1
|
Centrosome Dysfunctions in Cancer. THE CENTROSOME AND ITS FUNCTIONS AND DYSFUNCTIONS 2022; 235:43-50. [DOI: 10.1007/978-3-031-20848-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Andriasyan V, Yakimovich A, Petkidis A, Georgi F, Witte R, Puntener D, Greber UF. Microscopy deep learning predicts virus infections and reveals mechanics of lytic-infected cells. iScience 2021; 24:102543. [PMID: 34151222 PMCID: PMC8192562 DOI: 10.1016/j.isci.2021.102543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/07/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Imaging across scales reveals disease mechanisms in organisms, tissues, and cells. Yet, particular infection phenotypes, such as virus-induced cell lysis, have remained difficult to study. Here, we developed imaging modalities and deep learning procedures to identify herpesvirus and adenovirus (AdV) infected cells without virus-specific stainings. Fluorescence microscopy of vital DNA-dyes and live-cell imaging revealed learnable virus-specific nuclear patterns transferable to related viruses of the same family. Deep learning predicted two major AdV infection outcomes, non-lytic (nonspreading) and lytic (spreading) infections, up to about 20 hr prior to cell lysis. Using these predictive algorithms, lytic and non-lytic nuclei had the same levels of green fluorescent protein (GFP)-tagged virion proteins but lytic nuclei enriched the virion proteins faster, and collapsed more extensively upon laser-rupture than non-lytic nuclei, revealing impaired mechanical properties of lytic nuclei. Our algorithms may be used to infer infection phenotypes of emerging viruses, enhance single cell biology, and facilitate differential diagnosis of non-lytic and lytic infections. Artificial intelligence identifies HSV- and AdV-infected cells without specific probes. Imaging lytic-infected cells reveals nuclear envelope rupture and AdV dissemination. Live cell imaging and neural networks presciently pinpoint lytic-infected cells. Lytic-infected cell nuclei have mechanical properties distinct from non-lytic nuclei.
Collapse
Affiliation(s)
- Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Artur Yakimovich
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland.,University College London, London WC1E 6BT, UK.,Artificial Intelligence for Life Sciences CIC, London N8 7FJ, UK
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Fanny Georgi
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Daniel Puntener
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland.,Roche Diagnostics International Ltd, Rotkreuz 6343, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
3
|
Lang J, Bohn P, Bhat H, Jastrow H, Walkenfort B, Cansiz F, Fink J, Bauer M, Olszewski D, Ramos-Nascimento A, Duhan V, Friedrich SK, Becker KA, Krawczyk A, Edwards MJ, Burchert A, Huber M, Friebus-Kardash J, Göthert JR, Hardt C, Probst HC, Schumacher F, Köhrer K, Kleuser B, Babiychuk EB, Sodeik B, Seibel J, Greber UF, Lang PA, Gulbins E, Lang KS. Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease. Nat Commun 2020; 11:1338. [PMID: 32165633 PMCID: PMC7067866 DOI: 10.1038/s41467-020-15072-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1-/- mice results in replication of HSV-1 and Asah1-/- mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.
Collapse
Affiliation(s)
- Judith Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Patrick Bohn
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Hilal Bhat
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Holger Jastrow
- Institute of Anatomy, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Institut for Experimental Immunology and Imaging, Imaging Center Essen, Electron Microscopy Unit, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Bernd Walkenfort
- Institut for Experimental Immunology and Imaging, Imaging Center Essen, Electron Microscopy Unit, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Feyza Cansiz
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Julian Fink
- Institute of Organic Chemistry, Julius-Maximilians University of Würzburg, Am Hubland, Würzburg, D-97074, Germany
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Ana Ramos-Nascimento
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany
| | - Vikas Duhan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Sarah-Kim Friedrich
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Department of Infectious Diseases, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstr., Marburg, D-35043, Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hospital Hygiene, Philipps-University Marburg, Hans-Meerwein Str. 2, Marburg, D-35043, Germany
| | - Justa Friebus-Kardash
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Cornelia Hardt
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center Mainz, Langenbeckstr. 1, Mainz, D-55131, Germany
| | - Fabian Schumacher
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, Nuthetal, D-14558, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Universitätsstr. 1, Düsseldorf, D-40225, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, Nuthetal, D-14558, Germany
| | - Eduard B Babiychuk
- Institute of Anatomy, University of Bern, Baltzerstr. 4, CH-3012, Bern, Switzerland
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians University of Würzburg, Am Hubland, Würzburg, D-97074, Germany
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, D-40225, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Karl S Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.
