1
|
Ren C, Zhang Z, Dou Y, Sun Y, Fu Z, Wang L, Wang K, Gao C, Fan Y, Sun S, Yue X, Li C, Gao L, Liang X, Ma C, Wu Z. DNA Sensor ABCF1 Phase Separates With cccDNA to Inhibit Hepatitis B Virus Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409485. [PMID: 39498874 PMCID: PMC11672287 DOI: 10.1002/advs.202409485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) contributes to viral persistence and recurrence, however, how the host innate immune system responds to cccDNA is still less known. Here, based on cccDNA-hepatic proteins interaction profiling, DNA sensor ATP-binding cassette subfamily F member 1 (ABCF1) is identified as a novel cccDNA-binding protein and host restriction factor for HBV replication. Mechanistically, ABCF1 recognizes cccDNA by KKx4 motif and forms phase-separated condensates by the poly-glutamine (PolyQ) region of the N-terminal intrinsically disordered low-complexity domain (LCD). Subsequently, ABCF1-cccDNA phase separation not only activates the type I/III interferon (IFN-I/III) pathway but also prevents Pol II accumulation on cccDNA to inhibit HBV transcription. In turn, to sustain viral replication, HBV reduces ABCF1 expression by HBx-mediated ubiquitination and degradation of SRY-box transcription factor 4(SOX4), leading to defects in SOX4-mediated upregulation of ABCF1 transcription. Taken together, the study shows that ABCF1 interacts with cccDNA to form phase separation that dually drives innate immune signaling and HBV transcriptional inhibition. These findings shed new light on the understanding of host defense against cccDNA and provide a novel promising therapeutic strategy for HBV infection.
Collapse
Affiliation(s)
- Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yutong Dou
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Zhendong Fu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Kai Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yuchen Fan
- Department of HepatologyQilu HospitalCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Xuetian Yue
- Department of Cellular BiologySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of EducationDepartment of Histology and EmbryologySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| |
Collapse
|
2
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 PMCID: PMC11617093 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
3
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Caraba B, Stirpe M, Palermo V, Vaccher U, Bianchi MM, Falcone C, Mazzoni C. Yeast Lsm Pro-Apoptotic Mutants Show Defects in Autophagy. Int J Mol Sci 2023; 24:13708. [PMID: 37762007 PMCID: PMC10530990 DOI: 10.3390/ijms241813708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
LSM4 is an essential yeast gene encoding a component of different LSM complexes involved in the regulation of mRNA splicing, stability, and translation. In previous papers, we reported that the expression in S. cerevisiae of the K. lactis LSM4 gene lacking the C-terminal Q/N-rich domain in an Lsm4 null strain S. cerevisiae (Sclsm4Δ1) restored cell viability. Nevertheless, in this transformed strain, we observed some phenotypes that are typical markers of regulated cell death, reactive oxygen species (ROS), and oxidated RNA accumulation. In this paper, we report that a similar truncation operated in the S. cerevisiae LSM4 gene confers on cells the same phenotypes observed with the K. lactis lsm4Δ1 gene. Up until now, there was no evidence of the direct involvement of LSM4 in autophagy. Here we found that the Sclsm4Δ1 mutant showed a block in the autophagic process and was very sensitive to nitrogen starvation or treatment with low doses of rapamycin, an inducer of autophagy. Moreover, both during nitrogen starvation and aging, the Sclsm4Δ1 mutant accumulated cytoplasmic autophagy-related structures, suggesting a role of Lsm4 in a later step of the autophagy process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cristina Mazzoni
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy; (B.C.); (M.S.); (V.P.); (U.V.); (M.M.B.); (C.F.)
| |
Collapse
|
5
|
Huang YH, Han JQ, Ma B, Cao WQ, Li XK, Xiong Q, Zhao H, Zhao R, Zhang X, Zhou Y, Wei W, Tao JJ, Zhang WK, Qian W, Chen SY, Yang C, Yin CC, Zhang JS. A translational regulator MHZ9 modulates ethylene signaling in rice. Nat Commun 2023; 14:4674. [PMID: 37542048 PMCID: PMC10403538 DOI: 10.1038/s41467-023-40429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Ethylene plays essential roles in rice growth, development and stress adaptation. Translational control of ethylene signaling remains unclear in rice. Here, through analysis of an ethylene-response mutant mhz9, we identified a glycine-tyrosine-phenylalanine (GYF) domain protein MHZ9, which positively regulates ethylene signaling at translational level in rice. MHZ9 is localized in RNA processing bodies. The C-terminal domain of MHZ9 interacts with OsEIN2, a central regulator of rice ethylene signaling, and the N-terminal domain directly binds to the OsEBF1/2 mRNAs for translational inhibition, allowing accumulation of transcription factor OsEIL1 to activate the downstream signaling. RNA-IP seq and CLIP-seq analyses reveal that MHZ9 associates with hundreds of RNAs. Ribo-seq analysis indicates that MHZ9 is required for the regulation of ~ 90% of genes translationally affected by ethylene. Our study identifies a translational regulator MHZ9, which mediates translational regulation of genes in response to ethylene, facilitating stress adaptation and trait improvement in rice.
Collapse
Affiliation(s)
- Yi-Hua Huang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-Qi Han
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wu-Qiang Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Kai Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - He Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Jun Tao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Yang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Cui-Cui Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Li H, Ju Y, Liu WW, Ma YY, Ye H, Li N. Phase Separation of Purified Human LSM4 Protein. Mol Biol 2023. [DOI: 10.1134/s0026893323010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Different Intermolecular Interactions Drive Nonpathogenic Liquid-Liquid Phase Separation and Potentially Pathogenic Fibril Formation by TDP-43. Int J Mol Sci 2022; 23:ijms232315227. [PMID: 36499553 PMCID: PMC9741235 DOI: 10.3390/ijms232315227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/07/2022] Open
Abstract
The liquid-liquid phase separation (LLPS) of proteins has been found ubiquitously in eukaryotic cells, and is critical in the control of many biological processes by forming a temporary condensed phase with different bimolecular components. TDP-43 is recruited to stress granules in cells and is the main component of TDP-43 granules and proteinaceous amyloid inclusions in patients with amyotrophic lateral sclerosis (ALS). TDP-43 low complexity domain (LCD) is able to de-mix in solution, forming the protein condensed droplets, and amyloid aggregates would form from the droplets after incubation. The molecular interactions regulating TDP-43 LCD LLPS were investigated at the protein fusion equilibrium stage, when the droplets stopped growing after incubation. We found the molecules in the droplet were still liquid-like, but with enhanced intermolecular helix-helix interactions. The protein would only start to aggregate after a lag time and aggregate slower than at the condition when the protein does not phase separately into the droplets, or the molecules have a reduced intermolecular helix-helix interaction. In the protein condensed droplets, a structural transition intermediate toward protein aggregation was discovered involving a decrease in the intermolecular helix-helix interaction and a reduction in the helicity. Our results therefore indicate that different intermolecular interactions drive LLPS and fibril formation. The discovery that TDP-43 LCD aggregation was faster through the pathway without the first protein phase separation supports that LLPS and the intermolecular helical interaction could help maintain the stability of TDP-43 LCD.
Collapse
|
8
|
Hurst Z, Liu W, Shi Q, Herman PK. A distinct P-body-like granule is induced in response to the disruption of microtubule integrity in Saccharomyces cerevisiae. Genetics 2022; 222:6649695. [PMID: 35876801 PMCID: PMC9434292 DOI: 10.1093/genetics/iyac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Processing-body (P-body) is a conserved membraneless organelle that has been implicated in the storage and/or decay of mRNAs. Although P-bodies have been shown to be induced by a variety of conditions, the mechanisms controlling their assembly and their precise physiological roles in eukaryotic cells are still being worked out. In this study, we find that a distinct subtype of P-body is induced in response to conditions that disrupt microtubule integrity in the budding yeast, Saccharomyces cerevisiae. For example, treatment with the microtubule-destabilizing agent, benomyl, led to the induction of these novel ribonucleoprotein (RNP) granules. A link to microtubules had been noted previously and the observations here extend our understanding by demonstrating that the induced foci differ from traditional P-bodies in a number of significant ways. These include differences in overall granule morphology, protein composition and the manner in which their induction is regulated. Of particular note, several key P-body constituents are absent from these Benomyl-Induced Granules (BIGs), including the Pat1 protein that is normally required for efficient P-body assembly. However, these novel RNP structures still contain many known P-body proteins and exhibit similar hallmarks of a liquid-like compartment. In all, the data suggest that the disruption of microtubule integrity leads to the formation of a novel type of P-body granule that may have distinct biological activities in the cell. Future work will aim to identify the biological activities of these BIGs and to determine, in turn, whether these P-body-like granules have any role in the regulation of microtubule dynamics.
