Y, Chalasani SH, Friend J. Ultrasound Mediated Cellular Deflection Results in Cellular Depolarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101950. [PMID: 34747144 PMCID: PMC8805560 DOI: 10.1002/advs.202101950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/16/2021] [Indexed: 05/29/2023]
Abstract
Ultrasound has been used to manipulate cells in both humans and animal models. While intramembrane cavitation and lipid clustering have been suggested as likely mechanisms, they lack experimental evidence. Here, high-speed digital holographic microscopy (kiloHertz order) is used to visualize the cellular membrane dynamics. It is shown that neuronal and fibroblast membranes deflect about 150 nm upon ultrasound stimulation. Next, a biomechanical model that predicts changes in membrane voltage after ultrasound exposure is developed. Finally, the model predictions are validated using whole-cell patch clamp electrophysiology on primary neurons. Collectively, it is shown that ultrasound stimulation directly defects the neuronal membrane leading to a change in membrane voltage and subsequent depolarization. The model is consistent with existing data and provides a mechanism for both ultrasound-evoked neurostimulation and sonogenetic control.
Collapse
Affiliation(s)
- Aditya Vasan
- Medically Advanced Devices LaboratoryDepartment of Mechanical and Aerospace EngineeringJacobs School of Engineering and Department of SurgerySchool of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Jeremy Orosco
- Medically Advanced Devices LaboratoryDepartment of Mechanical and Aerospace EngineeringJacobs School of Engineering and Department of SurgerySchool of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Uri Magaram
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Marc Duque
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Connor Weiss
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Yusuf Tufail
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - James Friend
- Medically Advanced Devices LaboratoryDepartment of Mechanical and Aerospace EngineeringJacobs School of Engineering and Department of SurgerySchool of MedicineUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
17
|
Wubshet NH, Arreguin-Martinez E, Nail M, Annamalai H, Koerner R, Rousseva M, Tom T, Gillespie RB, Liu AP. Simulating microgravity using a random positioning machine for inducing cellular responses to mechanotransduction in human osteoblasts. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:114101. [PMID: 34852501 PMCID: PMC9643046 DOI: 10.1063/5.0056366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The mechanotransduction pathways that mediate cellular responses to contact forces are better understood than those that mediate response to distance forces, especially the force of gravity. Removing or reducing gravity for significant periods of time involves either sending samples to space, inducing diamagnetic levitation with high magnetic fields, or continually reorienting samples for a period, all in a manner that supports cell culturing. Undesired secondary effects due to high magnetic fields or shear forces associated with fluid flow while reorienting must be considered in the design of ground-based devices. We have developed a lab-friendly and compact random positioning machine (RPM) that fits in a standard tissue culture incubator. Using a two-axis gimbal, it continually reorients samples in a manner that produces an equal likelihood that all possible orientations are visited. We contribute a new control algorithm by which the distribution of probabilities over all possible orientations is completely uniform. Rather than randomly varying gimbal axis speed and/or direction as in previous algorithms (which produces non-uniform probability distributions of orientation), we use inverse kinematics to follow a trajectory with a probability distribution of orientations that is uniform by construction. Over a time period of 6 h of operation using our RPM, the average gravity is within 0.001 23% of the gravity of Earth. Shear forces are minimized by limiting the angular speed of both gimbal motors to under 42 °/s. We demonstrate the utility of our RPM by investigating the effects of simulated microgravity on adherent human osteoblasts immediately after retrieving samples from our RPM. Cytoskeletal disruption and cell shape changes were observed relative to samples cultured in a 1 g environment. We also found that subjecting human osteoblasts in suspension to simulated microgravity resulted in less filamentous actin and lower cell stiffness.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | - Hariprasad Annamalai
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert Koerner
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Maria Rousseva
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tristan Tom
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Allen P. Liu
- Author to whom correspondence should be addressed: . Current address: University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109, USA. Tel.: +1 734-764-7719
| |
Collapse
|
18
|
Yokoyama Y, Kameo Y, Kamioka H, Adachi T. High-resolution image-based simulation reveals membrane strain concentration on osteocyte processes caused by tethering elements. Biomech Model Mechanobiol 2021; 20:2353-2360. [PMID: 34471950 PMCID: PMC8595188 DOI: 10.1007/s10237-021-01511-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022]
Abstract
Osteocytes are vital for regulating bone remodeling by sensing the flow-induced mechanical stimuli applied to their cell processes. In this mechanosensing mechanism, tethering elements (TEs) connecting the osteocyte process with the canalicular wall potentially amplify the strain on the osteocyte processes. The ultrastructure of the osteocyte processes and canaliculi can be visualized at a nanometer scale using high-resolution imaging via ultra-high voltage electron microscopy (UHVEM). Moreover, the irregular shapes of the osteocyte processes and the canaliculi, including the TEs in the canalicular space, should considerably influence the mechanical stimuli applied to the osteocytes. This study aims to characterize the roles of the ultrastructure of osteocyte processes and canaliculi in the mechanism of osteocyte mechanosensing. Thus, we constructed a high-resolution image-based model of an osteocyte process and a canaliculus using UHVEM tomography and investigated the distribution and magnitude of flow-induced local strain on the osteocyte process by performing fluid–structure interaction simulation. The analysis results reveal that local strain concentration in the osteocyte process was induced by a small number of TEs with high tension, which were inclined depending on the irregular shapes of osteocyte processes and canaliculi. Therefore, this study could provide meaningful insights into the effect of ultrastructure of osteocyte processes and canaliculi on the osteocyte mechanosensing mechanism.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshitaka Kameo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8525, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan. .,Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan. .,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
19
|
Lövenich L, Dreissen G, Hoffmann C, Konrad J, Springer R, Höhfeld J, Merkel R, Hoffmann B. Strain induced mechanoresponse depends on cell contractility and BAG3-mediated autophagy. Mol Biol Cell 2021; 32:ar9. [PMID: 34379447 PMCID: PMC8684750 DOI: 10.1091/mbc.e21-05-0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Basically all mammalian tissues are constantly exposed to a variety of environmental mechanical signals. Depending on the signal strength, mechanics intervenes in a multitude of cellular processes and is thus capable to induce simple cellular adaptations but also complex differentiation processes and even apoptosis. The underlying recognition typically depends on mechanosensitive proteins, which most often sense the mechanical signal for the induction of a cellular signaling cascade by changing their protein conformation. However, the fate of mechanosensors after mechanical stress application is still poorly understood and it remains unclear whether protein degradation pathways affect the mechanosensitivity of cells. Here, we show that cyclic stretch induces autophagosome formation in a time-dependent manner. Formation depends on the cochaperone BAG3 and thus likely involves BAG3-mediated chaperone-assisted selective autophagy. Furthermore, we demonstrate that strain-induced cell reorientation is clearly delayed upon inhibition of autophagy, suggesting a bidirectional crosstalk between mechanotransduction and autophagic degradation. The strength of the observed delay depends on stable adhesion structures and stress fiber formation in a RhoA-dependent manner.
