1
|
Das A, Ray A, Chaudhuri NR, Mukherjee S, Ghosh Dastidar S, Ghosh A, Ganguly S, Jana K, Sarkar S. Binary protein interactome mapping of the Giardia lamblia proteasome lid reveals extra proteasomal functions of GlRpn11. FEBS J 2025. [PMID: 39985201 DOI: 10.1111/febs.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
The assembly of the 26S proteasome, a multi-subunit complex for regulated protein turnover, proceeds via the formation of intermediates. Giardia lamblia does not encode proteasome regulatory subunit Rpn12 or proteasome complex subunit Sem1, two proteins crucial for assembling the proteasome lid. To understand how the interactions between the giardial proteasome lid subunits may have changed to compensate for their absence, we used yeast two-hybrid to generate a binary interactome map of Giardia's lid subunits. Most interactions within the Giardia lid are stronger than Saccharomyces cerevisiae lid, which may compensate for Rpn12 and Sem1 absence. A notable exception was the weaker interaction between the two non-ATPase lid subunits, GlRpn11 and GlRpn8, compared to the strong interaction between yeast orthologs Rpn11 and Rpn8. The Rpn11-Rpn8 dimer provides a platform for lid assembly. Their interaction involves the insertion of a methionine residue of Rpn11 into a hydrophobic pocket of Rpn8. Molecular modeling indicates that GlRpn8's pocket is wider, reconciling the experimental observation of its weak interaction with GlRpn11. This weaker interaction may have evolved to support proteasome-independent functions of GlRpn11, which localizes to multiple subcellular regions, including the mitosomes, where other proteasome subunits cannot be detected. Functional complementation in yeast shows that GlRpn11 can influence mitochondrial function and distribution. Together these observations show that GlRpn11 functions at the mitosome. Thus, this parasite's proteasome lid has a simpler subunit architecture than that of yeast with structural attributes to support dual functionalities for GlRpn11. Such parasite-specific proteasome features provide opportunities for controlling parasite transmission.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Atrayee Ray
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | | | | | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Sandipan Ganguly
- Division of Parasitology, National Institute for Research in Bacterial Infections, Kolkata, India
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Srimonti Sarkar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Molho M, Lin W, Nagy PD. A novel viral strategy for host factor recruitment: The co-opted proteasomal Rpn11 protein interaction hub in cooperation with subverted actin filaments are targeted to deliver cytosolic host factors for viral replication. PLoS Pathog 2021; 17:e1009680. [PMID: 34161398 PMCID: PMC8260003 DOI: 10.1371/journal.ppat.1009680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Positive-strand (+)RNA viruses take advantage of the host cells by subverting a long list of host protein factors and transport vesicles and cellular organelles to build membranous viral replication organelles (VROs) that support robust RNA replication. How RNA viruses accomplish major recruitment tasks of a large number of cellular proteins are intensively studied. In case of tomato bushy stunt virus (TBSV), a single viral replication protein, named p33, carries out most of the recruitment duties. Yet, it is currently unknown how the viral p33 replication protein, which is membrane associated, is capable of the rapid and efficient recruitment of numerous cytosolic host proteins to facilitate the formation of large VROs. In this paper, we show that, TBSV p33 molecules do not recruit each cytosolic host factor one-by-one into VROs, but p33 targets a cytosolic protein interaction hub, namely Rpn11, which interacts with numerous other cytosolic proteins. The highly conserved Rpn11, called POH1 in humans, is the metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates. However, TBSV takes advantage of a noncanonical function of Rpn11 by exploiting Rpn11's interaction with highly abundant cytosolic proteins and the actin network. We provide supporting evidence that the co-opted Rpn11 in coordination with the subverted actin network is used for delivering cytosolic proteins, such as glycolytic and fermentation enzymes, which are readily subverted into VROs to produce ATP locally in support of VRO formation, viral replicase complex assembly and viral RNA replication. Using several approaches, including knockdown of Rpn11 level, sequestering Rpn11 from the cytosol into the nucleus in plants or temperature-sensitive mutation in Rpn11 in yeast, we show the inhibition of recruitment of glycolytic and fermentation enzymes into VROs. The Rpn11-assisted recruitment of the cytosolic enzymes by p33, however, also requires the combined and coordinated role of the subverted actin network. Accordingly, stabilization of the actin filaments by expression of the Legionella VipA effector in yeast and plant, or via a mutation of ACT1 in yeast resulted in more efficient and rapid recruitment of Rpn11 and the selected glycolytic and fermentation enzymes into VROs. On the contrary, destruction of the actin filaments via expression of the Legionella RavK effector led to poor recruitment of Rpn11 and glycolytic and fermentation enzymes. Finally, we confirmed the key roles of Rpn11 and the actin filaments in situ ATP production within TBSV VROs via using a FRET-based ATP-biosensor. The novel emerging theme is that TBSV targets Rpn11 cytosolic protein interaction hub driven by the p33 replication protein and aided by the subverted actin filaments to deliver several co-opted cytosolic pro-viral factors for robust replication within VROs.