Collapse
Affiliation(s)
- Zachary Hurst
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Wenfang Liu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Qian Shi
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Paul K Herman
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| |
Collapse
|
9
|
Nag N, Sasidharan S, Uversky VN, Saudagar P, Tripathi T. Phase separation of FG-nucleoporins in nuclear pore complexes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119205. [PMID: 34995711 DOI: 10.1016/j.bbamcr.2021.119205] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
The nuclear envelope (NE) is a bilayer membrane that separates and physically isolates the genetic material from the cytoplasm. Nuclear pore complexes (NPCs) are cylindrical structures embedded in the NE and remain the sole channel of communication between the nucleus and the cytoplasm. The interior of NPCs contains densely packed intrinsically disordered FG-nucleoporins (FG-Nups), consequently forming a permeability barrier. This barrier facilitates the selection and specificity of the cargoes that are imported, exported, or shuttled through the NPCs. Recent studies have revealed that FG-Nups undergo the process of liquid-liquid phase separation into liquid droplets. Moreover, these liquid droplets mimic the permeability barrier observed in the interior of NPCs. This review highlights the phase separation of FG-Nups occurring inside the NPCs rooted in the NE. We discuss the phase separation of FG-Nups and compare the different aspects contributing to their phase separation. Furthermore, several diseases caused by the aberrant phase separation of the proteins are examined with respect to NEs. By understanding the fundamental process of phase separation at the nuclear membrane, the review seeks to explore the parameters influencing this phenomenon as well as its importance, ultimately paving the way for better research on the structure-function relationship of biomolecular condensates.
Collapse
Affiliation(s)
- Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, United States; Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India.
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
10
|
Jaquet V, Wallerich S, Voegeli S, Túrós D, Viloria EC, Becskei A. Determinants of the temperature adaptation of mRNA degradation. Nucleic Acids Res 2022; 50:1092-1110. [PMID: 35018460 PMCID: PMC8789057 DOI: 10.1093/nar/gkab1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
The rate of chemical reactions increases proportionally with temperature, but the interplay of biochemical reactions permits deviations from this relation and adaptation. The degradation of individual mRNAs in yeast increased to varying degrees with temperature. We examined how these variations are influenced by the translation and codon composition of mRNAs. We developed a method that revealed the existence of a neutral half-life above which mRNAs are stabilized by translation but below which they are destabilized. The proportion of these two mRNA subpopulations remained relatively constant under different conditions, even with slow cell growth due to nutrient limitation, but heat shock reduced the proportion of translationally stabilized mRNAs. At the same time, the degradation of these mRNAs was partially temperature-compensated through Upf1, the mediator of nonsense-mediated decay. Compensation was also promoted by some asparagine and serine codons, whereas tyrosine codons promote temperature sensitization. These codons play an important role in the degradation of mRNAs encoding key cell membrane and cell wall proteins, which promote cell integrity.
Collapse
Affiliation(s)
- Vincent Jaquet
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sandrine Wallerich
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sylvia Voegeli
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Demeter Túrós
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Eduardo C Viloria
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Kershaw CJ, Nelson MG, Lui J, Bates CP, Jennings MD, Hubbard SJ, Ashe MP, Grant CM. Integrated multi-omics reveals common properties underlying stress granule and P-body formation. RNA Biol 2021; 18:655-673. [PMID: 34672913 PMCID: PMC8782181 DOI: 10.1080/15476286.2021.1976986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Non-membrane-bound compartments such as P-bodies (PBs) and stress granules (SGs) play important roles in the regulation of gene expression following environmental stresses. We have systematically and quantitatively determined the protein and mRNA composition of PBs and SGs formed before and after nutrient stress. We find that high molecular weight (HMW) complexes exist prior to glucose depletion that we propose may act as seeds for further condensation of proteins forming mature PBs and SGs. We identify an enrichment of proteins with low complexity and RNA binding domains, as well as long, structured mRNAs that are poorly translated following nutrient stress. Many proteins and mRNAs are shared between PBs and SGs including several multivalent RNA binding proteins that promote condensate interactions during liquid-liquid phase separation. We uncover numerous common protein and RNA components across PBs and SGs that support a complex interaction profile during the maturation of these biological condensates. These interaction networks represent a tuneable response to stress, highlighting previously unrecognized condensate heterogeneity. These studies therefore provide an integrated and quantitative understanding of the dynamic nature of key biological condensates.
Collapse
Affiliation(s)
- Christopher J Kershaw
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Michael G Nelson
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Jennifer Lui
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Christian P Bates
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Martin D Jennings
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Simon J Hubbard
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Mark P Ashe
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Chris M Grant
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| |
Collapse
|
12
|
Ismail H, Liu X, Yang F, Li J, Zahid A, Dou Z, Liu X, Yao X. Mechanisms and regulation underlying membraneless organelle plasticity control. J Mol Cell Biol 2021; 13:239-258. [PMID: 33914074 PMCID: PMC8339361 DOI: 10.1093/jmcb/mjab028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution has enabled living cells to adopt their structural and functional complexity by organizing intricate cellular compartments, such as membrane-bound and membraneless organelles (MLOs), for spatiotemporal catalysis of physiochemical reactions essential for cell plasticity control. Emerging evidence and view support the notion that MLOs are built by multivalent interactions of biomolecules via phase separation and transition mechanisms. In healthy cells, dynamic chemical modifications regulate MLO plasticity, and reversible phase separation is essential for cell homeostasis. Emerging evidence revealed that aberrant phase separation results in numerous neurodegenerative disorders, cancer, and other diseases. In this review, we provide molecular underpinnings on (i) mechanistic understanding of phase separation, (ii) unifying structural and mechanistic principles that underlie this phenomenon, (iii) various mechanisms that are used by cells for the regulation of phase separation, and (iv) emerging therapeutic and other applications.
Collapse
Affiliation(s)
- Hazrat Ismail
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Junying Li
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Ayesha Zahid
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| |
Collapse
|
13
|
Palermo V, Stirpe M, Bianchi MM, Rinaldi T, Cirigliano A, Ragnini-Wilson A, Falcone C, Mazzoni C. The C-terminal region of yeast ubiquitin-protein ligase Not4 mediates its cellular localization and stress response. FEMS Microbiol Lett 2021; 368:6335481. [PMID: 34338747 PMCID: PMC8370887 DOI: 10.1093/femsle/fnab097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
Transient modification of the environment involves the expression of specific genes and
degradation of mRNAs and proteins. How these events are linked is poorly understood.
CCR4-NOT is an evolutionary conserved complex involved in transcription initiation and
mRNA degradation. In this paper, we report that the yeast Not4 localizes in cytoplasmic
foci after cellular stress. We focused our attention on the functional characterization of
the C-terminus of the Not4 protein. Molecular dissection of this region indicates that the
removal of the last 120 amino acids, does not affect protein localization and function, in
that the protein is still able to suppress the thermosensitivity observed in the
not4Δ mutant. In addition, such shortened form of Not4, as well its
absence, increases the transcription of stress-responsive genes conferring to the cell
high resistance to the oxidative stress. On the contrary, the last C-terminal 211 amino
acids are required for proper Not4 localization at cytoplasmic foci after stress. This
truncated version of Not4 fails to increase the transcription of the stress genes, is more
stable and seems to be toxic to cells undergoing oxidative stress.