| |
Collapse
|
4
|
Global Interactomics Connect Nuclear Mitotic Apparatus Protein NUMA1 to Influenza Virus Maturation. Viruses 2018; 10:v10120731. [PMID: 30572664 PMCID: PMC6316800 DOI: 10.3390/v10120731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) infections remain a major human health threat. IAV has enormous genetic plasticity and can rapidly escape virus-targeted anti-viral strategies. Thus, there is increasing interest to identify host proteins and processes the virus requires for replication and maturation. The IAV non-structural protein 1 (NS1) is a critical multifunctional protein that is expressed to high levels in infected cells. Host proteins that interact with NS1 may serve as ideal targets for attenuating IAV replication. We previously developed and characterized broadly cross-reactive anti-NS1 monoclonal antibodies. For the current study, we used these mAbs to co-immunoprecipitate native IAV NS1 and interacting host proteins; 183 proteins were consistently identified in this NS1 interactome study, 124 of which have not been previously reported. RNAi screens identified 11 NS1-interacting host factors as vital for IAV replication. Knocking down one of these, nuclear mitotic apparatus protein 1 (NUMA1), dramatically reduced IAV replication. IAV genomic transcription and translation were not inhibited but transport of viral structural proteins to the cell membrane was hindered during maturation steps in NUMA1 knockdown (KD) cells.
Collapse
|
5
|
Abstract
This study introduces label-free digital holo-tomographic microscopy (DHTM) and refractive index gradient (RIG) measurements of live, virus-infected cells. We use DHTM to describe virus type-specific cytopathic effects, including cyclic volume changes of vaccinia virus infections, and cytoplasmic condensations in herpesvirus and rhinovirus infections, distinct from apoptotic cells. This work shows for the first time that DHTM is suitable to observe virus-infected cells and distinguishes virus type-specific signatures under noninvasive conditions. It provides a basis for future studies, where correlative fluorescence microscopy of cell and virus structures annotate distinct RIG values derived from DHTM. Cytopathic effects (CPEs) are a hallmark of infections. CPEs are difficult to observe due to phototoxicity from classical light microscopy. We report distinct patterns of virus infections in live cells using digital holo-tomographic microscopy (DHTM). DHTM is label-free and records the phase shift of low-energy light passing through the specimen on a transparent surface with minimal perturbation. DHTM measures the refractive index (RI) and computes the refractive index gradient (RIG), unveiling optical heterogeneity in cells. We find that vaccinia virus (VACV), herpes simplex virus (HSV), and rhinovirus (RV) infections progressively and distinctly increased RIG. VACV infection, but not HSV and RV infections, induced oscillations of cell volume, while all three viruses altered cytoplasmic membrane dynamics and induced apoptotic features akin to those caused by the chemical compound staurosporine. In sum, we introduce DHTM for quantitative label-free microscopy in infection research and uncover virus type-specific changes and CPE in living cells with minimal interference. IMPORTANCE This study introduces label-free digital holo-tomographic microscopy (DHTM) and refractive index gradient (RIG) measurements of live, virus-infected cells. We use DHTM to describe virus type-specific cytopathic effects, including cyclic volume changes of vaccinia virus infections, and cytoplasmic condensations in herpesvirus and rhinovirus infections, distinct from apoptotic cells. This work shows for the first time that DHTM is suitable to observe virus-infected cells and distinguishes virus type-specific signatures under noninvasive conditions. It provides a basis for future studies, where correlative fluorescence microscopy of cell and virus structures annotate distinct RIG values derived from DHTM.
Collapse
|
6
|
Currier MA, Sprague L, Rizvi TA, Nartker B, Chen CY, Wang PY, Hutzen BJ, Franczek MR, Patel AV, Chaney KE, Streby KA, Ecsedy JA, Conner J, Ratner N, Cripe TP. Aurora A kinase inhibition enhances oncolytic herpes virotherapy through cytotoxic synergy and innate cellular immune modulation. Oncotarget 2017; 8:17412-17427. [PMID: 28147331 PMCID: PMC5392259 DOI: 10.18632/oncotarget.14885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) and neuroblastoma models respond to the investigational small molecule Aurora A kinase inhibitor, alisertib. We previously reported that MPNST and neuroblastomas are also susceptible to oncolytic herpes virus (oHSV) therapy. Herein, we show that combination of alisertib and HSV1716, a virus derived from HSV-1 and attenuated by deletion of RL1, exhibits significantly increased antitumor efficacy compared to either monotherapy. Alisertib and HSV1716 reduced tumor growth and increased survival in two xenograft models of MPNST and neuroblastoma. We found the enhanced antitumor effect was due to multiple mechanisms that likely each contribute to the combination effect. First, oncolytic herpes virus increased the sensitivity of uninfected cells to alisertib cytotoxicity, a process we term virus-induced therapeutic adjuvant (VITA). Second, alisertib increased peak virus production and slowed virus clearance from tumors, both likely a consequence of it preventing virus-mediated increase of intratumoral NK cells. We also found that alisertib inhibited virus-induced accumulation of intratumoral myeloid derived suppressor cells, which normally are protumorigenic. Our data suggest that clinical trials of the combination of oHSV and alisertib are warranted in patients with neuroblastoma or MPNST.