Collapse
Affiliation(s)
- Melissa Molho
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
3
|
Lin W, Feng Z, Prasanth KR, Liu Y, Nagy PD. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication. PLoS Pathog 2021; 17:e1009423. [PMID: 33725015 PMCID: PMC7997005 DOI: 10.1371/journal.ppat.1009423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/26/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Plus-stranded RNA viruses have limited coding capacity and have to co-opt numerous pro-viral host factors to support their replication. Many of the co-opted host factors support the biogenesis of the viral replication compartments and the formation of viral replicase complexes on subverted subcellular membrane surfaces. Tomato bushy stunt virus (TBSV) exploits peroxisomal membranes, whereas the closely-related carnation Italian ringspot virus (CIRV) hijacks the outer membranes of mitochondria. How these organellar membranes can be recruited into pro-viral roles is not completely understood. Here, we show that the highly conserved Fis1 mitochondrial fission protein is co-opted by both TBSV and CIRV via direct interactions with the p33/p36 replication proteins. Deletion of FIS1 in yeast or knockdown of the homologous Fis1 in plants inhibits tombusvirus replication. Instead of the canonical function in mitochondrial fission and peroxisome division, the tethering function of Fis1 is exploited by tombusviruses to facilitate the subversion of membrane contact site (MCS) proteins and peroxisomal/mitochondrial membranes for the biogenesis of the replication compartment. We propose that the dynamic interactions of Fis1 with MCS proteins, such as the ER resident VAP tethering proteins, Sac1 PI4P phosphatase and the cytosolic OSBP-like oxysterol-binding proteins, promote the formation and facilitate the stabilization of virus-induced vMCSs, which enrich sterols within the replication compartment. We show that this novel function of Fis1 is exploited by tombusviruses to build nuclease-insensitive viral replication compartment.
Collapse
Affiliation(s)
- Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| |
Collapse
|
4
|
Choubey S, Das D, Majumdar S. Cell-to-cell variability in organelle abundance reveals mechanisms of organelle biogenesis. Phys Rev E 2020; 100:022405. [PMID: 31574672 DOI: 10.1103/physreve.100.022405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 12/20/2022]
Abstract
How cells regulate the number of organelles is a fundamental question in cell biology. While decades of experimental work have uncovered four fundamental processes that regulate organelle biogenesis, namely, de novo synthesis, fission, fusion, and decay, a comprehensive understanding of how these processes together control organelle abundance remains elusive. Recent fluorescence microscopy experiments allow for the counting of organelles at the single-cell level. These measurements provide information about the cell-to-cell variability in organelle abundance in addition to the mean level. Motivated by such measurements, we build upon a recent study and analyze a general stochastic model of organelle biogenesis. We compute the exact analytical expressions for the probability distribution of organelle numbers, their mean, and variance across a population of single cells. It is shown that different mechanisms of organelle biogenesis lead to distinct signatures in the distribution of organelle numbers which allow us to discriminate between these various mechanisms. By comparing our theory against published data for peroxisome abundance measurements in yeast, we show that a widely believed model of peroxisome biogenesis that involves de novo synthesis, fission, and decay is inadequate in explaining the data. Also, our theory predicts bimodality in certain limits of the model. Overall, the framework developed here can be harnessed to gain mechanistic insights into the process of organelle biogenesis.