Collapse
Affiliation(s)
- Vanessa Palermo
- Department of Biology and Biotechnology "C. Darwin", Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Mariarita Stirpe
- Department of Biology and Biotechnology "C. Darwin", Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Michele Maria Bianchi
- Department of Biology and Biotechnology "C. Darwin", Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology "C. Darwin", Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Angela Cirigliano
- Department of Biology and Biotechnology "C. Darwin", Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Antonella Ragnini-Wilson
- Department of Biology, University of Tor Vergata Rome, Viale Della Ricerca Scientifica, 00133 Rome, Italy
| | - Claudio Falcone
- Department of Biology and Biotechnology "C. Darwin", Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Cristina Mazzoni
- Department of Biology and Biotechnology "C. Darwin", Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
14
|
Frank F, Liu X, Ortlund EA. Glucocorticoid receptor condensates link DNA-dependent receptor dimerization and transcriptional transactivation. Proc Natl Acad Sci U S A 2021; 118:e2024685118. [PMID: 34285072 PMCID: PMC8325269 DOI: 10.1073/pnas.2024685118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The glucocorticoid receptor (GR) is a ligand-regulated transcription factor (TF) that controls the tissue- and gene-specific transactivation and transrepression of thousands of target genes. Distinct GR DNA-binding sequences with activating or repressive activities have been identified, but how they modulate transcription in opposite ways is not known. We show that GR forms phase-separated condensates that specifically concentrate known coregulators via their intrinsically disordered regions (IDRs) in vitro. A combination of dynamic, multivalent (between IDRs) and specific, stable interactions (between LxxLL motifs and the GR ligand-binding domain) control the degree of recruitment. Importantly, GR DNA binding directs the selective partitioning of coregulators within GR condensates such that activating DNAs cause enhanced recruitment of coactivators. Our work shows that condensation controls GR function by modulating coregulator recruitment and provides a mechanism for the up- and down-regulation of GR target genes controlled by distinct DNA recognition elements.
Collapse
Affiliation(s)
- Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
15
|
Alvarado-Marchena L, Marquez-Molins J, Martinez-Perez M, Aparicio F, Pallás V. Mapping of Functional Subdomains in the atALKBH9B m 6A-Demethylase Required for Its Binding to the Viral RNA and to the Coat Protein of Alfalfa Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2021; 12:701683. [PMID: 34290728 PMCID: PMC8287571 DOI: 10.3389/fpls.2021.701683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 06/01/2023]
Abstract
N 6-methyladenosine (m6A) modification is a dynamically regulated RNA modification that impacts many cellular processes and pathways. This epitranscriptomic methylation relies on the participation of RNA methyltransferases (referred to as "writers") and demethylases (referred to as "erasers"), respectively. We previously demonstrated that the Arabidopsis thaliana protein atALKBH9B showed m6A-demethylase activity and interacted with the coat protein (CP) of alfalfa mosaic virus (AMV), causing a profound impact on the viral infection cycle. To dissect the functional activity of atALKBH9B in AMV infection, we performed a protein-mapping analysis to identify the putative domains required for regulating this process. In this context, the mutational analysis of the protein revealed that the residues between 427 and 467 positions are critical for in vitro binding to the AMV RNA. The atALKBH9B amino acid sequence showed intrinsically disordered regions (IDRs) located at the N-terminal part delimiting the internal AlkB-like domain and at the C-terminal part. We identified an RNA binding domain containing an RGxxxRGG motif that overlaps with the C-terminal IDR. Moreover, bimolecular fluorescent experiments allowed us to determine that residues located between 387 and 427 are critical for the interaction with the AMV CP, which should be critical for modulating the viral infection process. Finally, we observed that atALKBH9B deletions of either N-terminal 20 residues or the C-terminal's last 40 amino acids impede their accumulation in siRNA bodies. The involvement of the regions responsible for RNA and viral CP binding and those required for its localization in stress granules in the viral cycle is discussed.
Collapse
|
16
|
Wang L, Yang W, Li B, Yuan S, Wang F. Response to stress in biological disorders: Implications of stress granule assembly and function. Cell Prolif 2021; 54:e13086. [PMID: 34170048 PMCID: PMC8349659 DOI: 10.1111/cpr.13086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
It is indispensable for cells to adapt and respond to environmental stresses, in order for organisms to survive. Stress granules (SGs) are condensed membrane‐less organelles dynamically formed in the cytoplasm of eukaryotes cells to cope with diverse intracellular or extracellular stress factors, with features of liquid‐liquid phase separation. They are composed of multiple constituents, including translationally stalled mRNAs, translation initiation factors, RNA‐binding proteins and also non‐RNA‐binding proteins. SG formation is triggered by stress stimuli, viral infection and signal transduction, while aberrant assembly of SGs may contribute to tissue degenerative diseases. Recently, a growing body of evidence has emerged on SG response mechanisms for cells facing high temperatures, oxidative stress and osmotic stress. In this review, we aim to summarize factors affecting SGs assembly, present the impact of SGs on germ cell development and other biological processes. We particularly emphasize the significance of recently reported RNA modifications in SG stress responses. In parallel, we also review all current perspectives on the roles of SGs in male germ cells, with a particular focus on the dynamics of SG assembly.
Collapse
Affiliation(s)
- Lingjuan Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weina Yang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuiqiao Yuan
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Fengli Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
17
|
Barraza CE, Solari CA, Rinaldi J, Ojeda L, Rossi S, Ashe MP, Portela P. A prion-like domain of Tpk2 catalytic subunit of protein kinase A modulates P-body formation in response to stress in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118884. [PMID: 33039554 DOI: 10.1016/j.bbamcr.2020.118884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023]
Abstract
Low complexity regions are involved in the assembly and disassembly of P-bodies (PBs). Saccharomyces cerevisiae contains three genes encoding the protein kinase A (PKA) catalytic subunit: TPK1, TPK2 and TPK3. Tpk2 and Tpk3 isoforms localize to PBs upon glucose starvation showing different mechanisms and kinetics of accumulation. In contrast to the other two isoforms, Tpk2 harbors a glutamine-rich prion-like domain (PrLD) at the N-terminus. Here we show that the appearance of Tpk2 foci in response to glucose starvation, heat stress or stationary phase was dependent on its PrLD. Moreover, the PrLD of Tpk2 was necessary for efficient PB and stress granule aggregation during stress conditions and in quiescent cells. Deletion of PrLD does not affect the in vitro and in vivo kinase activity of Tpk2 or its interaction with the regulatory subunit Bcy1. We present evidence that the PrLD of Tpk2 serves as a scaffold domain for PB assembly in a manner that is independent of Pat1 phosphorylation by PKA. In addition, a mutant strain where Tpk2 lacks PrLD showed a decrease of turnover of mRNA during glucose starvation. This work therefore provides new insight into the mechanism of stress-induced cytoplasmic mRNP assembly, and the role of isoform specific domains in the regulation of PKA catalytic subunit specificity and dynamic localization to cytoplasmic RNPs granules.
