1
|
Zhang Y, Song C, Wang L, Jiang H, Zhai Y, Wang Y, Fang J, Zhang G. Zombies Never Die: The Double Life Bub1 Lives in Mitosis. Front Cell Dev Biol 2022; 10:870745. [PMID: 35646932 PMCID: PMC9136299 DOI: 10.3389/fcell.2022.870745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
When eukaryotic cells enter mitosis, dispersed chromosomes move to the cell center along microtubules to form a metaphase plate which facilitates the accurate chromosome segregation. Meanwhile, kinetochores not stably attached by microtubules activate the spindle assembly checkpoint and generate a wait signal to delay the initiation of anaphase. These events are highly coordinated. Disruption of the coordination will cause severe problems like chromosome gain or loss. Bub1, a conserved serine/threonine kinase, plays important roles in mitosis. After extensive studies in the last three decades, the role of Bub1 on checkpoint has achieved a comprehensive understanding; its role on chromosome alignment also starts to emerge. In this review, we summarize the latest development of Bub1 on supporting the two mitotic events. The essentiality of Bub1 in higher eukaryotic cells is also discussed. At the end, some undissolved questions are raised for future study.
Collapse
Affiliation(s)
- Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Fang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| |
Collapse
|
2
|
Amalina I, Bennett A, Whalley H, Perera D, McGrail JC, Tighe A, Procter DJ, Taylor SS. Inhibitors of the Bub1 spindle assembly checkpoint kinase: synthesis of BAY-320 and comparison with 2OH-BNPP1. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210854. [PMID: 34925867 PMCID: PMC8672067 DOI: 10.1098/rsos.210854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Bub1 is a serine/threonine kinase proposed to function centrally in mitotic chromosome alignment and the spindle assembly checkpoint (SAC); however, its role remains controversial. Although it is well documented that Bub1 phosphorylation of Histone 2A at T120 (H2ApT120) recruits Sgo1/2 to kinetochores, the requirement of its kinase activity for chromosome alignment and the SAC is debated. As small-molecule inhibitors are invaluable tools for investigating kinase function, we evaluated two potential Bub1 inhibitors: 2OH-BNPPI and BAY-320. After confirming that both inhibit Bub1 in vitro, we developed a cell-based assay for Bub1 inhibition. We overexpressed a fusion of Histone 2B and Bub1 kinase region, tethering it in proximity to H2A to generate a strong ectopic H2ApT120 signal along chromosome arms. Ectopic signal was effectively inhibited by BAY-320, but not 2OH-BNPP1 at concentrations tested. In addition, only BAY-320 was able to inhibit endogenous Bub1-mediated Sgo1 localization. Preliminary experiments using BAY-320 suggest a minor role for Bub1 kinase activity in chromosome alignment and the SAC; however, BAY-320 may exhibit off-target effects at the concentration required. Thus, 2OH-BNPP1 may not be an effective Bub1 inhibitor in cellulo, and while BAY-320 can inhibit Bub1 in cells, off-target effects highlight the need for improved Bub1 inhibitors.
Collapse
Affiliation(s)
- Ilma Amalina
- Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ailsa Bennett
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Helen Whalley
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - David Perera
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Joanne C. McGrail
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - David J. Procter
- Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Stephen S. Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
3
|
Sales-Gil R, Kommer DC, de Castro IJ, Amin HA, Vinciotti V, Sisu C, Vagnarelli P. Non-redundant functions of H2A.Z.1 and H2A.Z.2 in chromosome segregation and cell cycle progression. EMBO Rep 2021; 22:e52061. [PMID: 34423893 PMCID: PMC8567233 DOI: 10.15252/embr.202052061] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
H2A.Z is a H2A‐type histone variant essential for many aspects of cell biology, ranging from gene expression to genome stability. From deuterostomes, H2A.Z evolved into two paralogues, H2A.Z.1 and H2A.Z.2, that differ by only three amino acids and are encoded by different genes (H2AFZ and H2AFV, respectively). Despite the importance of this histone variant in development and cellular homeostasis, very little is known about the individual functions of each paralogue in mammals. Here, we have investigated the distinct roles of the two paralogues in cell cycle regulation and unveiled non‐redundant functions for H2A.Z.1 and H2A.Z.2 in cell division. Our findings show that H2A.Z.1 regulates the expression of cell cycle genes such as Myc and Ki‐67 and its depletion leads to a G1 arrest and cellular senescence. On the contrary, H2A.Z.2, in a transcription‐independent manner, is essential for centromere integrity and sister chromatid cohesion regulation, thus playing a key role in chromosome segregation.