Collapse
Affiliation(s)
- Sandeep Choubey
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
| | - Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Saptarshi Majumdar
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
| |
Collapse
|
5
|
Tomko RJ, Taylor DW, Chen ZA, Wang HW, Rappsilber J, Hochstrasser M. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly. Cell 2016; 163:432-44. [PMID: 26451487 PMCID: PMC4601081 DOI: 10.1016/j.cell.2015.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/19/2015] [Accepted: 08/19/2015] [Indexed: 11/11/2022]
Abstract
Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes. First in vitro reconstitution of RP assembly with completely recombinant components Electron microscopy and cross-linking reveal massive remodeling of a lid precursor Remodeling of the lid relieves steric clash with the RP base to promote RP assembly Lid remodeling can be triggered by a single C-terminal α helix in the Rpn12 subunit
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | - David W Taylor
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Zhuo A Chen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Mayfield Road, Edinburgh EH9 3BF, Scotland
| | - Hong-Wei Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, PRC
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Mayfield Road, Edinburgh EH9 3BF, Scotland; Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
6
|
Pitayu L, Baruffini E, Rodier C, Rötig A, Lodi T, Delahodde A. Combined use of Saccharomyces cerevisiae, Caenorhabditis elegans and patient fibroblasts leads to the identification of clofilium tosylate as a potential therapeutic chemical against POLG-related diseases. Hum Mol Genet 2015; 25:715-27. [PMID: 26692522 DOI: 10.1093/hmg/ddv509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/08/2015] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are organelles that have their own DNA (mitochondrial DNA, mtDNA) whose maintenance is necessary for the majority of ATP production in eukaryotic cells. Defects in mtDNA maintenance or integrity are responsible for numerous diseases. The DNA polymerase γ (POLG) ensures proper mtDNA replication and repair. Mutations in POLG are a major cause of mitochondrial disorders including hepatic insufficiency, Alpers syndrome, progressive external ophthalmoplegia, sensory neuropathy and ataxia. Mutations in POLG are also associated with parkinsonism. To date, no effective therapy is available. Based on the conservation of mitochondrial function from yeast to human, we used Saccharomyces cerevisiae and Caenorhabditis elegans as first pass filters to identify a chemical that suppresses mtDNA instability in cultured fibroblasts of a POLG-deficient patient. We showed that this unsuspected compound, clofilium tosylate (CLO), belonging to a class of anti-arrhythmic agents, prevents mtDNA loss of all yeast mitochondrial polymerase mutants tested, improves behavior and mtDNA content of polg-1-deficient worms and increases mtDNA content of quiescent POLG-deficient fibroblasts. Furthermore, the mode of action of the drug seems conserved as CLO increases POLG steady-state level in yeast and human cells. Two other anti-arrhythmic agents (FDA-approved) sharing common pharmacological properties and chemical structure also show potential benefit for POLG deficiency in C. elegans. Our findings provide evidence of the first mtDNA-stabilizing compound that may be an effective pharmacological alternative for the treatment of POLG-related diseases.
Collapse
Affiliation(s)
- Laras Pitayu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Enrico Baruffini
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/a, I-43124 Parma, Italy and
| | - Celine Rodier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Agnès Rötig
- INSERM UMR 1163, Laboratory of Genetics of Mitochondrial Disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 24 Boulevard du Montparnasse, Paris 75015, France
| | - Tiziana Lodi
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/a, I-43124 Parma, Italy and
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France,
| |
Collapse
|
7
|
Franz A, Kevei É, Hoppe T. Double-edged alliance: mitochondrial surveillance by the UPS and autophagy. Curr Opin Cell Biol 2015; 37:18-27. [DOI: 10.1016/j.ceb.2015.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022]
|
8
|
The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex. J Virol 2014; 89:2750-63. [PMID: 25540361 DOI: 10.1128/jvi.02620-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. IMPORTANCE RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination.