Collapse
Affiliation(s)
- Carla E Barraza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Clara A Solari
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.
| | - Lucas Ojeda
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Mark P Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| |
Collapse
|
18
|
Salladini E, Jørgensen MLM, Theisen FF, Skriver K. Intrinsic Disorder in Plant Transcription Factor Systems: Functional Implications. Int J Mol Sci 2020; 21:E9755. [PMID: 33371315 PMCID: PMC7767404 DOI: 10.3390/ijms21249755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells are complex biological systems that depend on highly connected molecular interaction networks with intrinsically disordered proteins as essential components. Through specific examples, we relate the conformational ensemble nature of intrinsic disorder (ID) in transcription factors to functions in plants. Transcription factors contain large regulatory ID-regions with numerous orphan sequence motifs, representing potential important interaction sites. ID-regions may affect DNA-binding through electrostatic interactions or allosterically as for the bZIP transcription factors, in which the DNA-binding domains also populate ensembles of dynamic transient structures. The flexibility of ID is well-suited for interaction networks requiring efficient molecular adjustments. For example, Radical Induced Cell Death1 depends on ID in transcription factors for its numerous, structurally heterogeneous interactions, and the JAZ:MYC:MED15 regulatory unit depends on protein dynamics, including binding-associated unfolding, for regulation of jasmonate-signaling. Flexibility makes ID-regions excellent targets of posttranslational modifications. For example, the extent of phosphorylation of the NAC transcription factor SOG1 regulates target gene expression and the DNA-damage response, and phosphorylation of the AP2/ERF transcription factor DREB2A acts as a switch enabling heat-regulated degradation. ID-related phase separation is emerging as being important to transcriptional regulation with condensates functioning in storage and inactivation of transcription factors. The applicative potential of ID-regions is apparent, as removal of an ID-region of the AP2/ERF transcription factor WRI1 affects its stability and consequently oil biosynthesis. The highlighted examples show that ID plays essential functional roles in plant biology and has a promising potential in engineering.
Collapse
Affiliation(s)
| | | | | | - Karen Skriver
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (E.S.); (M.L.M.J.); (F.F.T.)
| |
Collapse
|
19
|
Takei N, Takada Y, Kawamura S, Sato K, Saitoh A, Bormann J, Yuen WS, Carroll J, Kotani T. Changes in subcellular structures and states of pumilio 1 regulate the translation of target Mad2 and cyclin B1 mRNAs. J Cell Sci 2020; 133:jcs249128. [PMID: 33148609 DOI: 10.1242/jcs.249128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.
Collapse
Affiliation(s)
- Natsumi Takei
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shohei Kawamura
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Saitoh
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jenny Bormann
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
20
|
Hibino E, Hoshino M. A novel mode of interaction between intrinsically disordered proteins. Biophys Physicobiol 2020; 17:86-93. [PMID: 33194509 PMCID: PMC7610059 DOI: 10.2142/biophysico.bsj-2020012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023] Open
Abstract
An increasing number of proteins, which have neither regular secondary nor well-defined tertiary structures, have been found to be present in cells. The structure of these proteins is highly flexible and disordered under physiological (native) conditions, and they are called “intrinsically disordered” proteins (IDPs). Many of the IDPs are involved in interactions with other biomolecules such as DNA, RNA, carbohydrates, and proteins. While these IDPs are largely unstructured by themselves, marked conformational changes often occur upon binding to an interacting partner, which is known as the “coupled folding and binding mechanism”, which enable them to change the conformation to become compatible with the shape of the multiple target biomolecules. We have studied the structure and interaction of eukaryotic transcription factors Sp1 and TAF4, and found that both of them have long intrinsically disordered regions (IDRs). One of the IDRs in Sp1 exhibited homo-oligomer formation. In addition, the same region was used for the interaction with another IDR found in the TAF4 molecule. In both cases, we have not detected any significant conformational change in that region, suggesting a prominent and novel binding mode for IDPs/IDRs, which are not categorized by the well-accepted concept of the coupled folding and binding mechanism.
Collapse
Affiliation(s)
- Emi Hibino
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Montemayor EJ, Virta JM, Hayes SM, Nomura Y, Brow DA, Butcher SE. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes. RNA (NEW YORK, N.Y.) 2020; 26:1400-1413. [PMID: 32518066 PMCID: PMC7491322 DOI: 10.1261/rna.075879.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 05/04/2023]
Abstract
Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2',3' cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines. Lsm5 uniquely recognizes purine bases, explaining its divergent sequence relative to other Lsm subunits. Lsm1-7 loads onto RNA from the 3' end and removal of the Lsm1 carboxy-terminal region allows Lsm1-7 to scan along RNA, suggesting a gated mechanism for accessing internal binding sites. These data reveal the molecular basis for RNA binding by Lsm proteins, a fundamental step in the formation of molecular assemblies that are central to eukaryotic mRNA metabolism.
Collapse
Affiliation(s)
- Eric J Montemayor
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Johanna M Virta
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Samuel M Hayes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yuichiro Nomura
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
22
|
Lee E, Jung D, Kim J. Roles of Dhh1 RNA helicase in yeast filamentous growth: Analysis of N-terminal phosphorylation residues and ATPase domains. J Microbiol 2020; 58:853-858. [PMID: 32989641 DOI: 10.1007/s12275-020-0431-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
In yeast Saccharomyces cerevisiae, the Dhh1 protein, a member of the DEAD-box RNA helicase, stimulates Dcp2/Dcp1-mediated mRNA decapping and functions as a general translation repressor. Dhh1 also positively regulates translation of a selected set of mRNAs, including Ste12, a transcription factor for yeast mating and pseudohyphal growth. Given the diverse functions of Dhh1, we investigated whether the putative phosphorylation sites or the conserved motifs for the DEAD-box RNA helicases were crucial in the regulatory roles of Dhh1 during pseudohyphal growth. Mutations in the ATPase A or B motif (DHH1-K96R or DHH1-D195A) showed significant defects in pseudohyphal colony morphology and agar invasive phenotypes. The N-terminal phospho-mimetic mutation, DHH1-T16E, showed defects in pseudohyphal phenotypes. Decreased levels of Ste12 protein were also observed in these pseudohyphal-defective mutant cells under filamentous-inducing low nitrogen conditions. We suggest that the ATPase motifs and the Thr16 phosphorylation site of Dhh1 are crucial to its regulatory roles in pseudohyphal growth under low nitrogen conditions.
Collapse
Affiliation(s)
- Eunji Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Daehee Jung
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
23
|
Pakravan D, Orlando G, Bercier V, Van Den Bosch L. Role and therapeutic potential of liquid-liquid phase separation in amyotrophic lateral sclerosis. J Mol Cell Biol 2020; 13:15-28. [PMID: 32976566 PMCID: PMC8036000 DOI: 10.1093/jmcb/mjaa049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disease selectively affecting motor neurons, leading to progressive paralysis. Although most cases are sporadic, ∼10% are familial. Similar proteins are found in aggregates in sporadic and familial ALS, and over the last decade, research has been focused on the underlying nature of this common pathology. Notably, TDP-43 inclusions are found in almost all ALS patients, while FUS inclusions have been reported in some familial ALS patients. Both TDP-43 and FUS possess ‘low-complexity domains’ (LCDs) and are considered as ‘intrinsically disordered proteins’, which form liquid droplets in vitro due to the weak interactions caused by the LCDs. Dysfunctional ‘liquid–liquid phase separation’ (LLPS) emerged as a new mechanism linking ALS-related proteins to pathogenesis. Here, we review the current state of knowledge on ALS-related gene products associated with a proteinopathy and discuss their status as LLPS proteins. In addition, we highlight the therapeutic potential of targeting LLPS for treating ALS.
Collapse
Affiliation(s)
- Donya Pakravan
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Gabriele Orlando
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Correspondence to: Ludo Van Den Bosch, E-mail:
| |
Collapse
|
24
|
Mateu-Regué À, Christiansen J, Bagger FO, Winther O, Hellriegel C, Nielsen FC. Single mRNP Analysis Reveals that Small Cytoplasmic mRNP Granules Represent mRNA Singletons. Cell Rep 2020; 29:736-748.e4. [PMID: 31618640 DOI: 10.1016/j.celrep.2019.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Small cytoplasmic mRNP granules are implicated in mRNA transport, translational control, and decay. Using super-resolution microscopy and fluorescence correlation spectroscopy, we analyzed the molecular composition and dynamics of single cytoplasmic YBX1_IMP1 mRNP granules in live cells. Granules appeared elongated and branched, with patches of IMP1 and YBX1 distributed along mRNA, reflecting the attachment of the two RNA-binding proteins in cis. Particles form at the nuclear pore and do not associate with translating ribosomes, so the mRNP is a repository for mRNAs awaiting translation. In agreement with the average number of mRNA-binding sites derived from crosslinked immunoprecipitation (CLIP) analyses, individual mRNPs contain 5-15 molecules of YBX1 and IMP1 and a single poly(A) tail identified by PABPC1. Taken together, we conclude that small cytoplasmic mRNP granules are mRNA singletons, thus depicting the cellular transcriptome. Consequently, expression of functionally related mRNAs in RNA regulons is unlikely to result from coordinated assembly.