Collapse
Affiliation(s)
- Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Les Sprague
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Brooke Nartker
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Brian J Hutzen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Meghan R Franczek
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Ami V Patel
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Keri A Streby
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | | | - Joe Conner
- Virttu Biologics, Ltd, Biocity, Scotland, Newhouse, United Kingdom
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Virion-associated viral proteins of a Chinese giant salamander (Andrias davidianus) iridovirus (genus Ranavirus) and functional study of the major capsid protein (MCP). Vet Microbiol 2014; 172:129-39. [DOI: 10.1016/j.vetmic.2014.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 01/04/2023]
|
8
|
Herpes simplex virus requires poly(ADP-ribose) polymerase activity for efficient replication and induces extracellular signal-related kinase-dependent phosphorylation and ICP0-dependent nuclear localization of tankyrase 1. J Virol 2011; 86:492-503. [PMID: 22013039 DOI: 10.1128/jvi.05897-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tankyrase 1 is a poly(ADP-ribose) polymerase (PARP) which localizes to multiple subcellular sites, including telomeres and mitotic centrosomes. Poly(ADP-ribosyl)ation of the nuclear mitotic apparatus (NuMA) protein by tankyrase 1 during mitosis is essential for sister telomere resolution and mitotic spindle pole formation. In interphase cells, tankyrase 1 resides in the cytoplasm, and its role therein is not well understood. In this study, we found that herpes simplex virus (HSV) infection induced extensive modification of tankyrase 1 but not tankyrase 2. This modification was dependent on extracellular signal-regulated kinase (ERK) activity triggered by HSV infection. Following HSV-1 infection, tankyrase 1 was recruited to the nucleus. In the early phase of infection, tankyrase 1 colocalized with ICP0 and thereafter localized within the HSV replication compartment, which was blocked in cells infected with the HSV-1 ICP0-null mutant R7910. In the absence of infection, ICP0 interacted with tankyrase 1 and efficiently promoted its nuclear localization. HSV did not replicate efficiently in cells depleted of both tankyrases 1 and 2. Moreover, XAV939, an inhibitor of tankyrase PARP activity, decreased viral titers to 2 to 5% of control values. We concluded that HSV targets tankyrase 1 in an ICP0- and ERK-dependent manner to facilitate its replication.
Collapse
|
9
|
Whitley DS, Sample RC, Sinning AR, Henegar J, Chinchar VG. Antisense approaches for elucidating ranavirus gene function in an infected fish cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:937-948. [PMID: 21147160 DOI: 10.1016/j.dci.2010.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/04/2010] [Indexed: 05/30/2023]
Abstract
Viral virulence/immune evasion strategies and host anti-viral responses represent different sides of the continuing struggle between virus and host survival. To identify virus-encoding molecules whose function is to subvert or blunt host immune responses, we have adapted anti-sense approaches to knock down the expression of specific viral gene products. Our intention is to correlate knock down with loss of function and thus infer the role of a given viral gene. As a starting point in this process we have targeted several structural and catalytic genes using antisense morpholino oligonucleotides (asMO) and small, interfering RNAs (siRNA). In proof of concept experiments we show the feasibility of this approach and describe recent work targeting five frog virus 3 genes. Our results indicate that both 46K and 32R, two immediate-early viral proteins, are essential for replication in vitro, and confirm earlier findings that the major capsid protein, the largest subunit of the viral homolog of RNA polymerase II, and the viral DNA methyltransferase are also essential for replication in cell culture.