Collapse
|
9
|
The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin. Nat Commun 2014; 5:3597. [PMID: 24710126 DOI: 10.1038/ncomms4597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/10/2014] [Indexed: 12/24/2022] Open
Abstract
CENP-A, a variant of histone H3, is incorporated into centromeric chromatin and plays a role during kinetochore establishment. In fission yeast, the localization of CENP-A is limited to a region spanning 10-20 kb of the core domain of the centromere. Here, we report a mutant (rpt3-1) in which this region is expanded to 40-70 kb. Likely due to abnormal distribution of CENP-A, this mutant exhibits chromosome instability and enhanced gene silencing. Interestingly, the rpt3(+) gene encodes a subunit of the 19S proteasome, which localizes to the nuclear membrane. Although Rpt3 associates with centromeric chromatin, the mutant protein has lost this localization. A loss of the cut8(+) gene encoding an anchor of the proteasome to the nuclear membrane causes similar phenotypes as observed in the rpt3-1 mutant. Thus, we propose that the proteasome (or its subcomplex) associates with centromeric chromatin and regulates distribution of CENP-A.
Collapse
|
10
|
Saunier R, Esposito M, Dassa EP, Delahodde A. Integrity of the Saccharomyces cerevisiae Rpn11 protein is critical for formation of proteasome storage granules (PSG) and survival in stationary phase. PLoS One 2013; 8:e70357. [PMID: 23936414 PMCID: PMC3735599 DOI: 10.1371/journal.pone.0070357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/19/2013] [Indexed: 11/18/2022] Open
Abstract
Decline of proteasome activity has been reported in mammals, flies and yeasts during aging. In the yeast Saccharomyces cerevisiae, the reduction of proteolysis in stationary phase is correlated with disassembly of the 26S proteasomes into their 20S and 19S subcomplexes. However a recent report showed that upon entry into the stationary phase, proteasome subunits massively re-localize from the nucleus into mobile cytoplasmic structures called proteasome storage granules (PSGs). Whether proteasome subunits in PSG are assembled into active complexes remains an open question that we addressed in the present study. We showed that a particular mutant of the RPN11 gene (rpn11-m1), encoding a proteasome lid subunit already known to exhibit proteasome assembly/stability defect in vitro, is unable to form PSGs and displays a reduced viability in stationary phase. Full restoration of long-term survival and PSG formation in rpn11-m1 cells can be achieved by the expression in trans of the last 45 amino acids of the C-terminal domain of Rpn11, which was moreover found to co-localize with PSGs. In addition, another rpn11 mutant leading to seven amino acids change in the Rpn11 C-terminal domain, which exhibits assembled-26S proteasomes, is able to form PSGs but with a delay compared to the wild type situation. Altogether, our findings indicate that PSGs are formed of fully assembled 26S proteasomes and suggest a critical role for the Rpn11 protein in this process.
Collapse
Affiliation(s)
- Rémy Saunier
- Univ Paris-Sud, CNRS UMR 8621, Institut de Génétique et Microbiologie, Orsay, France
| | | | | | | |
Collapse
|
11
|
Cankorur-Cetinkaya A, Eraslan S, Kirdar B. Transcriptional remodelling in response to changing copper levels in the Wilson and Menkes disease model of Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2013; 9:2889-908. [DOI: 10.1039/c3mb70276f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Guo Q, Koirala S, Perkins EM, McCaffery JM, Shaw JM. The mitochondrial fission adaptors Caf4 and Mdv1 are not functionally equivalent. PLoS One 2012; 7:e53523. [PMID: 23300936 PMCID: PMC3534038 DOI: 10.1371/journal.pone.0053523] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/03/2012] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial fission in eukaryotes is mediated by protein complexes that encircle and divide mitochondrial tubules. In budding yeast, fission requires the membrane-anchored protein Fis1 and the dynamin-related GTPase Dnm1. Dnm1 is recruited to mitochondria via interactions with the adaptor proteins Caf4 and Mdv1, which bind directly to Fis1. Unlike Mdv1, a function for Caf4 in mitochondrial membrane scission has not been established. In this study, we demonstrate that Caf4 is a bona fide fission adaptor that assembles at sites of mitochondrial division. We also show that fission complexes may contain Caf4 alone or both Caf4 and Mdv1 without compromising fission function. Although there is a correspondence between Caf4 and Mdv1 expression levels and their contribution to fission, the two adaptor proteins are not equivalent. Rather, our functional and phylogenetic analyses indicate that Caf4 mitochondrial fission activity has diverged from that of Mdv1.