Collapse
Affiliation(s)
- Lukas Lövenich
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Georg Dreissen
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Christina Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Jens Konrad
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Ronald Springer
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| |
Collapse
|
20
|
Yang X, Liu CJ, Wang ZZ, Ding D, Shi JW, Wu XT, Sun LW, Fan YB. Effects of advanced glycation end products on osteocytes mechanosensitivity. Biochem Biophys Res Commun 2021; 568:151-157. [PMID: 34217013 DOI: 10.1016/j.bbrc.2021.06.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Osteocytes are extremely sensitive to mechanical loading and govern bone remodeling process. Advanced glycation end products (AGEs) have the capacity to induce osteocyte apoptosis. In order to investigate the effects of AGEs on the mechanosensitivity of osteocytes, the osteocytic-like cells (MLO-Y4) were treated with low (50 μg/ml) and high (400 μg/ml) concentrations of AGEs for 1day and exposed to 15 dyne/cm2 of fluid shear stress. Then the F-actin cytoskeleton, prostaglandin E2(PGE2), Nitric oxide (NO), the Wnt/β-catenin signaling pathway activity mRNA expressions were detected for osteocytes mechanical response changes; osteocalcin (OCN) and receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) were detected for the regulation on bone remodeling function of osteocytes. The results showed that AGEs accumulation inhibited the sense of osteocytes to external mechincal loading, promoted shear-induced NO and PGE2 release, suppressed the mechanosensitivity of Wnt/β-catenin signaling pathway, and furthermore promoted OCN and RANKL/OPG mRNA expressions. These indicated AGEs had an adverse impact on the mechanosensitivity of osteocytes, and led to a negative effect on their regulation of bone remodeling process under mechanical stimulation. This work provides a new perspective to interpret the alteration mechanism of osteocytes mechanosensitivity and provides a novel clue for exploring the mechanism of osteoporosis.
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 100083.
| | - Cong-Jin Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 100083
| | - Zhen-Zhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 100083
| | - Dong Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 100083
| | - Jing-Wen Shi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 100083
| | - Xin-Tong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 100083
| | - Lian-Wen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 100083.
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 100083.
| |
Collapse
|
21
|
Ho Thanh MT, Grella A, Kole D, Ambady S, Wen Q. Vimentin intermediate filaments modulate cell traction force but not cell sensitivity to substrate stiffness. Cytoskeleton (Hoboken) 2021; 78:293-302. [PMID: 33993652 DOI: 10.1002/cm.21675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
The ability of cells to sense and respond to the mechanical stiffness of the surrounding matrix is important to support normal cell function, wound healing, and development. Central to the process of durosensing is the cytoskeleton composed of three classes of filaments: F-actin, microtubules, and intermediate filaments (IFs). Vimentin is an IF protein that contributes significantly to cell mechanics and cell traction force, which is required to probe extracellular matrix. The role of vimentin in how cells sense and respond to the mechanical rigidity of extracellular matrix is largely unclear. To investigate the role of vimentin in durosensing, we knocked down the vimentin expression level in 3T3 fibroblasts using shRNA transfection and measured cellular responses as functions of substrate stiffness. We quantified durosensitivity by the rates at which cell area and traction force change with substrate stiffness. Our results show that that vimentin plays a role in durosensing by modulating traction force and knocking out vimentin did not significantly affect durosensitivity. These results indicate that vimentin may be a redundant component of the machinery that cells use to sense substrate stiffness.
Collapse
Affiliation(s)
- Minh-Tri Ho Thanh
- Physics Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Alexandra Grella
- Biology & Biotechnology Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Denis Kole
- Biology & Biotechnology Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Sakthikumar Ambady
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Qi Wen
- Physics Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
22
|
Camal Ruggieri IN, Cícero AM, Issa JPM, Feldman S. Bone fracture healing: perspectives according to molecular basis. J Bone Miner Metab 2021; 39:311-331. [PMID: 33151416 DOI: 10.1007/s00774-020-01168-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Fractures have a great impact on health all around the world and with fracture healing optimization; this problem could be resolved partially. To make a practical contribution to this issue, the knowledge of bone tissue, cellularity, and metabolism is essential, especially cytoskeletal architecture and its transformations according to external pressures. Special physical and chemical characteristics of the extracellular matrix (ECM) allow the transmission of mechanical stimuli from outside the cell to the plasmatic membrane. The osteocyte cytoskeleton is conformed by a complex network of actin and microtubules combined with crosslinker proteins like vinculin and fimbrin, connecting and transmitting outside stimuli through EMC to cytoplasm. Herein, critical signaling pathways like Cx43-depending ones, MAPK/ERK, Wnt, YAP/TAZ, Rho-ROCK, and others are activated due to mechanical stimuli, resulting in osteocyte cytoskeletal changes and ECM remodeling, altering the tissue and, therefore, the bone. In recent years, the osteocyte has gained more interest and value in relation to bone homeostasis as a great coordinator of other cell populations, thanks to its unique functions. By integrating the latest advances in relation to intracellular signaling pathways, mechanotransmission system of the osteocyte and bone tissue engineering, there are promising experimental strategies, while some are ready for clinical trials. This work aims to show clearly and precisely the integration between cytoskeleton and main molecular pathways in relation to mechanotransmission mechanism in osteocytes, and the use of this theoretical knowledge in therapeutic tools for bone fracture healing.