Collapse
Affiliation(s)
- Raquel Sales-Gil
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Dorothee C Kommer
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Ines J de Castro
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Hasnat A Amin
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Veronica Vinciotti
- College of Engineering, Design and Physical Sciences, Research Institute for Environment Health and Society, Brunel University London, London, UK
| | - Cristina Sisu
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Paola Vagnarelli
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| |
Collapse
|
4
|
Lara-Gonzalez P, Pines J, Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin Cell Dev Biol 2021; 117:86-98. [PMID: 34210579 PMCID: PMC8406419 DOI: 10.1016/j.semcdb.2021.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that promotes accurate chromosome segregation in mitosis. The checkpoint senses the attachment state of kinetochores, the proteinaceous structures that assemble onto chromosomes in mitosis in order to mediate their interaction with spindle microtubules. When unattached, kinetochores generate a diffusible inhibitor that blocks the activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase required for sister chromatid separation and exit from mitosis. Work from the past decade has greatly illuminated our understanding of the mechanisms by which the diffusible inhibitor is assembled and how it inhibits the APC/C. However, less is understood about how SAC proteins are recruited to kinetochores in the absence of microtubule attachment, how the kinetochore catalyzes formation of the diffusible inhibitor, and how attachments silence the SAC at the kinetochore. Here, we summarize current understanding of the mechanisms that activate and silence the SAC at kinetochores and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Arshad Desai
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Liu D, Song AT, Qi X, van Vliet PP, Xiao J, Xiong F, Andelfinger G, Nattel S. Cohesin-protein Shugoshin-1 controls cardiac automaticity via HCN4 pacemaker channel. Nat Commun 2021; 12:2551. [PMID: 33953173 PMCID: PMC8100125 DOI: 10.1038/s41467-021-22737-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Endogenous cardiac pacemaker function regulates the rate and rhythm of cardiac contraction. The mutation p.Lys23Glu in the cohesin protein Shugoshin-1 causes severe heart arrhythmias due to sinoatrial node dysfunction and a debilitating gastrointestinal motility disorder, collectively termed the Chronic Atrial and Intestinal Dysrhythmia Syndrome, linking Shugoshin-1 and pacemaker activity. Hyperpolarization-activated, cyclic nucleotide-gated cation channel 4 (HCN4) is the predominant pacemaker ion-channel in the adult heart and carries the majority of the "funny" current, which strongly contributes to diastolic depolarization in pacemaker cells. Here, we study the mechanism by which Shugoshin-1 affects cardiac pacing activity with two cell models: neonatal rat ventricular myocytes and Chronic Atrial and Intestinal Dysrhythmia Syndrome patient-specific human induced pluripotent stem cell derived cardiomyocytes. We find that Shugoshin-1 interacts directly with HCN4 to promote and stabilize cardiac pacing. This interaction enhances funny-current by optimizing HCN4 cell-surface expression and function. The clinical p.Lys23Glu mutation leads to an impairment in the interaction between Shugoshin-1 and HCN4, along with depressed funny-current and dysrhythmic activity in induced pluripotent stem cell derived cardiomyocytes derived from Chronic Atrial and Intestinal Dysrhythmia Syndrome patients. Our work reveals a critical non-canonical, cohesin-independent role for Shugoshin-1 in maintaining cardiac automaticity and identifies potential therapeutic avenues for cardiac pacemaking disorders, in particular Chronic Atrial and Intestinal Dysrhythmia Syndrome.