Collapse
Affiliation(s)
- Qian Guo
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sajjan Koirala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Edward M. Perkins
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - J. Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Janet M. Shaw
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
13
|
Authentic in vitro replication of two tombusviruses in isolated mitochondrial and endoplasmic reticulum membranes. J Virol 2012; 86:12779-94. [PMID: 22973028 DOI: 10.1128/jvi.00973-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Replication of plus-stranded RNA viruses takes place on membranous structures derived from various organelles in infected cells. Previous works with Tomato bushy stunt tombusvirus (TBSV) revealed the recruitment of either peroxisomal or endoplasmic reticulum (ER) membranes for replication. In case of Carnation Italian ringspot tombusvirus (CIRV), the mitochondrial membranes supported CIRV replication. In this study, we developed ER and mitochondrion-based in vitro tombusvirus replication assays. Using purified recombinant TBSV and CIRV replication proteins, we showed that TBSV could use the purified yeast ER and mitochondrial preparations for complete viral RNA replication, while CIRV preferentially replicated in the mitochondrial membranes. The viral RNA became partly RNase resistant after ∼40 to 60 min of incubation in the purified ER and mitochondrial preparations, suggesting that assembly of TBSV and CIRV replicases could take place in the purified ER and mitochondrial membranes in vitro. Using chimeric and heterologous combinations of replication proteins, we showed that multiple domains within the replication proteins are involved in determining the efficiency of tombusvirus replication in the two subcellular membranes. Altogether, we demonstrated that TBSV is less limited while CIRV is more restricted in utilizing various intracellular membranes for replication. Overall, the current work provides evidence that tombusvirus replication could occur in vitro in isolated subcellular membranes, suggesting that tombusviruses have the ability to utilize alternative organellar membranes during infection that could increase the chance of mixed virus replication and rapid evolution during coinfection.
Collapse
|
14
|
From networks of protein interactions to networks of functional dependencies. BMC SYSTEMS BIOLOGY 2012; 6:44. [PMID: 22607727 PMCID: PMC3434018 DOI: 10.1186/1752-0509-6-44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/20/2012] [Indexed: 11/23/2022]
Abstract
Background As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation). However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node. Results Reasoning that topological features (e.g., clusters of highly inter-connected proteins) might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations), based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud) or biological processes (e.g., cell budding) of the model organism S. cerevisiae. Conclusions The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.
Collapse
|
15
|
Esposito M, Piatti S, Hofmann L, Frontali L, Delahodde A, Rinaldi T. Analysis of the rpn11-m1 proteasomal mutant reveals connection between cell cycle and mitochondrial biogenesis. FEMS Yeast Res 2010; 11:60-71. [PMID: 21059189 DOI: 10.1111/j.1567-1364.2010.00690.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The proteasomal lid subunit Rpn11 is essential for maintaining a correct cell cycle and mitochondrial morphology in Saccharomyces cerevisiae. In this paper, we show that the rpn11-m1 mutant has a peculiar cell cycle defect reminiscent of mutants defective in the FEAR pathway that delay the release of the Cdc14 protein phosphatase from the nucleolus. We analyzed the rpn11-m1 phenotypes and found that overexpression of Cdc14 suppresses all the rpn11-m1 defects, including the mitochondrial ones. Suppression by Cdc14 of the rpn11-m1 mitochondrial morphology defect reveals an uncharacterized connection between mitochondrial and cell cycle events. Interestingly, the overexpression of Cdc14 also partially restores the tubular network in an Δmmm2 strain, which lacks a mitochondrial protein belonging to the complex necessary to anchor the mitochondrion to the actin cytoskeleton. Altogether our findings indicate, for the first time, a cross-talk between the cell cycle and mitochondrial morphology.
Collapse
Affiliation(s)
- Michela Esposito
- Department of Cell and Developmental Biology, Pasteur Institute-Cenci Bolognetti Foundation, University of Rome, Rome, Italy
| | | | | | | | | | | |
Collapse
|
16
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Molecular Basis of Peroxisome Division and Proliferation in Plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 279:79-99. [DOI: 10.1016/s1937-6448(10)79003-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|