Collapse
Affiliation(s)
- Iván Nadir Camal Ruggieri
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina.
| | - Andrés Mauricio Cícero
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
| | | | - Sara Feldman
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
- Research Council of the Rosario National University (CIUNR) and CONICET, Rosario, Argentina
| |
Collapse
|
23
|
Kumar SS, Ward ML, Mountjoy KG. Quantitative high-throughput assay to measure MC4R-induced intracellular calcium. J Mol Endocrinol 2021; 66:285-297. [PMID: 33739935 PMCID: PMC8111326 DOI: 10.1530/jme-20-0285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
The melanocortin-4 receptor (MC4R), a critical G-protein-coupled receptor (GPCR) regulating energy homeostasis, activates multiple signalling pathways, including mobilisation of intracellular calcium ([Ca2+]i). However, very little is known about the physiological significance of MC4R-induced [Ca2+]i since few studies measure MC4R-induced [Ca2+]i. High-throughput, read-out assays for [Ca2+]i have proven unreliable for overexpressed GPCRs like MC4R, which exhibit low sensitivity mobilising [Ca2+]i. Therefore, we developed, optimised, and validated a robust quantitative high-throughput assay using Fura-2 ratio-metric calcium dye and HEK293 cells stably transfected with MC4R. The quantitation enables direct comparisons between assays and even between different research laboratories. Assay conditions were optimised step-by-step to eliminate interference from stretch-activated receptor increases in [Ca2+]i and to maximise ligand-activated MC4R-induced [Ca2+]i. Calcium imaging was performed using a PheraStar FS multi-well plate reader. Probenecid, included in the buffers to prevent extrusion of Fura-2 dye from cells, was found to interfere with the EGTA-chelation of calcium, required to determine Rmin for quantitation of [Ca2+]i. Therefore, we developed a method to determine Rmin in specific wells without probenecid, which was run in parallel with each assay. The validation of the assay was shown by reproducible α-melanocyte-stimulating hormone (α-MSH) concentration-dependent activation of the stably expressed human MC4R (hMC4R) and mouse MC4R (mMC4R), inducing increases in [Ca2+]i, for three independent experiments. This robust, reproducible, high-throughput assay that quantitatively measures MC4R-induced mobilisation of [Ca2+]i in vitro has potential to advance the development of therapeutic drugs and understanding of MC4R signalling associated with human obesity.
Collapse
Affiliation(s)
- Shree Senthil Kumar
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathleen Grace Mountjoy
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Correspondence should be addressed to K G Mountjoy:
| |
Collapse
|
24
|
Xu BY, Jin Y, Ma XH, Wang CY, Guo Y, Zhou D. The potential role of mechanically sensitive ion channels in the physiology, injury, and repair of articular cartilage. J Orthop Surg (Hong Kong) 2021; 28:2309499020950262. [PMID: 32840428 DOI: 10.1177/2309499020950262] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biomechanical factors play an extremely important role in regulating the function of articular chondrocytes. Understanding the mechanical factors that drive chondrocyte biological responses is at the heart of our interpretation of cascade events leading to changes in articular cartilage osteoarthritis. The mechanism by which mechanical load is transduced into intracellular signals that can regulate chondrocyte gene expression remains largely unknown. The mechanically sensitive ion channel (MSC) may be one of its specific mechanisms. This review focuses on four ion channels involved in the mechanotransduction of chondrocytes, exploring their properties and the main factors that activate the associated pathways. The upstream and downstream potential relationships between the protein pathways were also explored. The specific biophysical mechanism of the chondrocyte mechanical microenvironment is becoming the focus of research. Elucidating the mechanotransduction mechanism of MSC is essential for the research of biophysical pathogenesis and targeted drugs in cartilage injury-related diseases.
Collapse
Affiliation(s)
- Bo-Yang Xu
- School of Acupuncture-Moxibustion and Tuina, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yu Jin
- School of Chinese Medicine, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Xiao-Hui Ma
- School of Culture and Health Communication, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chi-Yu Wang
- Department of Electrical Engineering and Computer Sciences, 1438University of California, Berkeley, CA, USA
| | - Yi Guo
- School of Chinese Medicine, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Research Center of Experimental Acupuncture Science, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People's Republic of China
| | - Dan Zhou
- School of Acupuncture-Moxibustion and Tuina, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Research Center of Experimental Acupuncture Science, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People's Republic of China
| |
Collapse
|
25
|
Sugita S, Mizuno N, Ujihara Y, Nakamura M. Stress fibers of the aortic smooth muscle cells in tissues do not align with the principal strain direction during intraluminal pressurization. Biomech Model Mechanobiol 2021; 20:1003-1011. [PMID: 33515313 PMCID: PMC8154808 DOI: 10.1007/s10237-021-01427-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022]
Abstract
Stress fibers (SFs) in cells transmit external forces to cell nuclei, altering the DNA structure, gene expression, and cell activity. To determine whether SFs are involved in mechanosignal transduction upon intraluminal pressure, this study investigated the SF direction in smooth muscle cells (SMCs) in aortic tissue and strain in the SF direction. Aortic tissues were fixed under physiological pressure of 120 mmHg. First, we observed fluorescently labeled SFs using two-photon microscopy. It was revealed that SFs in the same smooth muscle layers were aligned in almost the same direction, and the absolute value of the alignment angle from the circumferential direction was 16.8° ± 5.2° (n = 96, mean ± SD). Second, we quantified the strain field in the aortic tissue in reference to photo-bleached markers. It was found in the radial-circumferential plane that the largest strain direction was − 21.3° ± 11.1°, and the zero normal strain direction was 28.1° ± 10.2°. Thus, the SFs in aortic SMCs were not in line with neither the largest strain direction nor the zero strain direction, although their orientation was relatively close to the zero strain direction. These results suggest that SFs in aortic SMCs undergo stretch, but not maximal and transmit the force to nuclei under intraluminal pressure.