Collapse
Affiliation(s)
- Àngels Mateu-Regué
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jan Christiansen
- Department of Biology, Copenhagen Biocenter, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ole Winther
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christian Hellriegel
- Carl Zeiss RMS, Harvard Center for Biological Imaging, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
25
|
Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 2020; 52:400-408. [PMID: 32210357 PMCID: PMC7156397 DOI: 10.1038/s12276-020-0407-z] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.
Collapse
Affiliation(s)
- Sung Ho Boo
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea.
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
26
|
Nostramo R, Xing S, Zhang B, Herman PK. Insights into the Role of P-Bodies and Stress Granules in Protein Quality Control. Genetics 2019; 213:251-265. [PMID: 31285256 PMCID: PMC6727810 DOI: 10.1534/genetics.119.302376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic cell is highly compartmentalized, and contains a variety of both membrane-bound and membraneless organelles. The latter include the cytoplasmic ribonucleoprotein (RNP) granules, known as the processing body (P-body) and the stress granule. These RNP structures are thought to be involved in the storage of particular mRNAs during periods of stress. Here, we find that a mutant lacking both P-bodies and stress granules exhibits phenotypes suggesting that these structures also have a role in the maintenance of protein homeostasis. In particular, there was an increased occurrence of specific protein quality control (PQC) compartments in this mutant, an observation that is consistent with there being an elevated level of protein misfolding. These compartments normally house soluble misfolded proteins and allow the cell to sequester these polypeptides away from the remaining cellular milieu. Moreover, specific proteins that are normally targeted to both P-bodies and stress granules were found to instead associate with these PQC compartments in this granuleless mutant. This observation is interesting as our data indicate that this association occurs specifically in cells that have been subjected to an elevated level of proteotoxic stress. Altogether, the results here are consistent with P-bodies and stress granules having a role in normal protein homeostasis in eukaryotic cells.
Collapse
Affiliation(s)
- Regina Nostramo
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Siyuan Xing
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Bo Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Paul K Herman
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
27
|
Ohyama T. New Aspects of Magnesium Function: A Key Regulator in Nucleosome Self-Assembly, Chromatin Folding and Phase Separation. Int J Mol Sci 2019; 20:ijms20174232. [PMID: 31470631 PMCID: PMC6747271 DOI: 10.3390/ijms20174232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Metal cations are associated with many biological processes. The effects of these cations on nucleic acids and chromatin were extensively studied in the early stages of nucleic acid and chromatin research. The results revealed that some monovalent and divalent metal cations, including Mg2+, profoundly affect the conformations and stabilities of nucleic acids, the folding of chromatin fibers, and the extent of chromosome condensation. Apart from these effects, there have only been a few reports on the functions of these cations. In 2007 and 2013, however, Mg2+-implicated novel phenomena were found: Mg2+ facilitates or enables both self-assembly of identical double-stranded (ds) DNA molecules and self-assembly of identical nucleosomes in vitro. These phenomena may be deeply implicated in the heterochromatin domain formation and chromatin-based phase separation. Furthermore, a recent study showed that elevation of the intranuclear Mg2+ concentration causes unusual differentiation of mouse ES (embryonic stem) cells. All of these phenomena seem to be closely related to one another. Mg2+ seems to be a key regulator of chromatin dynamics and chromatin-based biological processes.
Collapse
Affiliation(s)
- Takashi Ohyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
28
|
Goos C, Dejung M, Wehman AM, M-Natus E, Schmidt J, Sunter J, Engstler M, Butter F, Kramer S. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res 2019; 47:266-282. [PMID: 30418648 PMCID: PMC6326799 DOI: 10.1093/nar/gky1136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/25/2018] [Indexed: 02/03/2023] Open
Abstract
The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes.
Collapse
Affiliation(s)
- Carina Goos
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Ann M Wehman
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Elisabeth M-Natus
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Schmidt
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jack Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Susanne Kramer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
29
|
Van Treeck B, Parker R. Emerging Roles for Intermolecular RNA-RNA Interactions in RNP Assemblies. Cell 2019; 174:791-802. [PMID: 30096311 DOI: 10.1016/j.cell.2018.07.023] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/05/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022]
Abstract
Eukaryotic cells contain large assemblies of RNA and protein, referred to as ribonucleoprotein (RNP) granules, which include cytoplasmic P-bodies, stress granules, and neuronal and germinal granules, as well as nuclear paraspeckles, Cajal bodies, and RNA foci formed from repeat expansion RNAs. Recent evidence argues that intermolecular RNA-RNA interactions play a role in forming and determining the composition of certain RNP granules. We hypothesize that intermolecular RNA-RNA interactions are favored in cells yet are limited by RNA-binding proteins, helicases, and ribosomes, thereby allowing normal RNA function. An over-abundance of intermolecular RNA-RNA interactions may be toxic since perturbations that increase RNA-RNA interactions such as long repeat expansion RNAs, arginine-containing dipeptide repeat polypeptides, and sequestration or loss of abundant RNA-binding proteins can contribute to degenerative diseases.
Collapse
Affiliation(s)
- Briana Van Treeck
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
30
|
He GJ, Yan YB. Contributions of the C-terminal domain to poly(A)-specific ribonuclease (PARN) stability and self-association. Biochem Biophys Rep 2019; 18:100626. [PMID: 30949591 PMCID: PMC6430076 DOI: 10.1016/j.bbrep.2019.100626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) catalyzes the degradation of mRNA poly(A) tail to regulate translation efficiency and mRNA decay in higher eukaryotic cells. The full-length PARN is a multi-domain protein containing the catalytic nuclease domain, the R3H domain, the RRM domain and the C-terminal intrinsically unstructured domain (CTD). The roles of the three well-structured RNA-binding domains have been extensively studied, while little is known about CTD. In this research, the impact of CTD on PARN stability and aggregatory potency was studied by comparing the thermal inactivation and denaturation behaviors of full-length PARN with two N-terminal fragments lacking CTD. Our results showed that K+ induced additional regular secondary structures and enhanced PARN stability against heat-induced inactivation, unfolding and aggregation. CTD prevented PARN from thermal inactivation but promoted thermal aggregation to initiate at a temperature much lower than that required for inactivation and unfolding. Blue-shift of Trp fluorescence during thermal transitions suggested that heat treatment induced rearrangements of domain organizations. CTD amplified the stabilizing effect of K+, implying the roles of CTD was mainly achieved by electrostatic interactions. These results suggested that CTD might dynamically interact with the main body of the molecule and release of CTD promoted self-association via electrostatic interactions. The C-terminal domain enhanced PARN stability against thermal inactivation. K+ reinforced the protective effect of the C-terminal domain. The C-terminal domain of PARN was intrinsically aggregation-prone. K+ modulated PARN self-association via the C-terminal domain.