Collapse
Affiliation(s)
- Donghai Liu
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Andrew Taehun Song
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
| | - Xiaoyan Qi
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
- LIA (International Associated Laboratory) INSERM, Marseille, France
- LIA (International Associated Laboratory) Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Jiening Xiao
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Feng Xiong
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
- Department of Pediatrics, University of Montreal, Montréal, QC, Canada
- Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Stanley Nattel
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.
- IHU LIRYC Institute, Fondation Bordeaux Université, Bordeaux, France.
| |
Collapse
|
6
|
Schmitz ML, Higgins JMG, Seibert M. Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle 2020; 19:625-641. [PMID: 31992120 DOI: 10.1080/15384101.2020.1719585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histone proteins are important for various cellular processes including regulation of gene expression and chromatin structure, DNA damage response and chromosome segregation. Here we comprehensively review mitotic histone PTMs, in particular phosphorylations, and discuss their interplay and functions in the control of dynamic protein-protein interactions as well as their contribution to centromere and chromosome structure and function during cell division. Histone phosphorylations can create binding sites for mitotic regulators such as the chromosomal passenger complex, which is required for correction of erroneous spindle attachments and chromosome bi-orientation. Other histone PTMs can alter the structural properties of nucleosomes and the accessibility of chromatin. Epigenetic marks such as lysine methylations are maintained during mitosis and may also be important for mitotic transcription as well as bookmarking of transcriptional states to ensure the transmission of gene expression programs through cell division. Additionally, histone phosphorylation can dissociate readers of methylated histones without losing epigenetic information. Through all of these processes, mitotic histone PTMs play a functional role in priming the chromatin for faithful chromosome segregation and preventing genetic instability, one of the characteristic hallmarks of cancer cells.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
7
|
Liang C, Zhang Z, Chen Q, Yan H, Zhang M, Xiang X, Yi Q, Pan X, Cheng H, Wang F. A positive feedback mechanism ensures proper assembly of the functional inner centromere during mitosis in human cells. J Biol Chem 2019; 294:1437-1450. [PMID: 30498087 PMCID: PMC6364785 DOI: 10.1074/jbc.ra118.006046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
The inner centromere region of a mitotic chromosome critically regulates sister chromatid cohesion and kinetochore-microtubule attachments. However, the molecular mechanism underlying inner centromere assembly remains elusive. Here, using CRISPR/Cas9-based gene editing in HeLa cells, we disrupted the interaction of Shugoshin 1 (Sgo1) with histone H2A phosphorylated on Thr-120 (H2ApT120) to selectively release Sgo1 from mitotic centromeres. Interestingly, cells expressing the H2ApT120-binding defective mutant of Sgo1 have an elevated rate of chromosome missegregation accompanied by weakened centromeric cohesion and decreased centromere accumulation of the chromosomal passenger complex (CPC), an integral part of the inner centromere and a key player in the correction of erroneous kinetochore-microtubule attachments. When artificially tethered to centromeres, a Sgo1 mutant defective in binding protein phosphatase 2A (PP2A) is not able to support proper centromeric cohesion and CPC accumulation, indicating that the Sgo1-PP2A interaction is essential for the integrity of mitotic centromeres. We further provide evidence indicating that Sgo1 protects centromeric cohesin to create a binding site for the histone H3-associated protein kinase Haspin, which not only inhibits the cohesin release factor Wapl and thereby strengthens centromeric cohesion but also phosphorylates histone H3 at Thr-3 to position CPC at inner centromeres. Taken together, our findings reveal a positive feedback-based mechanism that ensures proper assembly of the functional inner centromere during mitosis. They further suggest a causal link between centromeric cohesion defects and chromosomal instability in cancer cells.