Collapse
Affiliation(s)
- Shukei Sugita
- Biomechanics Laboratory, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan. .,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan.
| | - Naoto Mizuno
- Biomechanics Laboratory, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Yoshihiro Ujihara
- Biomechanics Laboratory, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Masanori Nakamura
- Biomechanics Laboratory, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan
| |
Collapse
|
26
|
The gravistimulation-induced very slow Ca 2+ increase in Arabidopsis seedlings requires MCA1, a Ca 2+-permeable mechanosensitive channel. Sci Rep 2021; 11:227. [PMID: 33420331 PMCID: PMC7794229 DOI: 10.1038/s41598-020-80733-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Gravity is a critical environmental factor affecting the morphology and function of plants on Earth. Gravistimulation triggered by changes in the gravity vector induces an increase in the cytoplasmic free calcium ion concentration ([Ca2+]c) as an early process of gravity sensing; however, its role and molecular mechanism are still unclear. When seedlings of Arabidopsis thaliana expressing apoaequorin were rotated from the upright position to the upside-down position, a biphasic [Ca2+]c-increase composed of a fast-transient [Ca2+]c-increase followed by a slow [Ca2+]c-increase was observed. We find here a novel type [Ca2+]c-increase, designated a very slow [Ca2+]c-increase that is observed when the seedlings were rotated back to the upright position from the upside-down position. The very slow [Ca2+]c-increase was strongly attenuated in knockout seedlings defective in MCA1, a mechanosensitive Ca2+-permeable channel (MSCC), and was partially restored in MCA1-complemented seedlings. The mechanosensitive ion channel blocker, gadolinium, blocked the very slow [Ca2+]c-increase. This is the first report suggesting the possible involvement of MCA1 in an early event related to gravity sensing in Arabidopsis seedlings.
Collapse
|
27
|
Ji C, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca 2+ signaling to regulate extracellular matrix remodeling. FEBS J 2020; 288:5867-5887. [PMID: 33300268 DOI: 10.1111/febs.15665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
In healthy connective tissues, mechanosensors trigger the generation of Ca2+ signals, which enable cells to maintain the structure of the fibrillar collagen matrix through actomyosin contractile forces. Transient receptor potential vanilloid type 4 (TRPV4) is a mechanosensitive Ca2+ -permeable channel that, when expressed in cell-matrix adhesions of the plasma membrane, regulates extracellular matrix (ECM) remodeling. In high prevalence disorders such as fibrosis and tumor metastasis, dysregulated matrix remodeling is associated with disruptions of Ca2+ homeostasis and TRPV4 function. Here, we consider that ECM polymers transmit cell-activating mechanical signals to TRPV4 in cell adhesions. When activated, TRPV4 regulates fibrillar collagen remodeling, thereby altering the mechanical properties of the ECM. In this review, we integrate functionally connected processes of matrix remodeling to highlight how TRPV4 in cell adhesions and matrix mechanics are reciprocally regulated through Ca2+ signaling.
Collapse
Affiliation(s)
- Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
28
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
29
|
Durotaxis Index of 3T3 Fibroblast Cells Scales with Stiff-to-Soft Membrane Tension Polarity. Biophys J 2020; 119:1427-1438. [PMID: 32898477 DOI: 10.1016/j.bpj.2020.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023] Open
Abstract
Cell durotaxis is an essential process in tissue development. Although the role of cytoskeleton in cell durotaxis has been widely studied, whether cell volume and membrane tension are implicated in cell durotaxis remains unclear. By quantifying the volume distribution during cell durotaxis, we show that the volume of 3T3 fibroblast cells decreases by almost 40% as cells migrate toward stiffer regions of gradient gels. Inhibiting ion transporters that can reduce the amplitude of cell volume decrease significantly suppresses cell durotaxis. However, from the correlation analysis, we find that durotaxis index does not correlate with the cell volume decrease. It scales with the membrane tension difference in the direction of stiffness gradient. Because of the tight coupling between cell volume and membrane tension, inhibition of Na+/K+ ATPase and Na+/H+ exchanger results in smaller volume decrease and membrane tension difference. Collectively, our findings indicate that the polarization of membrane tension is a central regulator of cell durotaxis, and Na+/K+ ATPase and Na+/H+ exchanger can help to maintain the membrane tension polarity.
