1
|
Dudin O, Ondracka A, Grau-Bové X, Haraldsen AA, Toyoda A, Suga H, Bråte J, Ruiz-Trillo I. A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. eLife 2019; 8:49801. [PMID: 31647412 PMCID: PMC6855841 DOI: 10.7554/elife.49801] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arthur Ab Haraldsen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Jon Bråte
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
2
|
Makushok T, Alves P, Huisman SM, Kijowski AR, Brunner D. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity. Cell 2016; 165:1182-1196. [PMID: 27180904 DOI: 10.1016/j.cell.2016.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/20/2015] [Accepted: 04/13/2016] [Indexed: 12/26/2022]
Abstract
Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.
Collapse
Affiliation(s)
- Tatyana Makushok
- University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94143, USA
| | - Paulo Alves
- IGBMC, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Stephen Michiel Huisman
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Adam Rafal Kijowski
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Damian Brunner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
3
|
Bendezú FO, Vincenzetti V, Vavylonis D, Wyss R, Vogel H, Martin SG. Spontaneous Cdc42 polarization independent of GDI-mediated extraction and actin-based trafficking. PLoS Biol 2015; 13:e1002097. [PMID: 25837586 PMCID: PMC4383620 DOI: 10.1371/journal.pbio.1002097] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
Abstract
The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which demonstrates Cdc42 dynamics and polarization independent of these pathways. Furthermore, an engineered Cdc42 allele targeted to the membrane independently of these recycling pathways by an amphipathic helix is viable and polarizes spontaneously to multiple sites in fission and budding yeasts. We show that Cdc42 is highly mobile at the membrane and accumulates at sites of activity, where it displays slower mobility. By contrast, a near-immobile transmembrane domain-containing Cdc42 allele supports viability and polarized activity, but does not accumulate at sites of activity. We propose that Cdc42 activation, enhanced by positive feedback, leads to its local accumulation by capture of fast-diffusing inactive molecules. This study of fission yeast reveals that the active and inactive forms of the small GTPase Cdc42 have different rates of lateral diffusion in the membrane, providing insights into how it becomes spontaneously polarized, thereby determining the polarity of the cell. Cell polarization is a critical feature of most cells that underlies their functional organization. A central polarity factor called Cdc42, a small GTPase targeted to the plasma membrane by prenylation, promotes cell polarization in its active GTP-bound form. Cdc42 is a key polarity factor because it accumulates at presumptive sites of polarity, which previous work suggested involves Cdc42 recycling on and off the plasma membrane. In addition, its activity can spontaneously polarize cells in a single location by self-enhancing positive feedback mechanisms, even in the absence of any pre-localized landmarks. In this study, we constructed the first functional fluorescently tagged allele of Cdc42 that replaces the endogenous genomic copy in Schizosaccharomyces pombe. This allowed measurements of Cdc42 dynamics at the plasma membrane by live microscopy. Unexpectedly, this approach revealed that Cdc42 primarily moves through lateral diffusion, rather than on and off the plasma membrane. Engineered Cdc42 alleles with alternative membrane-targeting mechanisms demonstrated that Cdc42 activity, indeed, polarizes in the absence of known pathways that recycle Cdc42 on and off the membrane. We further show that the active form, Cdc42-GTP, is less mobile than Cdc42-GDP. We thus propose that Cdc42 polarization occurs as a consequence of its local activation—either through self-enhanced feedback or in response to upstream cues—by a reduction in the active Cdc42 diffusion rate.