Collapse
Affiliation(s)
- Cai Liang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhenlei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qinfu Chen
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Yan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xingfeng Xiang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qi Yi
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Pan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hankun Cheng
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Edwards F, Maton G, Gareil N, Canman JC, Dumont J. BUB-1 promotes amphitelic chromosome biorientation via multiple activities at the kinetochore. eLife 2018; 7:40690. [PMID: 30547880 PMCID: PMC6303103 DOI: 10.7554/elife.40690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/13/2018] [Indexed: 12/03/2022] Open
Abstract
Accurate chromosome segregation relies on bioriented amphitelic attachments of chromosomes to microtubules of the mitotic spindle, in which sister chromatids are connected to opposite spindle poles. BUB-1 is a protein of the Spindle Assembly Checkpoint (SAC) that coordinates chromosome attachment with anaphase onset. BUB-1 is also required for accurate sister chromatid segregation independently of its SAC function, but the underlying mechanism remains unclear. Here we show that, in Caenorhabditis elegans embryos, BUB-1 accelerates the establishment of non-merotelic end-on kinetochore-microtubule attachments by recruiting the RZZ complex and its downstream partner dynein-dynactin at the kinetochore. In parallel, BUB-1 limits attachment maturation by the SKA complex. This activity opposes kinetochore-microtubule attachment stabilisation promoted by CLS-2CLASP-dependent kinetochore-microtubule assembly. BUB-1 is therefore a SAC component that coordinates the function of multiple downstream kinetochore-associated proteins to ensure accurate chromosome segregation.
Collapse
Affiliation(s)
- Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nelly Gareil
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, United States
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
9
|
Abstract
Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Serafin U. Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Gary H. Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Ruppert JG, Samejima K, Platani M, Molina O, Kimura H, Jeyaprakash AA, Ohta S, Earnshaw WC. HP1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO J 2018; 37:e97677. [PMID: 29467217 PMCID: PMC5852645 DOI: 10.15252/embj.201797677] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
The chromosomal passenger complex (CPC) is directed to centromeres during mitosis via binding to H3T3ph and Sgo1. Whether and how heterochromatin protein 1α (HP1α) influences CPC localisation and function during mitotic entry is less clear. Here, we alter HP1α dynamics by fusing it to a CENP-B DNA-binding domain. Tethered HP1 strongly recruits the CPC, destabilising kinetochore-microtubule interactions and activating the spindle assembly checkpoint. During mitotic exit, the tethered HP1 traps active CPC at centromeres. These HP1-CPC clusters remain catalytically active throughout the subsequent cell cycle. We also detect interactions between endogenous HP1 and the CPC during G2 HP1α and HP1γ cooperate to recruit the CPC to active foci in a CDK1-independent process. Live cell tracking with Fab fragments reveals that H3S10ph appears well before H3T3 is phosphorylated by Haspin kinase. Our results suggest that HP1 may concentrate and activate the CPC at centromeric heterochromatin in G2 before Aurora B-mediated phosphorylation of H3S10 releases HP1 from chromatin and allows pathways dependent on H3T3ph and Sgo1 to redirect the CPC to mitotic centromeres.
Collapse
Affiliation(s)
- Jan G Ruppert
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Melpomeni Platani
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Oscar Molina
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Shinya Ohta
- Department of Biochemistry, Medical School, Kochi University, Nankoku, Kochi, Japan
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Yamada T, Tahara E, Kanke M, Kuwata K, Nishiyama T. Drosophila Dalmatian combines sororin and shugoshin roles in establishment and protection of cohesion. EMBO J 2017; 36:1513-1527. [PMID: 28483815 DOI: 10.15252/embj.201695607] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Sister chromatid cohesion is crucial to ensure chromosome bi-orientation and equal chromosome segregation. Cohesin removal via mitotic kinases and Wapl has to be prevented in pericentromeric regions in order to protect cohesion until metaphase, but the mechanisms of mitotic cohesion protection remain elusive in Drosophila Here, we show that dalmatian (Dmt), an ortholog of the vertebrate cohesin-associated protein sororin, is required for protection of mitotic cohesion in flies. Dmt is essential for cohesion establishment during interphase and is enriched on pericentromeric heterochromatin. Dmt is recruited through direct association with heterochromatin protein-1 (HP1), and this interaction is required for cohesion. During mitosis, Dmt interdependently recruits protein phosphatase 2A (PP2A) to pericentromeric regions, and PP2A binding is required for Dmt to protect cohesion. Intriguingly, Dmt is sufficient to protect cohesion upon heterologous expression in human cells. Our findings of a hybrid system, in which Dmt exerts both sororin-like establishment functions and shugoshin-like heterochromatin-based protection roles, provide clues to the evolutionary modulation of eukaryotic cohesion regulation systems.