Collapse
|
30
|
Role of UDP-Sugar Receptor P2Y 14 in Murine Osteoblasts. Int J Mol Sci 2020; 21:ijms21082747. [PMID: 32326617 PMCID: PMC7216066 DOI: 10.3390/ijms21082747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The purinergic (P2) receptor P2Y14 is the only P2 receptor that is stimulated by uridine diphosphate (UDP)-sugars and its role in bone formation is unknown. We confirmed P2Y14 expression in primary murine osteoblasts (CB-Ob) and the C2C12-BMP2 osteoblastic cell line (C2-Ob). UDP-glucose (UDPG) had undiscernible effects on cAMP levels, however, induced dose-dependent elevations in the cytosolic free calcium concentration ([Ca2+]i) in CB-Ob, but not C2-Ob cells. To antagonize the P2Y14 function, we used the P2Y14 inhibitor PPTN or generated CRISPR-Cas9-mediated P2Y14 knockout C2-Ob clones (Y14KO). P2Y14 inhibition facilitated calcium signalling and altered basal cAMP levels in both models of osteoblasts. Importantly, P2Y14 inhibition augmented Ca2+ signalling in response to ATP, ADP and mechanical stimulation. P2Y14 knockout or inhibition reduced osteoblast proliferation and decreased ERK1/2 phosphorylation and increased AMPKα phosphorylation. During in vitro osteogenic differentiation, P2Y14 inhibition modulated the timing of osteogenic gene expression, collagen deposition, and mineralization, but did not significantly affect differentiation status by day 28. Of interest, while P2ry14-/- mice from the International Mouse Phenotyping Consortium were similar to wild-type controls in bone mineral density, their tibia length was significantly increased. We conclude that P2Y14 in osteoblasts reduces cell responsiveness to mechanical stimulation and mechanotransductive signalling and modulates osteoblast differentiation.
Collapse
|
31
|
Frachisse JM, Thomine S, Allain JM. Calcium and plasma membrane force-gated ion channels behind development. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:57-64. [PMID: 31783322 DOI: 10.1016/j.pbi.2019.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
During development, tissues are submitted to high variation of compression and tension forces. The roles of the cell wall, the cytoskeleton, the turgor pressure and the cell geometry during this process have received due attention. In contrast, apart from its role in the establishment of turgor pressure, the involvement of the plasma membrane as a transducer of mechanical forces during development has been under studied. Force-gated (FG) or Mechanosensitive (MS) ion channels embedded in the bilayer represent 'per se' archetypal mechanosensor able to directly and instantaneously transduce membrane forces into electrical and calcium signals. We discuss here how their fine-tuning, combined with their ability to detect micro-curvature and local membrane tension, allows FG channels to transduce mechanical cues into developmental signals.
Collapse
Affiliation(s)
- Jean-Marie Frachisse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Sciences Plant Saclay, 91198 Gif sur Yvette Cedex, France.
| | - Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Sciences Plant Saclay, 91198 Gif sur Yvette Cedex, France
| | - Jean-Marc Allain
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Inria, Palaiseau, France.
| |
Collapse
|
32
|
Bavi N, Richardson J, Heu C, Martinac B, Poole K. PIEZO1-Mediated Currents Are Modulated by Substrate Mechanics. ACS NANO 2019; 13:13545-13559. [PMID: 31689081 DOI: 10.1021/acsnano.9b07499] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PIEZO1 is a bona fide mammalian mechanically activated channel that has recently been shown to provide instructive cues during neuronal specification, texture sensing, and cell migration where mechanical inputs arise at the interface between the cells and their substrate. Here, we have investigated whether the mechanical properties of the substrate alone can modulate PIEZO1 activity, in response to exogenously applied stimuli, using elastomeric pillar arrays as force transducers. This methodology enables application of mechanical stimuli at cell-substrate contact points by deflecting individual pili. We found that PIEZO1 is more sensitive to substrate deflections with increased spacing between pili (reducing surface roughness) but not on more stiff substrates. Cellular contractility was required for the sensitization of PIEZO1 but was not essential for PIEZO1 activation. Computational modeling suggested that the membrane tension changes generated by pillar deflections were below the membrane tension changes that arise from cellular indentation or high-speed pressure clamp assays. We conclude that the mechanics of the microenvironment can modulate PIEZO1 signaling, highlighting the importance of studying channel activation directly at the cell-substrate interface. We propose that forces arising from actin-mediated contractility and within the lipid bilayer act synergistically to regulate PIEZO1 activation by stimuli applied at contacts between cells and their surroundings.
Collapse
Affiliation(s)
- Navid Bavi
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jessica Richardson
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Celine Heu
- Biomedical Imaging Facility , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW 2010 , Australia
- St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW 2010 , Australia
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
33
|
Nakao N, Maki K, Mofrad MRK, Adachi T. Talin is required to increase stiffness of focal molecular complex in its early formation process. Biochem Biophys Res Commun 2019; 518:579-583. [PMID: 31451222 DOI: 10.1016/j.bbrc.2019.08.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 11/24/2022]
Abstract
For cellular adaptation in mechanical environments, it is important to consider transmission of forces from the outside to the inside of cells via a focal molecular complex. The focal molecular complex, which consists of integrin, talin, vinculin and actin, is known to form in response to a force applied via the extra-cellular matrix (ECM). In the early formation process of the complex, the complex-actin connection is reinforced. These structural changes of the nascent complex result in an increase in its mechanical integrity and overall stiffness, possibly leading to the maturation of the nascent complex by enhancing force transmission. In this study, we hypothesized that the complex component talin is a crucial factor in increasing the stiffness of the nascent complex. To test the hypothesis, we used atomic force microscopy (AFM) to measure the stiffness of the nascent complex using a probe coated with fibronectin. Stiffness measurements were conducted for intact and talin knocked-down cells. Our results demonstrated that talin was required to increase the stiffness of the nascent complex, which could be caused by the reinforced connection between the complex and actin filaments mediated by talin.