Collapse
Affiliation(s)
- Guang-Jun He
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Yamamoto M, Du Q, Song J, Wang H, Watanabe A, Tanaka Y, Kawaguchi Y, Inoue JI, Matsuda Z. Cell-cell and virus-cell fusion assay-based analyses of alanine insertion mutants in the distal α9 portion of the JRFL gp41 subunit from HIV-1. J Biol Chem 2019; 294:5677-5687. [PMID: 30737278 DOI: 10.1074/jbc.ra118.004579] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/04/2019] [Indexed: 12/28/2022] Open
Abstract
Membrane fusion is the first essential step in HIV-1 replication. The gp41 subunit of HIV-1 envelope protein (Env), a class I fusion protein, achieves membrane fusion by forming a structure called a six-helix bundle composed of N- and C-terminal heptad repeats. We have recently shown that the distal portion of the α9 helix in the C-terminal heptad repeat of X4-tropic HXB2 Env plays a critical role in the late-stage membrane fusion and viral infection. Here, we used R5-tropic JRFL Env and constructed six alanine insertion mutants, 641+A to 646+A, in the further distal portion of α9 where several glutamine residues are conserved (the number corresponds to the position of the inserted alanine in JRFL Env). 644+A showed the most severe defect in syncytia formation. Decreased fusion pore formation activity, revealed by a dual split protein assay, was observed in all mutants except 641+A. Sequence analysis and substitution of inserted 644A with Gln revealed that the glutamine residue at position 644 that forms complex hydrogen-bond networks with other polar residues on the surface of the six-helix bundle is critical for cell-cell fusion. We also developed a split NanoLuc® (Nluc) reporter-based assay specific to the virus-cell membrane fusion step to analyze several of the mutants. Interestingly syncytia-competent mutants failed to display Nluc activities. In addition to defective fusion activity, a reduction of Env incorporation into virions may further contribute to differences in cell-cell and virus-cell fusions.
Collapse
Affiliation(s)
- Mizuki Yamamoto
- From the Research Center for Asian Infectious Diseases.,the Division of Cellular and Molecular Biology, and
| | - Qingling Du
- the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| | - Jiping Song
- the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| | - Hongyun Wang
- the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| | - Aya Watanabe
- From the Research Center for Asian Infectious Diseases.,the Division of Cellular and Molecular Biology, and
| | - Yuetsu Tanaka
- the Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yasushi Kawaguchi
- From the Research Center for Asian Infectious Diseases.,the Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Jun-Ichiro Inoue
- From the Research Center for Asian Infectious Diseases, .,the Division of Cellular and Molecular Biology, and
| | - Zene Matsuda
- From the Research Center for Asian Infectious Diseases, .,the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| |
Collapse
|
32
|
RNA Granules and Their Role in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:195-245. [DOI: 10.1007/978-3-030-31434-7_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Wu E, Vashisht AA, Chapat C, Flamand MN, Cohen E, Sarov M, Tabach Y, Sonenberg N, Wohlschlegel J, Duchaine TF. A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Res 2018; 45:2081-2098. [PMID: 28204614 PMCID: PMC5389717 DOI: 10.1093/nar/gkw872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) impinge on the translation and stability of their target mRNAs, and play key roles in development, homeostasis and disease. The gene regulation mechanisms they instigate are largely mediated through the CCR4–NOT deadenylase complex, but the molecular events that occur on target mRNAs are poorly resolved. We observed a broad convergence of interactions of germ granule and P body mRNP components on AIN-1/GW182 and NTL-1/CNOT1 in Caenorhabditis elegans embryos. We show that the miRISC progressively matures on the target mRNA from a scanning form into an effector mRNP particle by sequentially recruiting the CCR4–NOT complex, decapping and decay, or germ granule proteins. Finally, we implicate intrinsically disordered proteins, key components in mRNP architectures, in the embryonic function of lsy-6 miRNA. Our findings define dynamic steps of effector mRNP assembly in miRNA-mediated silencing, and identify a functional continuum between germ granules and P bodies in the C. elegans embryo.
Collapse
Affiliation(s)
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Clément Chapat
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Mathieu N Flamand
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Emiliano Cohen
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
34
|
Cereghetti G, Saad S, Dechant R, Peter M. Reversible, functional amyloids: towards an understanding of their regulation in yeast and humans. Cell Cycle 2018; 17:1545-1558. [PMID: 29963943 DOI: 10.1080/15384101.2018.1480220] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein aggregates, and in particular amyloids, are generally considered to be inherently irreversible aberrant clumps, and are often associated with pathologies, such as Alzheimer's disease, Parkinson's disease, or systemic amyloidosis. However, recent evidence demonstrates that some aggregates are not only fully reversible, but also perform essential physiological functions. Despite these new findings, very little is known about how these functional protein aggregates are regulated in a physiological context. Here, we take the yeast pyruvate kinase Cdc19 as an example of a protein forming functional, reversible, solid, amyloid-like aggregates in response to stress conditions. Cdc19 aggregation is regulated via an aggregation-prone low complexity region (LCR). In favorable growth conditions, this LCR is prevented from aggregating by phosphorylation or oligomerization, while upon glucose starvation it becomes exposed and allows aggregation. We suggest that LCR phosphorylation, oligomerization or partner-binding may be general and widespread mechanisms regulating LCR-mediated reversible protein aggregation. Moreover, we show that, as predicted by computational tools, Cdc19 forms amyloid-like aggregates in vitro. Interestingly, we also observe striking similarities between Cdc19 and its mammalian counterpart, PKM2. Indeed, also PKM2 harbors a LCR and contains several peptides with high amyloidogenic propensity, which coincide with known phosphorylation sites. Thus, we speculate that the formation of reversible, amyloid-like aggregates may be a general physiological mechanism for cells to adapt to stress conditions, and that the underlying regulatory mechanisms may be conserved from yeast to humans.
Collapse
Affiliation(s)
- Gea Cereghetti
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland.,b Life Science Zürich , Molecular Life Sciences , Zürich , Switzerland
| | - Shady Saad
- c Department of Chemical and Systems Biology , Stanford University , Stanford, CA , USA
| | - Reinhard Dechant
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| | - Matthias Peter
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| |
Collapse
|
35
|
Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol 2018. [PMID: 29602697 DOI: 10.1016/j.tcb.2018.1002.1004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Cellular compartments and organelles organize biological matter. Most well-known organelles are separated by a membrane boundary from their surrounding milieu. There are also many so-called membraneless organelles and recent studies suggest that these organelles, which are supramolecular assemblies of proteins and RNA molecules, form via protein phase separation. Recent discoveries have shed light on the molecular properties, formation, regulation, and function of membraneless organelles. A combination of techniques from cell biology, biophysics, physical chemistry, structural biology, and bioinformatics are starting to help establish the molecular principles of an emerging field, thus paving the way for exciting discoveries, including novel therapeutic approaches for the treatment of age-related disorders.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; KU Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Frederic Rousseau
- Switch Laboratory, VIB, Leuven, Belgium; KU Leuven, Department for Cellular and Molecular Medicine, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, Leuven, Belgium; KU Leuven, Department for Cellular and Molecular Medicine, Leuven, Belgium
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Ludo Van Den Bosch
- KU Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Peter Tompa
- VIB, Center for Structural Biology (CSB), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| | - Monika Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
36
|
Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol 2018; 28:420-435. [PMID: 29602697 PMCID: PMC6034118 DOI: 10.1016/j.tcb.2018.02.004] [Citation(s) in RCA: 1383] [Impact Index Per Article: 197.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022]
Abstract
Cellular compartments and organelles organize biological matter. Most well-known organelles are separated by a membrane boundary from their surrounding milieu. There are also many so-called membraneless organelles and recent studies suggest that these organelles, which are supramolecular assemblies of proteins and RNA molecules, form via protein phase separation. Recent discoveries have shed light on the molecular properties, formation, regulation, and function of membraneless organelles. A combination of techniques from cell biology, biophysics, physical chemistry, structural biology, and bioinformatics are starting to help establish the molecular principles of an emerging field, thus paving the way for exciting discoveries, including novel therapeutic approaches for the treatment of age-related disorders.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; KU Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nicolas L. Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Frederic Rousseau
- Switch Laboratory, VIB, Leuven, Belgium,KU Leuven, Department for Cellular and Molecular Medicine, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, Leuven, Belgium,KU Leuven, Department for Cellular and Molecular Medicine, Leuven, Belgium
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Ludo Van Den Bosch
- KU Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Peter Tompa
- VIB, Center for Structural Biology (CSB), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| | - Monika Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
37
|
Maury CPJ. Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cell Mol Life Sci 2018; 75:1499-1507. [PMID: 29550973 PMCID: PMC5897472 DOI: 10.1007/s00018-018-2797-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 01/29/2023]
Abstract
A crucial stage in the origin of life was the emergence of the first molecular entity that was able to replicate, transmit information, and evolve on the early Earth. The amyloid world hypothesis posits that in the pre-RNA era, information processing was based on catalytic amyloids. The self-assembly of short peptides into β-sheet amyloid conformers leads to extraordinary structural stability and novel multifunctionality that cannot be achieved by the corresponding nonaggregated peptides. The new functions include self-replication, catalytic activities, and information transfer. The environmentally sensitive template-assisted replication cycles generate a variety of amyloid polymorphs on which evolutive forces can act, and the fibrillar assemblies can serve as scaffolds for the amyloids themselves and for ribonucleotides proteins and lipids. The role of amyloid in the putative transition process from an amyloid world to an amyloid-RNA-protein world is not limited to scaffolding and protection: the interactions between amyloid, RNA, and protein are both complex and cooperative, and the amyloid assemblages can function as protometabolic entities catalyzing the formation of simple metabolite precursors. The emergence of a pristine amyloid-based in-put sensitive, chiroselective, and error correcting information-processing system, and the evolvement of mutualistic networks were, arguably, of essential importance in the dynamic processes that led to increased complexity, organization, compartmentalization, and, eventually, the origin of life.