Collapse
Affiliation(s)
- Felipe O. Bendezú
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Romain Wyss
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
4
|
Lee J, Peng Y, Lin WY, Parrish JZ. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development 2014; 142:162-73. [PMID: 25480915 DOI: 10.1242/dev.113423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The directional flow of information in neurons depends on compartmentalization: dendrites receive inputs whereas axons transmit them. Axons and dendrites likewise contain structurally and functionally distinct subcompartments. Axon/dendrite compartmentalization can be attributed to neuronal polarization, but the developmental origin of subcompartments in axons and dendrites is less well understood. To identify the developmental bases for compartment-specific patterning in dendrites, we screened for mutations that affect discrete dendritic domains in Drosophila sensory neurons. From this screen, we identified mutations that affected distinct aspects of terminal dendrite development with little or no effect on major dendrite patterning. Mutation of one gene, raw, affected multiple aspects of terminal dendrite patterning, suggesting that Raw might coordinate multiple signaling pathways to shape terminal dendrite growth. Consistent with this notion, Raw localizes to branch-points and promotes dendrite stabilization together with the Tricornered (Trc) kinase via effects on cell adhesion. Raw independently influences terminal dendrite elongation through a mechanism that involves modulation of the cytoskeleton, and this pathway is likely to involve the RNA-binding protein Argonaute 1 (AGO1), as raw and AGO1 genetically interact to promote terminal dendrite growth but not adhesion. Thus, Raw defines a potential point of convergence in distinct pathways shaping terminal dendrite patterning.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Yun Peng
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Wen-Yang Lin
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Kokkoris K, Gallo Castro D, Martin SG. The Tea4-PP1 landmark promotes local growth by dual Cdc42 GEF recruitment and GAP exclusion. J Cell Sci 2014; 127:2005-16. [PMID: 24554432 DOI: 10.1242/jcs.142174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.
Collapse
Affiliation(s)
- Kyriakos Kokkoris
- University of Lausanne, Department of Fundamental Microbiology, Biophore Building, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
6
|
Vjestica A, Zhang D, Liu J, Oliferenko S. Hsp70-Hsp40 chaperone complex functions in controlling polarized growth by repressing Hsf1-driven heat stress-associated transcription. PLoS Genet 2013; 9:e1003886. [PMID: 24146635 PMCID: PMC3798271 DOI: 10.1371/journal.pgen.1003886] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/03/2013] [Indexed: 01/09/2023] Open
Abstract
How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments. Heat stress, caused by fluctuations in ambient temperature, occurs frequently in nature. How organisms adapt and maintain regular patterns of growth over a range of environmental conditions remain poorly understood. Our work in the simple unicellular yeast Schizosaccharomyces pombe suggests that the heat stress-associated transcription must be repressed by the evolutionary conserved Hsp70-Hsp40 chaperone complex to allow cells to adapt the polarized growth machinery to elevated temperature.
Collapse
Affiliation(s)
- Aleksandar Vjestica
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Dan Zhang
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Snezhana Oliferenko
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: ,
| |
Collapse
|
7
|
|
8
|
Cerone L, Novák B, Neufeld Z. Mathematical model for growth regulation of fission yeast Schizosaccharomyces pombe. PLoS One 2012; 7:e49675. [PMID: 23209589 PMCID: PMC3507836 DOI: 10.1371/journal.pone.0049675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
Regulation of polarised cell growth is essential for many cellular processes including spatial coordination of cell morphology changes during the division cycle. We present a mathematical model of the core mechanism responsible for the regulation of polarised growth dynamics during the fission yeast cell cycle. The model is based on the competition of growth zones localised at the cell tips for a common substrate distributed uniformly in the cytosol. We analyse the bifurcations in this model as the cell length increases, and show that the growth activation dynamics provides an explanation for the new-end take-off (NETO) as a saddle-node bifurcation at which the cell sharply switches from monopolar to bipolar growth. We study the parameter sensitivity of the bifurcation diagram and relate qualitative changes of the growth pattern, e.g. delayed or absent NETO, to previously observed mutant phenotypes. We investigate the effects of imperfect asymmetric cell division, and show that this leads to distinct growth patterns that provide experimentally testable predictions for validating the presented competitive growth zone activation model. Finally we discuss extension of the model for describing mutant cells with more than two growth zones.
Collapse
Affiliation(s)
- Luca Cerone
- School of Mathematical Sciences and Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
| | - Béla Novák
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Zoltán Neufeld
- School of Mathematics and Physics, University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Kelly FD, Nurse P. De novo growth zone formation from fission yeast spheroplasts. PLoS One 2011; 6:e27977. [PMID: 22194800 PMCID: PMC3240611 DOI: 10.1371/journal.pone.0027977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/28/2011] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic cells often form polarized growth zones in response to internal or external cues. To understand the establishment of growth zones with specific dimensions we used fission yeast, which grows as a rod-shaped cell of near-constant width from growth zones located at the cell tips. Removing the cell wall creates a round spheroplast with a disorganized cytoskeleton and depolarized growth proteins. As spheroplasts recover, new growth zones form that resemble normal growing cell tips in shape and width, and polarized growth resumes. Regulators of the GTPase Cdc42, which control width in exponentially growing cells, also control spheroplast growth zone width. During recovery the Cdc42 scaffold Scd2 forms a polarized patch in the rounded spheroplast, demonstrating that a growth zone protein can organize independent of cell shape. Rga4, a Cdc42 GTPase activating protein (GAP) that is excluded from cell tips, is initially distributed throughout the spheroplast membrane, but is excluded from the growth zone after a stable patch of Scd2 forms. These results provide evidence that growth zones with normal width and protein localization can form de novo through sequential organization of cellular domains, and that the size of these growth zones is genetically controlled, independent of preexisting cell shape.