Collapse
Affiliation(s)
- Nobuhiko Nakao
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Institute for Frontier Life and Mechanical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Koichiro Maki
- Helsinki Institute of Life Science, University of Helsinki, Haartmaninkatu 8, Helsinki, FI00290, Finland; Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Mohammad R K Mofrad
- Department of Bioengineering, University of California, Berkeley, CA94720, USA; Department of Mechanical Engineering, University of California, Berkeley, CA94720-1762, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, CA94720, Berkeley, USA
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Institute for Frontier Life and Mechanical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
34
|
Qian W, Chen W. Probing Single-Cell Mechanical Allostasis Using Ultrasound Tweezers. Cell Mol Bioeng 2019; 12:415-427. [PMID: 31719924 DOI: 10.1007/s12195-019-00578-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction In response to external stress, cells alter their morphology, metabolic activity, and functions to mechanically adapt to the dynamic, local environment through cell allostasis. To explore mechanotransduction in cellular allostasis, we applied an integrated micromechanical system that combines an 'ultrasound tweezers'-based mechanical stressor and a Förster resonance energy transfer (FRET)-based molecular force biosensor, termed "actinin-sstFRET," to monitor in situ single-cell allostasis in response to transient stimulation in real time. Methods The ultrasound tweezers utilize 1 Hz, 10-s transient ultrasound pulses to acoustically excite a lipid-encapsulated microbubble, which is bound to the cell membrane, and apply a pico- to nano-Newton range of forces to cells through an RGD-integrin linkage. The actinin-sstFRET molecular sensor, which engages the actin stress fibers in live cells, is used to map real-time actomyosin force dynamics over time. Then, the mechanosensitive behaviors were examined by profiling the dynamics in Ca2+ influx, actomyosin cytoskeleton (CSK) activity, and GTPase RhoA signaling to define a single-cell mechanical allostasis. Results By subjecting a 1 Hz, 10-s physical stress, single vascular smooth muscle cells (VSMCs) were observed to remodeled themselves in a biphasic mechanical allostatic manner within 30 min that caused them to adjust their contractility and actomyosin activities. The cellular machinery that underscores the vital role of CSK equilibrium in cellular mechanical allostasis, includes Ca2+ influx, remodeling of actomyosin CSK and contraction, and GTPase RhoA signaling. Mechanical allostasis was observed to be compromised in VSMCs from patients with type II diabetes mellitus (T2DM), which could potentiate an allostatic maladaptation. Conclusions By integrating tools that simultaneously permit localized mechanical perturbation and map actomyosin forces, we revealed distinct cellular mechanical allostasis profiles in our micromechanical system. Our findings of cell mechanical allostasis and maladaptation provide the potential for mechanophenotyping cells to reveal their pathogenic contexts and their biophysical mediators that underlie multi-etiological diseases such as diabetes, hypertension, or aging.
Collapse
Affiliation(s)
- Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201 USA.,Department of Biomedical Engineering, New York University, Brooklyn, NY 11201 USA
| |
Collapse
|
35
|
Stephens AD, Banigan EJ, Marko JF. Chromatin's physical properties shape the nucleus and its functions. Curr Opin Cell Biol 2019; 58:76-84. [PMID: 30889417 PMCID: PMC6692209 DOI: 10.1016/j.ceb.2019.02.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
The cell nucleus encloses, organizes, and protects the genome. Chromatin maintains nuclear mechanical stability and shape in coordination with lamins and the cytoskeleton. Abnormal nuclear shape is a diagnostic marker for human diseases, and it can cause nuclear dysfunction. Chromatin mechanics underlies this link, as alterations to chromatin and its physical properties can disrupt or rescue nuclear shape. The cell can regulate nuclear shape through mechanotransduction pathways that sense and respond to extracellular cues, thus modulating chromatin compaction and rigidity. These findings reveal how chromatin's physical properties can regulate cellular function and drive abnormal nuclear morphology and dysfunction in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| | - Edward J Banigan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
36
|
Youn S, Choi JW, Lee JS, Kim J, Yang IH, Chang JH, Kim HC, Hwang JY. Acoustic Trapping Technique for Studying Calcium Response of a Suspended Breast Cancer Cell: Determination of Its Invasion Potentials. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:737-746. [PMID: 30676954 DOI: 10.1109/tuffc.2019.2894662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A noncontact single-beam acoustic trapping technique has proven to be a promising tool for cell manipulation and characterization that provide essential knowledge for a variety of biomedical applications. Here, we investigated cell characteristics as to whether the calcium responses of suspended breast cancer cells to different acoustic trapping forces are related to their invasiveness. For this, we combined a single-beam acoustic trapping system with a 30-MHz press-focused lithium niobate ultrasound transducer and an epifluorescence microscope. Using the system, intracellular calcium changes of suspended MDA-MB-231 (highly invasive) and MCF-7 (weakly invasive) cells were monitored while trapping the cells at different acoustic pressures. The results showed that a single suspended breast cancer cell isolated by the acoustic microbeam behaved differently on the calcium elevation in response to changes in acoustic trapping force, depending on its invasiveness. In particular, the MDA-MB-231 cells exhibited higher calcium elevation than MCF-7 cells when each cell was trapped at low acoustic pressure. Based on these results, we believe that the single-beam acoustic trapping technique has high potential as an alternative tool for determining the degree of invasiveness of suspended breast cancer cells.
Collapse
|
37
|
Takahashi T, Nakagawa K, Tada S, Tsukamoto A. Low-energy shock waves evoke intracellular Ca 2+ increases independently of sonoporation. Sci Rep 2019; 9:3218. [PMID: 30824781 PMCID: PMC6397190 DOI: 10.1038/s41598-019-39806-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Low-energy shock waves (LESWs) accelerate the healing of a broad range of tissue injuries, including angiogenesis and bone fractures. In cells, LESW irradiations enhance gene expression and protein synthesis. One probable mechanism underlying the enhancements is mechanosensing. Shock waves also can induce sonoporation. Thus, sonoporation is another probable mechanism underlying the enhancements. It remains elusive whether LESWs require sonoporation to evoke cellular responses. An intracellular Ca2+ increase was evoked with LESW irradiations in endothelial cells. The minimum acoustic energy required for sufficient evocation was 1.7 μJ/mm2. With the same acoustic energy, sonoporation, by which calcein and propidium iodide would become permeated, was not observed. It was found that intracellular Ca2+ increases evoked by LESW irradiations do not require sonoporation. In the intracellular Ca2+ increase, actin cytoskeletons and stretch-activated Ca2+ channels were involved; however, microtubules were not. In addition, with Ca2+ influx through the Ca2+ channels, the Ca2+ release through the PLC-IP3-IP3R cascade contributed to the intracellular Ca2+ increase. These results demonstrate that LESW irradiations can evoke cellular responses independently of sonoporation. Rather, LESW irradiations evoke cellular responses through mechanosensing.