Collapse
Affiliation(s)
- Takashi Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Eri Tahara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Mai Kanke
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| | - Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, Japan
| |
Collapse
|
12
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
13
|
Abstract
The role of Heterochromatin Protein-1 (HP1) during mitosis has been controversial. Two recent studies in Science and Developmental Cell, from Tanno et al. (2015) and Abe et al. (2016), suggest that the means of HP1 localization and its function at inner centromeres are altered in cancer cells with chromosomal instability.
Collapse
Affiliation(s)
- Jonathan M G Higgins
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Lisa Prendergast
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
14
|
Baron AP, von Schubert C, Cubizolles F, Siemeister G, Hitchcock M, Mengel A, Schröder J, Fernández-Montalván A, von Nussbaum F, Mumberg D, Nigg EA. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. eLife 2016; 5. [PMID: 26885717 PMCID: PMC4769170 DOI: 10.7554/elife.12187] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
The kinase Bub1 functions in the spindle assembly checkpoint (SAC) and in chromosome congression, but the role of its catalytic activity remains controversial. Here, we use two novel Bub1 inhibitors, BAY-320 and BAY-524, to demonstrate potent Bub1 kinase inhibition both in vitro and in intact cells. Then, we compared the cellular phenotypes of Bub1 kinase inhibition in HeLa and RPE1 cells with those of protein depletion, indicative of catalytic or scaffolding functions, respectively. Bub1 inhibition affected chromosome association of Shugoshin and the chromosomal passenger complex (CPC), without abolishing global Aurora B function. Consequently, inhibition of Bub1 kinase impaired chromosome arm resolution but exerted only minor effects on mitotic progression or SAC function. Importantly, BAY-320 and BAY-524 treatment sensitized cells to low doses of Paclitaxel, impairing both chromosome segregation and cell proliferation. These findings are relevant to our understanding of Bub1 kinase function and the prospects of targeting Bub1 for therapeutic applications. DOI:http://dx.doi.org/10.7554/eLife.12187.001 The DNA in our cells is packaged into structures called chromosomes. When a cell divides, these chromosomes need to be copied and then correctly separated so that both daughter cells have a full set of genetic information. Errors in separating chromosomes can lead to the death of cells, birth defects or contribute to the development of cancer. Chromosomes are separated by an array of protein fibers called the mitotic spindle. A surveillance mechanism known as the spindle assembly checkpoint prevents the cell from dividing until all the chromosomes have properly attached to the spindle. A protein called Bub1 is a central element of the SAC. However, it was not clear whether Bub1 works primarily as an enzyme or as a scaffolding protein. Baron, von Schubert et al. characterized two new molecules that inhibit Bub1’s enzyme activity and used them to investigate what role the enzyme plays in the spindle assembly checkpoint in human cells. The experiments compared the effects of these inhibitors to the effects of other molecules that block the production of Bub1. Baron, von Schubert et al.’s findings suggest that Bub1 works primarily as a scaffolding protein, but that the enzyme activity is required for optimal performance. Further experiments show that when the molecules that inhibit the Bub1 enzyme are combined with paclitaxel – a widely used therapeutic drug – cancer cells have more difficulties in separating their chromosomes and divide less often. The new inhibitors used by Baron, von Schubert et al. will be useful for future studies of this protein in different situations. Furthermore, these molecules may have the potential to be used as anti-cancer therapies in combination with other drugs. DOI:http://dx.doi.org/10.7554/eLife.12187.002
Collapse
Affiliation(s)
- Anna P Baron
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | | | - Anne Mengel
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | - Jens Schröder
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Breit C, Bange T, Petrovic A, Weir JR, Müller F, Vogt D, Musacchio A. Role of Intrinsic and Extrinsic Factors in the Regulation of the Mitotic Checkpoint Kinase Bub1. PLoS One 2015; 10:e0144673. [PMID: 26658523 PMCID: PMC4675524 DOI: 10.1371/journal.pone.0144673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022] Open