Collapse
Affiliation(s)
- Felice D Kelly
- The Rockefeller University, New York, New York, United States of America.
| | | |
Collapse
|
10
|
Thadani R, Huang D, Oliferenko S. Robust polarity specification operates above a threshold of microtubule dynamicity. Cytoskeleton (Hoboken) 2011; 68:290-9. [PMID: 21548112 DOI: 10.1002/cm.20512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/06/2011] [Accepted: 04/18/2011] [Indexed: 11/12/2022]
Abstract
Microtubule arrays effect cell polarisation by directing cellular cues for cortical remodelling and growth. Their function depends crucially on the intrinsic dynamic properties of constituent microtubules. Microtubule dynamicity is restricted to a certain range within the confines of a cellular geometry. Thus it is of great interest to determine whether rescaling of dynamic properties of microtubules has consequences for cell polarity. We constructed fission yeast strains exhibiting depressed microtubule dynamics by mutating the β-tubulin gene, nda3. This interfered with efficient accumulation of a polarity factor Tea1 at cell tips. Interestingly, the polarity machinery in the mutant cells was highly susceptible to perturbations. Simulations of growth zone formation followed by imaging of actin distribution showed a significantly delayed onset of bipolar growth. We propose that there exists a threshold of microtubule dynamicity that allows robust cellular polarisation.
Collapse
Affiliation(s)
- Rahul Thadani
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore
| | | | | |
Collapse
|
11
|
Tischer C, Ten Wolde PR, Dogterom M. Providing positional information with active transport on dynamic microtubules. Biophys J 2010; 99:726-35. [PMID: 20682249 DOI: 10.1016/j.bpj.2010.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/15/2010] [Accepted: 05/12/2010] [Indexed: 12/24/2022] Open
Abstract
Microtubules (MTs) are dynamic protein polymers that change their length by switching between growing and shrinking states in a process termed dynamic instability. It has been suggested that the dynamic properties of MTs are central to the organization of the eukaryotic intracellular space, and that they are involved in the control of cell morphology, but the actual mechanisms are not well understood. Here, we present a theoretical analysis in which we explore the possibility that a system of dynamic MTs and MT end-tracking molecular motors is providing specific positional information inside cells. We compute the MT length distribution for the case of MT-length-dependent switching between growing and shrinking states, and analyze the accumulation of molecular motors at the tips of growing MTs. Using these results, we show that a transport system consisting of dynamic MTs and associated motor proteins can deliver cargo proteins preferentially to specific positions within the cell. Comparing our results with experimental data in the model organism fission yeast, we propose that the suggested mechanisms could play important roles in setting length scales during cellular morphogenesis.
Collapse
Affiliation(s)
- Christian Tischer
- Institute for Atomic and Molecular Physics, Foundation for Fundamental Research on Matter, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
12
|
Abstract
For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.
Collapse
Affiliation(s)
- Fred Chang
- Columbia University, College of Physicians and Surgeons, Department of Microbiology, 701 W 168th Street, New York 10032, USA.
| | | |
Collapse
|
13
|
Abstract
Eukaryotic cells display a wide range of morphologies important for cellular function and development. A particular cell shape is made via the generation of asymmetry in the organization of cytoskeletal elements, usually leading to actin localization at sites of growth. The Rho family of GTPases is present in all eukaryotic cells, from yeast to mammals, and their role as key regulators in the signalling pathways that control actin organization and morphogenetic processes is well known. In the present review we will discuss the role of Rho GTPases as regulators of yeasts' polarized growth, their mechanism of activation and signalling pathways in Saccharomyces cerevisiae and Schizosaccharomyces pombe. These two model yeasts have been very useful in the study of the molecular mechanisms responsible for cell polarity. As in other organisms with cell walls, yeast's polarized growth is closely related to cell-wall biosynthesis, and Rho GTPases are critical modulators of this process. They provide the co-ordinated regulation of cell-wall biosynthetic enzymes and actin organization required to maintain cell integrity during vegetative growth.