Collapse
Affiliation(s)
- Toru Takahashi
- Department of Applied Physics, Graduate School of Science and Engineering, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Keiichi Nakagawa
- Department of Precise Engineering, Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shigeru Tada
- Department of Applied Physics, Graduate School of Science and Engineering, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Akira Tsukamoto
- Department of Applied Physics, Graduate School of Science and Engineering, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan.
| |
Collapse
|
38
|
Santoro R, Perrucci GL, Gowran A, Pompilio G. Unchain My Heart: Integrins at the Basis of iPSC Cardiomyocyte Differentiation. Stem Cells Int 2019; 2019:8203950. [PMID: 30906328 PMCID: PMC6393933 DOI: 10.1155/2019/8203950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular response to the extracellular matrix (ECM) microenvironment mediated by integrin adhesion is of fundamental importance, in both developmental and pathological processes. In particular, mechanotransduction is of growing importance in groundbreaking cellular models such as induced pluripotent stem cells (iPSC), since this process may strongly influence cell fate and, thus, augment the precision of differentiation into specific cell types, e.g., cardiomyocytes. The decryption of the cellular machinery starting from ECM sensing to iPSC differentiation calls for new in vitro methods. Conveniently, engineered biomaterials activating controlled integrin-mediated responses through chemical, physical, and geometrical designs are key to resolving this issue and could foster clinical translation of optimized iPSC-based technology. This review introduces the main integrin-dependent mechanisms and signalling pathways involved in mechanotransduction. Special consideration is given to the integrin-iPSC linkage signalling chain in the cardiovascular field, focusing on biomaterial-based in vitro models to evaluate the relevance of this process in iPSC differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| |
Collapse
|
39
|
Kanoldt V, Fischer L, Grashoff C. Unforgettable force – crosstalk and memory of mechanosensitive structures. Biol Chem 2018; 400:687-698. [DOI: 10.1515/hsz-2018-0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
Abstract
Abstract
The ability of cells to sense and respond to mechanical stimuli is crucial for many developmental and homeostatic processes, while mechanical dysfunction of cells has been associated with numerous pathologies including muscular dystrophies, cardiovascular defects and epithelial disorders. Yet, how cells detect and process mechanical information is still largely unclear. In this review, we outline major mechanisms underlying cellular mechanotransduction and we summarize the current understanding of how cells integrate information from distinct mechanosensitive structures to mediate complex mechanoresponses. We also discuss the concept of mechanical memory and describe how cells store information on previous mechanical events for different periods of time.
Collapse
Affiliation(s)
- Verena Kanoldt
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Lisa Fischer
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
- Department of Quantitative Cell Biology , Institute of Molecular Cell Biology, University of Münster , 48149 Münster , Germany
| |
Collapse
|
40
|
Sera T, Arai M, Cui Z, Onose K, Karimi A, Kudo S. Unloading of intercellular tension induces the directional translocation of PKCα. J Cell Physiol 2018; 234:9764-9777. [PMID: 30387146 DOI: 10.1002/jcp.27662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
The migration of endothelial cells (ECs) is closely associated with a Ca2+ -dependent protein, protein kinase Cα (PKCα). The disruption of intercellular adhesion by single-cell wounding has been shown to induce the directional translocation of PKCα. We hypothesized that this translocation of PKCα is induced by mechanical stress, such as unloading of intercellular tension, or by intercellular communication, such as gap junction-mediated and paracrine signaling. In the current study, we found that the disruption of intercellular adhesion induced the directional translocation of PKCα even when gap junction-mediated and paracrine signaling were inhibited. Conversely, it did not occur when the mechanosensitive channel was inhibited. In addition, the strain field of substrate attributable to the disruption of intercellular adhesion tended to be larger at the areas corresponding with PKCα translocation. Recently, we found that a direct mechanical stimulus induced the accumulation of PKCα at the stimulus area, involving Ca 2+ influx from extracellular space. These results indicated that the unloading of intercellular tension induced directional translocation of PKCα, which required Ca 2+ influx from extracellular space. The results of this study indicate the involvement of PKCα in the Ca 2+ signaling pathway in response to mechanical stress in ECs.
Collapse
Affiliation(s)
- Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masataka Arai
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Zhonghua Cui
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Koichi Onose
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Alireza Karimi
- International Research Fellow, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Zielinski A, Linnartz C, Pleschka C, Dreissen G, Springer R, Merkel R, Hoffmann B. Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application. Cytoskeleton (Hoboken) 2018; 75:385-394. [DOI: 10.1002/cm.21470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/18/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Alexander Zielinski
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Christina Linnartz
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Catharina Pleschka
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Georg Dreissen
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Ronald Springer
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| |
Collapse
|
42
|
Tojkander S, Ciuba K, Lappalainen P. CaMKK2 Regulates Mechanosensitive Assembly of Contractile Actin Stress Fibers. Cell Rep 2018; 24:11-19. [DOI: 10.1016/j.celrep.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
|
43
|
Arai M, Sera T, Hasegawa T, Kudo S. Spatial and temporal translocation of PKCα in single endothelial cell in response to mechanical stimulus. Exp Cell Res 2018; 367:205-215. [DOI: 10.1016/j.yexcr.2018.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
|
44
|
Electrophysiological experiments in microgravity: lessons learned and future challenges. NPJ Microgravity 2018; 4:7. [PMID: 29619409 PMCID: PMC5876337 DOI: 10.1038/s41526-018-0042-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 02/08/2023] Open
Abstract
Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.