Collapse
Affiliation(s)
- D S Whitley
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | | | | | | | | |
Collapse
|
10
|
The alphaherpesvirus US3/ORF66 protein kinases direct phosphorylation of the nuclear matrix protein matrin 3. J Virol 2010; 85:568-81. [PMID: 20962082 DOI: 10.1128/jvi.01611-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protein kinase found in the short region of alphaherpesviruses, termed US3 in herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) and ORF66 in varicella-zoster virus (VZV), affects several viral and host cell processes, and its specific targets remain an area of active investigation. Reports suggesting that HSV-1 US3 substrates overlap with those of cellular protein kinase A (PKA) prompted the use of an antibody specific for phosphorylated PKA substrates to identify US3/ORF66 targets. HSV-1, VZV, and PRV induced very different substrate profiles that were US3/ORF66 kinase dependent. The predominant VZV-phosphorylated 125-kDa species was identified as matrin 3, one of the major nuclear matrix proteins. Matrin 3 was also phosphorylated by HSV-1 and PRV in a US3 kinase-dependent manner and by VZV ORF66 kinase at a novel residue (KRRRT150EE). Since VZV-directed T150 phosphorylation was not blocked by PKA inhibitors and was not induced by PKA activation, and since PKA predominantly targeted matrin 3 S188, it was concluded that phosphorylation by VZV was PKA independent. However, purified VZV ORF66 kinase did not phosphorylate matrin 3 in vitro, suggesting that additional cellular factors were required. In VZV-infected cells in the absence of the ORF66 kinase, matrin 3 displayed intranuclear changes, while matrin 3 showed a pronounced cytoplasmic distribution in late-stage cells infected with US3-negative HSV-1 or PRV. This work identifies phosphorylation of the nuclear matrix protein matrin 3 as a new conserved target of this kinase group.
Collapse
|
11
|
Ushijima Y, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus type 2 tegument protein UL56 relocalizes ubiquitin ligase Nedd4 and has a role in transport and/or release of virions. Virol J 2009; 6:168. [PMID: 19835589 PMCID: PMC2770495 DOI: 10.1186/1743-422x-6-168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 10/16/2009] [Indexed: 12/26/2022] Open
Abstract
Background The ubiquitin system functions in a variety of cellular processes including protein turnover, protein sorting and trafficking. Many viruses exploit the cellular ubiquitin system to facilitate viral replication. In fact, herpes simplex virus (HSV) encodes a ubiquitin ligase (E3) and a de-ubiquitinating enzyme to modify the host's ubiquitin system. We have previously reported HSV type 2 (HSV-2) tegument protein UL56 as a putative adaptor protein of neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) E3 ligase, which has been shown to be involved in protein sorting and trafficking. Results In this study, we visualized and characterized the dynamic intracellular localization of UL56 and Nedd4 using live-cell imaging and immunofluorescence analysis. UL56 was distributed to cytoplasmic vesicles, primarily to the trans-Golgi network (TGN), and trafficked actively throughout the cytoplasm. Moreover, UL56 relocalized Nedd4 to the vesicles in cells transiently expressing UL56 and in cells infected with HSV-2. We also investigated whether UL56 influenced the efficiency of viral replication, and found that extracellular infectious viruses were reduced in the absence of UL56. Conclusion These data suggest that UL56 regulates Nedd4 and functions to facilitate the cytoplasmic transport of virions from TGN to the plasma membrane and/or release of virions from the cell surface.
Collapse
Affiliation(s)
- Yoko Ushijima
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | |
Collapse
|
12
|
Haren L, Gnadt N, Wright M, Merdes A. NuMA is required for proper spindle assembly and chromosome alignment in prometaphase. BMC Res Notes 2009; 2:64. [PMID: 19400937 PMCID: PMC2686716 DOI: 10.1186/1756-0500-2-64] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 04/28/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND NuMA is a protein that has been previously shown to play a role in focusing microtubules at the mitotic spindle poles. However, most previous work relies on experimental methods that might cause dominant side effects on spindle formation, such as microinjection of antibodies, overexpression of mutant protein, or immunodepletion of NuMA-containing protein complexes. FINDINGS To circumvent these technical problems, we performed siRNA experiments in which we depleted the majority of NuMA in human cultured cells. Depleted mitotic cells show a prolonged duration of prometaphase, with spindle pole defects and with unattached, unaligned chromosomes. CONCLUSION Our data confirm that NuMA is important for spindle pole formation, and for cohesion of centrosome-derived microtubules with the bulk of spindle microtubules. Our findings of NuMA-dependent defects in chromosome alignment suggest that NuMA is involved in stabilizing kinetochore fibres.
Collapse
Affiliation(s)
- Laurence Haren
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
- Centre National de la Recherche Scientifique/Pierre Fabre UMR 2587, 3 rue des Satellites, 31400 Toulouse, France
| | - Nicole Gnadt
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | - Michel Wright
- Centre National de la Recherche Scientifique/Pierre Fabre UMR 2587, 3 rue des Satellites, 31400 Toulouse, France
| | - Andreas Merdes
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
- Centre National de la Recherche Scientifique/Pierre Fabre UMR 2587, 3 rue des Satellites, 31400 Toulouse, France
| |
Collapse
|