Collapse
|
14
|
Abstract
The fission yeast Schizosaccharomyces pombe has served as an important model organism for investigating cellular morphogenesis. This unicellular rod-shaped fission yeast grows by tip extension and divides by medial fission. In particular, microtubules appear to define sites of polarized cell growth by delivering cell polarity factors to the cell tips. Microtubules also position the cell nucleus at the cell middle, marking sites of cell division. Here, we review the microtubule-dependent mechanisms that regulate cell shape and cell division in fission yeast.
Collapse
|
15
|
Martin SG. Microtubule-dependent cell morphogenesis in the fission yeast. Trends Cell Biol 2009; 19:447-54. [PMID: 19713114 DOI: 10.1016/j.tcb.2009.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
In many systems, microtubules contribute spatial information to cell morphogenesis, for instance in cell migration and division. In rod-shaped fission yeast cells, microtubules control cell morphogenesis by transporting polarity factors, namely the Tea1-Tea4 complex, to cell tips. This complex then recruits the DYRK kinase Pom1 to cell ends. Interestingly, recent work has shown that these proteins also provide long-range spatial cues to position the division site in the middle of the cell and temporal signals to coordinate cell length with the cell cycle. Here I review how these microtubule-associated proteins form polar morphogenesis centers that control and integrate both spatial and temporal aspects of cell morphogenesis.
Collapse
Affiliation(s)
- Sophie G Martin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
16
|
Riveline D. Explaining lengths and shapes of yeast by scaling arguments. PLoS One 2009; 4:e6205. [PMID: 19593452 PMCID: PMC2705794 DOI: 10.1371/journal.pone.0006205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 06/09/2009] [Indexed: 11/22/2022] Open
Abstract
Lengths and shapes are approached in different ways in different fields: they serve as a read-out for classifying genes or proteins in cell biology whereas they result from scaling arguments in condensed matter physics. Here, we propose a combined approach with examples illustrated for the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Daniel Riveline
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics. Mol Syst Biol 2009; 5:250. [PMID: 19293830 PMCID: PMC2671921 DOI: 10.1038/msb.2009.5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/23/2008] [Indexed: 11/12/2022] Open
Abstract
Microtubules (MTs) are central to the organisation of the eukaryotic intracellular space and are involved in the control of cell morphology. For these purposes, MT polymerisation dynamics are tightly regulated. Using automated image analysis software, we investigate the spatial dependence of MT dynamics in interphase fission yeast cells with unprecedented statistical accuracy. We find that MT catastrophe frequencies (switches from polymerisation to depolymerisation) strongly depend on intracellular position. We provide evidence that compressive forces generated by MTs growing against the cell pole locally reduce MT growth velocities and enhance catastrophe frequencies. Furthermore, we find evidence for an MT length-dependent increase in the catastrophe frequency that is mediated by kinesin-8 proteins (Klp5/6). Given the intrinsic susceptibility of MT dynamics to compressive forces and the widespread importance of kinesin-8 proteins, we propose that similar spatial regulation of MT dynamics plays a role in other cell types as well. In addition, our systematic and quantitative data should provide valuable input for (mathematical) models of MT organisation in living cells.