Collapse
|
45
|
Maneshi MM, Sachs F, Hua SZ. Heterogeneous Cytoskeletal Force Distribution Delineates the Onset Ca 2+ Influx Under Fluid Shear Stress in Astrocytes. Front Cell Neurosci 2018; 12:69. [PMID: 29615869 PMCID: PMC5864927 DOI: 10.3389/fncel.2018.00069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 01/13/2023] Open
Abstract
Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms) shear pulse with fast rise time (2 ms) produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D) eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.
Collapse
Affiliation(s)
- Mohammad M Maneshi
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, United States.,Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, United States
| | - Susan Z Hua
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, United States.,Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
46
|
Arikawa K. Theoretical framework for analyzing structural compliance properties of proteins. Biophys Physicobiol 2018; 15:58-74. [PMID: 29607281 PMCID: PMC5873042 DOI: 10.2142/biophysico.15.0_58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/27/2017] [Indexed: 01/29/2023] Open
Abstract
We propose methods for directly analyzing structural compliance (SC) properties of elastic network models of proteins, and we also propose methods for extracting information about motion properties from the SC properties. The analysis of SC properties involves describing the relationships between the applied forces and the deformations. When decomposing the motion according to the magnitude of SC (SC mode decomposition), we can obtain information about the motion properties under the assumption that the lower SC mode motions or the softer motions occur easily. For practical applications, the methods are formulated in a general form. The parts where forces are applied and those where deformations are evaluated are separated from each other for enabling the analyses of allosteric interactions between the specified parts. The parts are specified not only by the points but also by the groups of points (the groups are treated as flexible bodies). In addition, we propose methods for quantitatively evaluating the properties based on the screw theory and the considerations of the algebraic structures of the basic equations expressing the SC properties. These methods enable quantitative discussions about the relationships between the SC mode motions and the motions estimated from two different conformations; they also help identify the key parts that play important roles for the motions by comparing the SC properties with those of partially constrained models. As application examples, lactoferrin and ATCase are analyzed. The results show that we can understand their motion properties through their lower SC mode motions or the softer motions.
Collapse
Affiliation(s)
- Keisuke Arikawa
- Department of Mechanical Engineering Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan
| |
Collapse
|
47
|
Mollaeian K, Liu Y, Bi S, Ren J. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells. J Mech Behav Biomed Mater 2018; 78:65-73. [DOI: 10.1016/j.jmbbm.2017.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022]
|
48
|
Li Y, Yuan J, Wang Q, Sun L, Sha Y, Li Y, Wang L, Wang Z, Ma Y, Cao H. The collective influence of 1, 25-dihydroxyvitamin D 3 with physiological fluid shear stress on osteoblasts. Steroids 2018; 129:9-16. [PMID: 29155218 DOI: 10.1016/j.steroids.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/23/2017] [Accepted: 11/12/2017] [Indexed: 11/27/2022]
Abstract
1, 25-dihydroxyvitamin D3 (1, 25 (OH)2 D3) and mechanical stimuli in physiological environment contributes greatly to osteoporosis pathogenesis. Wide investigations have been conducted on how 1, 25-dihydroxyvitamin D3 and mechanical stimuli separately impact osteoblasts. This study reports the collective influences of 1, 25-dihydroxyvitamin D3 and flow shear stress (FSS) on biological functions of osteoblasts. 1, 25 (OH)2 D3 were prepared in various kinds of concentrations (0, 1, 10, 100 nmmol/L), while physiological fluid shear stress (12 dynes/cm2) was produced by using a parallel-plate fluid flow system. 1, 25 (OH)2 D3 affects the responses of ROBs to FSS, including the inhibition of NO release and cell proliferation as well as the promotion of PGE2 release and cell differentiation. These findings provide a possible mechanism by which 1, 25(OH)2 D3 influences osteoblasts' responses to FSS, thus most probably providing guidance for the selection of 1, 25(OH)2 D3 concentration and mechanical loading in order to produce functional bone tissues in vitro.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China.
| | - Jiafeng Yuan
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Qianwen Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lijie Sun
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yunying Sha
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yanxiang Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lizhong Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Zhonghua Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yonggang Ma
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Hui Cao
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| |
Collapse
|
49
|
Abstract
Mechanosensitive (MS) channels protect bacteria against hypo-osmotic shock and fulfil additional functions. Hypo-osmotic shock leads to high turgor pressure that can cause cell rupture and death. MS channels open under these conditions and release unspecifically solutes and consequently the turgor pressure. They can recognise the raised pressure via the increased tension in the cell membrane. Currently, a better understanding how MS channels can sense tension on molecular level is developing because the interaction of the lipid bilayer with the channel is being investigated in detail. The MS channel of large conductance (MscL) and of small conductance (MscS) have been distinguished and studied in molecular detail. In addition, larger channels were found that contain a homologous region corresponding to MscS so that MscS represents a family of channels. Often several members of this family are present in a species. The importance of this family is underlined by the fact that members can be found not only in bacteria but also in higher organisms. While MscL and MscS have been studied for years in particular by electrophysiology, mutagenesis, molecular dynamics, X-ray crystallography and other biophysical techniques, only recently more details are emerging about other members of the MscS-family.
Collapse
|
50
|
Szczesny SE, Mauck RL. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. J Biomech Eng 2017; 139:2592356. [PMID: 27918797 DOI: 10.1115/1.4035350] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104;Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|