Collapse
|
38
|
Protter DSW, Rao BS, Van Treeck B, Lin Y, Mizoue L, Rosen MK, Parker R. Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP Granule Assembly. Cell Rep 2018; 22:1401-1412. [PMID: 29425497 PMCID: PMC5824733 DOI: 10.1016/j.celrep.2018.01.036] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 11/30/2017] [Accepted: 01/11/2018] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic cells contain large RNA-protein assemblies referred to as RNP granules, whose assembly is promoted by both traditional protein interactions and intrinsically disordered protein domains. Using RNP granules as an example, we provide evidence for an assembly mechanism of large cellular structures wherein specific protein-protein or protein-RNA interactions act together with promiscuous interactions of intrinsically disordered regions (IDRs). This synergistic assembly mechanism illuminates RNP granule assembly and explains why many components of RNP granules, and other large dynamic assemblies, contain IDRs linked to specific protein-protein or protein-RNA interaction modules. We suggest assemblies based on combinations of specific interactions and promiscuous IDRs are common features of eukaryotic cells.
Collapse
Affiliation(s)
- David S W Protter
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Bhalchandra S Rao
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Briana Van Treeck
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Yuan Lin
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Mizoue
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
39
|
Abstract
Processing bodies (P-bodies) are cytoplasmic ribonucleoprotein (RNP) granules primarily composed of translationally repressed mRNAs and proteins related to mRNA decay, suggesting roles in post-transcriptional regulation. P-bodies are conserved in eukaryotic cells and exhibit properties of liquid droplets. However, the function of P-bodies in translational repression and/or mRNA decay remains contentious. Here we review recent advances in our understanding of the molecular composition of P-bodies, the interactions and processes that regulate P-body liquid-liquid phase separation (LLPS), and the cellular localization of mRNA decay machinery, in the context of how these discoveries refine models of P-body function.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Zhenkun Na
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Sarah A Slavoff
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06529 , United States
| |
Collapse
|
40
|
Grousl T, Ungelenk S, Miller S, Ho CT, Khokhrina M, Mayer MP, Bukau B, Mogk A. A prion-like domain in Hsp42 drives chaperone-facilitated aggregation of misfolded proteins. J Cell Biol 2018; 217:1269-1285. [PMID: 29362223 PMCID: PMC5881502 DOI: 10.1083/jcb.201708116] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The facilitated aggregation of misfolded proteins is a proteostasis strategy important for cell function and viability, but the molecular mechanisms are poorly understood. Grousl et al. reveal how the intrinsically disordered domains of the small heat shock protein Hsp42 promote and control the aggregation of misfolded proteins during stress conditions in yeast. Chaperones with aggregase activity promote and organize the aggregation of misfolded proteins and their deposition at specific intracellular sites. This activity represents a novel cytoprotective strategy of protein quality control systems; however, little is known about its mechanism. In yeast, the small heat shock protein Hsp42 orchestrates the stress-induced sequestration of misfolded proteins into cytosolic aggregates (CytoQ). In this study, we show that Hsp42 harbors a prion-like domain (PrLD) and a canonical intrinsically disordered domain (IDD) that act coordinately to promote and control protein aggregation. Hsp42 PrLD is essential for CytoQ formation and is bifunctional, mediating self-association as well as binding to misfolded proteins. Hsp42 IDD confines chaperone and aggregase activity and affects CytoQ numbers and stability in vivo. Hsp42 PrLD and IDD are both crucial for cellular fitness during heat stress, demonstrating the need for sequestering misfolded proteins in a regulated manner.
Collapse
Affiliation(s)
- Tomas Grousl
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Sophia Ungelenk
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Stephanie Miller
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Chi-Ting Ho
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Maria Khokhrina
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany .,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Axel Mogk
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany .,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion 2017; 10:182-206. [PMID: 27248002 DOI: 10.1080/19336896.2016.1181253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia.,c All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia
| | - Kirill S Antonets
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Stanislav A Bondarev
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Sergey G Inge-Vechtomov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Irina L Derkatch
- d Department of Neuroscience , College of Physicians and Surgeons of Columbia University, Columbia University , New York , NY , USA
| |
Collapse
|
42
|
Hibino E, Inoue R, Sugiyama M, Kuwahara J, Matsuzaki K, Hoshino M. Identification of heteromolecular binding sites in transcription factors Sp1 and TAF4 using high-resolution nuclear magnetic resonance spectroscopy. Protein Sci 2017; 26:2280-2290. [PMID: 28857320 PMCID: PMC5654864 DOI: 10.1002/pro.3287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 01/17/2023]
Abstract
The expression of eukaryotic genes is precisely controlled by interactions between general transcriptional factors and promoter-specific transcriptional activators. The fourth element of TATA-box binding protein-associated factor (TAF4), an essential subunit of the general transcription factor TFIID, serves as a coactivator for various promoter-specific transcriptional regulators. Interactions between TAF4 and site-specific transcriptional activators, such as Sp1, are important for regulating the expression levels of genes of interest. However, only limited information is available on the molecular mechanisms underlying the interactions between these transcriptional regulatory proteins. We herein analyzed the interaction between the transcriptional factors Sp1 and TAF4 using high-resolution solution nuclear magnetic resonance spectroscopy. We found that four glutamine-rich (Q-rich) regions in TAF4 were largely disordered under nearly physiological conditions. Among them, the first Q-rich region in TAF4 was essential for the interaction with another Q-rich region in the Sp1 molecule, most of which was largely disordered. The residues responsible for this interaction were specific and highly localized in a defined region within a range of 20-30 residues. Nevertheless, a detailed analysis of 13 C-chemical shift values suggested that no significant conformational change occurred upon binding. These results indicate a prominent and exceptional binding mode for intrinsically disordered proteins other than the well-accepted concept of "coupled folding and binding."