Collapse
|
18
|
Minc N, Bratman SV, Basu R, Chang F. Establishing new sites of polarization by microtubules. Curr Biol 2009; 19:83-94. [PMID: 19147354 PMCID: PMC2820583 DOI: 10.1016/j.cub.2008.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Microtubules (MTs) participate in the spatial regulation of actin-based processes such as cytokinesis and cell polarization. The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that exhibits polarized cell growth at cell tips. MT plus ends contact and shrink from the cell tips and contribute to polarity regulation. RESULTS Here, we investigate the effects of changing cell shape on MTs and cell-polarization machinery. We physically bend fission yeast cells by forcing them into microfabricated femtoliter chambers. In these bent cells, MTs maintain a straight axis and contact and shrink from cortical sites at the sides of cells. At these ectopic sites, polarity factors such as bud6p, for3p (formin), and cdc42p are recruited and assemble actin cables in a MT-dependent manner. MT contact at the cortex induces the appearance of a bud6p dot within seconds. The accumulation of polarity factors leads to cell growth at these sites, when the MT-associated polarity factor tea1p is absent. This process is dependent on MTs, mal3p (EB1), moe1p (an EB1-binding protein), and for3p but, surprisingly, is independent of the tea1p-tea4p pathway. CONCLUSIONS These studies provide a direct demonstration for how MTs induce actin assembly at specific locations on the cell cortex and begin to identify a new pathway involved in this process. MT interactions with the cortex may be regulated by cortical-attachment sites. These findings highlight the crosstalk between cell shape, polarity mechanisms, and MTs responsible for cell morphogenesis.
Collapse
Affiliation(s)
| | | | - Roshni Basu
- Department of Microbiology, Columbia University College of Physicians and Surgeons 701W 168 Street, New York, NY 10032, U.S.A
| | - Fred Chang
- Department of Microbiology, Columbia University College of Physicians and Surgeons 701W 168 Street, New York, NY 10032, U.S.A
| |
Collapse
|
19
|
Robertson AM, Hagan IM. Stress-regulated kinase pathways in the recovery of tip growth and microtubule dynamics following osmotic stress in S. pombe. J Cell Sci 2008; 121:4055-68. [PMID: 19033386 DOI: 10.1242/jcs.034488] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell-integrity and stress-response MAP kinase pathways (CIP and SRP, respectively) are stimulated by various environmental stresses. Ssp1 kinase modulates actin dynamics and is rapidly recruited to the plasma membrane following osmotic stress. Here, we show that osmotic stress arrested tip growth, induced the deposition of abnormal cell-wall deposits at tips and led to disassociation of F-actin foci from cell tips together with a reduction in the amount of F-actin in these foci. Osmotic stress also ;froze' the dynamics of interphase microtubule bundles, with microtubules remaining static for approximately 38 minutes (at 30 degrees C) before fragmenting upon return to dynamic behaviour. The timing with which microtubules resumed dynamic behaviour relied upon SRP activation of Atf1-mediated transcription, but not on either CIP or Ssp1 signalling. Analysis of the recovery of tip growth showed that: (1) the timing of recovery was controlled by SRP-stimulated Atf1 transcription; (2) re-establishment of polarized tip growth was absolutely dependent upon SRP and partially dependent upon Ssp1 signalling; and (3) selection of the site for polarized tip extension required Ssp1 and the SRP-associated polarity factor Wsh3 (also known as Tea4). CIP signalling did not impact upon any aspect of recovery. The normal kinetics of tip growth following osmotic stress of plo1.S402A/E mutants established that SRP control over the resumption of tip growth after osmotic stress is distinct from its control of tip growth following heat or gravitational stresses.
Collapse
Affiliation(s)
- Alasdair M Robertson
- CRUK Cell Division Laboratory, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | |
Collapse
|
20
|
Terenna CR, Makushok T, Velve-Casquillas G, Baigl D, Chen Y, Bornens M, Paoletti A, Piel M, Tran PT. Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Curr Biol 2008; 18:1748-53. [PMID: 19026544 PMCID: PMC2997722 DOI: 10.1016/j.cub.2008.09.047] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/02/2008] [Accepted: 09/17/2008] [Indexed: 01/24/2023]
Abstract
The cylindrical rod shape of the fission yeast Schizosaccharomyces pombe is organized and maintained by interactions between the microtubule, cell membrane, and actin cytoskeleton [1]. Mutations affecting any components in this pathway lead to bent, branched, or round cells [2]. In this context, the cytoskeleton controls cell polarity and thus dictates cell shape. Here, we use soft-lithography techniques to construct microfluidic channels to control cell shape. We show that when wild-type rod-shaped cells are physically forced to grow in a bent fashion, they will reorganize their cytoskeleton and redirect cell polarity to make new ectopic cell tips. Moreover, when bent or round mutant cells are physically forced to conform to the wild-type rod-shape, they will reverse their mutational phenotypes by reorganizing their cytoskeleton to maintain proper wild-type-like localization of microtubules, cell-membrane proteins, and actin. Our study provides direct evidence that the cytoskeleton controls cell polarity and cell shape and demonstrates that cell shape also controls the organization of the cytoskeleton in a feedback loop. We present a model of the feedback loop to explain how fission yeast maintain a rod shape and how perturbation of specific parameters of the loop can lead to different cell shapes.
Collapse
Affiliation(s)
- Courtney R. Terenna
- University of Pennsylvania, Cell & Developmental Biology, Philadelphia, PA 19104 USA
| | - Tatyana Makushok
- University of Pennsylvania, Cell & Developmental Biology, Philadelphia, PA 19104 USA
- Institut Curie, UMR 144 CNRS, Paris 75005 FRANCE
| | | | - Damien Baigl
- Ecole Normale Superieure, UMR 8640 CNRS, Paris 75005 FRANCE
| | - Yong Chen
- Ecole Normale Superieure, UMR 8640 CNRS, Paris 75005 FRANCE
| | | | | | | | - Phong T. Tran
- University of Pennsylvania, Cell & Developmental Biology, Philadelphia, PA 19104 USA
- Institut Curie, UMR 144 CNRS, Paris 75005 FRANCE
| |
Collapse
|
21
|
Csikász-Nagy A, Gyorffy B, Alt W, Tyson JJ, Novák B. Spatial controls for growth zone formation during the fission yeast cell cycle. Yeast 2008; 25:59-69. [PMID: 17957823 DOI: 10.1002/yea.1571] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Because of its regular shape, fission yeast is becoming an increasingly important organism in the study of cellular morphogenesis. Genetic experiments with mutants and drug treatment studies with wild-type cells have revealed the importance of microtubules in controlling new growth zone formation. It is believed that microtubules exert this role by delivering to cell ends a 'dynamic landmark' protein, tea1p, which promotes actin polymerization and growth zone formation. Here we present a simple model for fission yeast morphogenesis that describes the interplay between these two cytoskeletal elements. An essential assumption of the model is that actin polymerization is a self-reinforcing process: filamentous actin promotes its own formation from globular actin subunits via regulatory molecules. In our model, microtubules stimulate actin polymerization by delivering a component of the autocatalytic actin-assembly feedback loop (not by delivering a de novo inducer of actin polymerization). We show that the model captures all the characteristic features of polarized growth in fission yeast during normal mitotic cycles. We categorize the types of growth patterns that can exist in the model and show that they correspond to the major classes of morphogenetic mutants (monopolar, orb, banana and tea). Based on these results, we propose that fission yeast cells have specific size ranges in which they can exhibit two or more different stable patterns of growth.
Collapse
Affiliation(s)
- Attila Csikász-Nagy
- Materials Structure and Modelling Research Group of the Hungarian Academy of Sciences, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary
| | | | | | | | | |
Collapse
|
22
|
Fischer R, Zekert N, Takeshita N. Polarized growth in fungi--interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 2008; 68:813-26. [PMID: 18399939 DOI: 10.1111/j.1365-2958.2008.06193.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One kind of the most extremely polarized cells in nature are the indefinitely growing hyphae of filamentous fungi. A continuous flow of secretion vesicles from the hyphal cell body to the growing hyphal tip is essential for cell wall and membrane extension. Because microtubules (MT) and actin, together with their corresponding motor proteins, are involved in the process, the arrangement of the cytoskeleton is a crucial step to establish and maintain polarity. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, actin-mediated vesicle transportation is sufficient for polar cell extension, but in S. pombe, MTs are in addition required for the establishment of polarity. The MT cytoskeleton delivers the so-called cell-end marker proteins to the cell pole, which in turn polarize the actin cytoskeleton. Latest results suggest that this scenario may principally be conserved from S. pombe to filamentous fungi. In addition, in filamentous fungi, MTs could provide the tracks for long-distance vesicle movement. In this review, we will compare the interaction of the MT and the actin cytoskeleton and their relation to the cortex between yeasts and filamentous fungi. In addition, we will discuss the role of sterol-rich membrane domains in combination with cell-end marker proteins for polarity establishment.
Collapse
Affiliation(s)
- Reinhard Fischer
- Department of Applied Microbiology, University of Karlsruhe, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | | | | |
Collapse
|
23
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
24
|
|