Collapse
Affiliation(s)
- Emi Hibino
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoSakyo‐ku606‐8501Japan
| | - Rintaro Inoue
- Research Reactor Institute, Kyoto UniversitySennan‐gunOsaka590‐0494Japan
| | - Masaaki Sugiyama
- Research Reactor Institute, Kyoto UniversitySennan‐gunOsaka590‐0494Japan
| | - Jun Kuwahara
- Faculty of Pharmaceutical SciencesDoshisha Women's UniversityKyotanabe cityKyoto610‐0395Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoSakyo‐ku606‐8501Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoSakyo‐ku606‐8501Japan
| |
Collapse
|
43
|
The Physiological and Pathological Implications of the Formation of Hydrogels, with a Specific Focus on Amyloid Polypeptides. Biomolecules 2017; 7:biom7040070. [PMID: 28937634 PMCID: PMC5745453 DOI: 10.3390/biom7040070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hydrogels are water-swollen and viscoelastic three-dimensional cross-linked polymeric network originating from monomer polymerisation. Hydrogel-forming polypeptides are widely found in nature and, at a cellular and organismal level, they provide a wide range of functions for the organism making them. Amyloid structures, arising from polypeptide aggregation, can be damaging or beneficial to different types of organisms. Although the best-known amyloids are those associated with human pathologies, this underlying structure is commonly used by higher eukaryotes to maintain normal cellular activities, and also by microbial communities to promote their survival and growth. Amyloidogenesis occurs by nucleation-dependent polymerisation, which includes several species (monomers, nuclei, oligomers, and fibrils). Oligomers of pathological amyloids are considered the toxic species through cellular membrane perturbation, with the fibrils thought to represent a protective sink for toxic species. However, both functional and disease-associated amyloids use fibril cross-linking to form hydrogels. The properties of amyloid hydrogels can be exploited by organisms to fulfil specific physiological functions. Non-physiological hydrogelation by pathological amyloids may provide additional toxic mechanism(s), outside of membrane toxicity by oligomers, such as physical changes to the intracellular and extracellular environments, with wide-spread consequences for many structural and dynamic processes, and overall effects on cell survival.
Collapse
|
44
|
Lin Y, Currie SL, Rosen MK. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem 2017; 292:19110-19120. [PMID: 28924037 PMCID: PMC5704491 DOI: 10.1074/jbc.m117.800466] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/12/2017] [Indexed: 01/04/2023] Open
Abstract
Liquid–liquid phase separation (LLPS) is thought to contribute to the establishment of many biomolecular condensates, eukaryotic cell structures that concentrate diverse macromolecules but lack a bounding membrane. RNA granules control RNA metabolism and comprise a large class of condensates that are enriched in RNA-binding proteins and RNA molecules. Many RNA granule proteins are composed of both modular domains and intrinsically disordered regions (IDRs) having low amino acid sequence complexity. Phase separation of these molecules likely plays an important role in the generation and stability of RNA granules. To understand how folded domains and IDRs can cooperate to modulate LLPS, we generated a series of engineered proteins. These were based on fusions of an IDR derived from the RNA granule protein FUS (fused in sarcoma) to a multivalent poly-Src homology 3 (SH3) domain protein that phase-separates when mixed with a poly-proline–rich-motif (polyPRM) ligand. We found that the wild-type IDR promotes LLPS of the polySH3–polyPRM system, decreasing the phase separation threshold concentration by 8-fold. Systematic mutation of tyrosine residues in Gly/Ser-Tyr-Gly/Ser motifs of the IDR reduced this effect, depending on the number but not on the position of these substitutions. Mutating all tyrosines to non-aromatic residues or phosphorylating the IDR raised the phase separation threshold above that of the unmodified polySH3–polyPRM pair. These results show that low-complexity IDRs can modulate LLPS both positively and negatively, depending on the degree of aromaticity and phosphorylation status. Our findings provide plausible mechanisms by which these sequences could alter RNA granule properties on evolutionary and cellular timescales.
Collapse
Affiliation(s)
- Yuan Lin
- From the Department of Biophysics, University of Texas Southwestern Medical Center and.,the Howard Hughes Medical Institute, Dallas, Texas 75390
| | - Simon L Currie
- From the Department of Biophysics, University of Texas Southwestern Medical Center and.,the Howard Hughes Medical Institute, Dallas, Texas 75390
| | - Michael K Rosen
- From the Department of Biophysics, University of Texas Southwestern Medical Center and .,the Howard Hughes Medical Institute, Dallas, Texas 75390
| |
Collapse
|
45
|
Kurischko C, Broach JR. Phosphorylation and nuclear transit modulate the balance between normal function and terminal aggregation of the yeast RNA-binding protein Ssd1. Mol Biol Cell 2017; 28:3057-3069. [PMID: 28877986 PMCID: PMC5662262 DOI: 10.1091/mbc.e17-02-0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/08/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023] Open
Abstract
Ssd1 targets mRNAs to daughter cells for translation or to stress granules (SGs) and P-bodies (PBs) for storage or decay. PB components also assist in its nuclear export. If Ssd1 fails to localize to the nucleus, it is targeted to IPOD. IPOD and PB/SG association requires a prion-like domain, whose activity is differentially regulated by Cbk1 phosphorylation. Yeast Ssd1 is an RNA-binding protein that shuttles between the nucleus and cytoplasm. Ssd1 interacts with its target mRNAs initially during transcription by binding through its N-terminal prion-like domain (PLD) to the C-terminal domain of RNA polymerase II. Ssd1 subsequently targets mRNAs acquired in the nucleus either to daughter cells for translation or to stress granules (SGs) and P-bodies (PBs) for mRNA storage or decay. Here we show that PB components assist in the nuclear export of Ssd1and subsequent targeting of Ssd1 to PB sites in the cytoplasm. In the absence of import into the nucleus, Ssd1 fails to associate with PBs in the cytoplasm but rather is targeted to cytosolic insoluble protein deposits (IPODs). The association of Ssd1 either with IPOD sites or with PB/SG requires the PLD, whose activity is differentially regulated by the Ndr/LATS family kinase, Cbk1: phosphorylation suppresses PB/SG association but enhances IPOD formation. This regulation likely accrues from a phosphorylation-sensitive nuclear localization sequence located in the PLD. The results presented here may inform our understanding of aggregate formation by RBP in certain neurological diseases.
Collapse
Affiliation(s)
- Cornelia Kurischko
- Department of Biochemistry, Penn State University College of Medicine, Hershey, PA 17033
| | - James R Broach
- Department of Biochemistry, Penn State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
46
|
Hu LD, Chen XJ, Liao XY, Yan YB. Screening novel stress granule regulators from a natural compound library. Protein Cell 2017; 8:618-622. [PMID: 28695470 PMCID: PMC5546934 DOI: 10.1007/s13238-017-0430-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Li-Dan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiang-Jun Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Yan Liao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
47
|
Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 2017; 13:823-832. [DOI: 10.1038/nchembio.2429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022]
|
48
|
Ribonucleoprotein bodies are phased in. Biochem Soc Trans 2017; 44:1411-1416. [PMID: 27911723 DOI: 10.1042/bst20160117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Intracellular compartments are necessary for the regulation of many biochemical processes that ensure cell survival, growth and proliferation. Compartmentalisation is commonly achieved in organelles with defined lipid membranes, such as mitochondria, endoplasmic reticulum or the Golgi apparatus. While these organelles are responsible for many localised biochemical processes, recent evidence points to another class of compartments that lack membrane boundaries. The structure and content of these bodies depend on their function and subcellular localisation, but they mainly incorporate proteins and RNA. Examples of these ribonucleoprotein bodies (RNPBs) include eukaryotic mRNA processing bodies (P-bodies) and stress granules (SGs). While most of these structures have been widely studied for their capacity to bind, store and process mRNAs under different conditions, their biological functions and physical properties are poorly understood. Recent intriguing data suggest that liquid-liquid phase separation (LLPS) represents an important mechanism seeding the formation and defining the function of RNPBs. In this review, we discuss how LLPS is transforming our ideas about the biological functions of SGs and P-bodies and their link to diseases.
Collapse
|
49
|
Sudhakaran IP, Ramaswami M. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biol 2017; 14:568-586. [PMID: 27726526 PMCID: PMC5449092 DOI: 10.1080/15476286.2016.1244588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs function in synapse specific plasticity underlying LTM.
Collapse
Affiliation(s)
- Indulekha P. Sudhakaran
- National Center for Biological Sciences, TIFR, Bangalore, India
- Manipal University, Manipal, India
| | - Mani Ramaswami
- National Center for Biological Sciences, TIFR, Bangalore, India
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 2017; 18:285-298. [PMID: 28225081 PMCID: PMC7434221 DOI: 10.1038/nrm.2017.7] [Citation(s) in RCA: 3710] [Impact Index Per Article: 463.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid-liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.
Collapse
Affiliation(s)
- Salman F. Banani
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hyun O. Lee
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michael K. Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|