Abstract
The spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores to ensure accurate sister chromatid segregation during mitosis. The SAC members Bub1 and BubR1 are paralogs that underwent significant functional specializations during evolution. We report an in-depth characterization of the kinase domains of Bub1 and BubR1. BubR1 kinase domain binds nucleotides but is unable to deliver catalytic activity in vitro. Conversely, Bub1 is an active kinase regulated by intra-molecular phosphorylation at the P+1 loop. The crystal structure of the phosphorylated Bub1 kinase domain illustrates a hitherto unknown conformation of the P+1 loop docked into the active site of the Bub1 kinase. Both Bub1 and BubR1 bind Bub3 constitutively. A hydrodynamic characterization of Bub1:Bub3 and BubR1:Bub3 demonstrates both complexes to have 1:1 stoichiometry, with no additional oligomerization. Conversely, Bub1:Bub3 and BubR1:Bub3 combine to form a heterotetramer. Neither BubR1:Bub3 nor Knl1, the kinetochore receptor of Bub1:Bub3, modulate the kinase activity of Bub1 in vitro, suggesting autonomous regulation of the Bub1 kinase domain. We complement our study with an analysis of the Bub1 substrates. Our results contribute to the mechanistic characterization of a crucial cell cycle checkpoint.
Collapse
Affiliation(s)
- Claudia Breit
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - John R. Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Doro Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141, Essen, Germany
- * E-mail:
| |
Collapse
|
16
|
Zhang G, Lischetti T, Hayward DG, Nilsson J. Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint. Nat Commun 2015; 6:7162. [PMID: 26031201 PMCID: PMC4458899 DOI: 10.1038/ncomms8162] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/10/2015] [Indexed: 12/29/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Checkpoint signalling requires the kinetochore localization of the Mad1–Mad2 complex that in more complex eukaryotes depends on the Rod–Zwilch–ZW10 (RZZ) complex. The kinetochore protein Zwint has been proposed to be the kinetochore receptor for RZZ, but here we show that Bub1 and not Zwint is required for RZZ recruitment. We find that the middle region of Bub1 encompassing a domain essential for SAC signalling contributes to RZZ localization. In addition, we show that a distinct region in Bub1 mediates kinetochore localization of BubR1 through direct binding, but surprisingly removal of this region increases checkpoint strength. Our work thus uncovers how Bub1 coordinates checkpoint signalling by distinct domains for RZZ and BubR1 recruitment and suggests that Bub1 localizes antagonistic checkpoint activities. The spindle assembly checkpoint (SAC) depends on the recruitment of specific protein complexes to the kinetochore. Here Zhang et al. show that Bub1 recruits the RZZ complex and BubR1 to the kinetochore, and loss of the BubR1 binding sequence enhances checkpoint activity suggesting both SAC activating and silencing roles.
Collapse
Affiliation(s)
- Gang Zhang
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tiziana Lischetti
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Daniel G Hayward
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Brownlow N, Pike T, Zicha D, Collinson L, Parker PJ. Mitotic catenation is monitored and resolved by a PKCε-regulated pathway. Nat Commun 2014; 5:5685. [PMID: 25483024 PMCID: PMC4272242 DOI: 10.1038/ncomms6685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
Exit from mitosis is controlled by silencing of the spindle assembly checkpoint (SAC). It is important that preceding exit, all sister chromatid pairs are correctly bioriented, and that residual catenation is resolved, permitting complete sister chromatid separation in the ensuing anaphase. Here we determine that the metaphase response to catenation in mammalian cells operates through PKCε. The PKCε-controlled pathway regulates exit from the SAC only when mitotic cells are challenged by retained catenation and this delayed exit is characterized by BubR1-high and Mad2-low kinetochores. In addition, we show that this pathway is necessary to facilitate resolution of retained catenanes in mitosis. When delayed by catenation in mitosis, inhibition of PKCε results in premature entry into anaphase with PICH-positive strands and chromosome bridging. These findings demonstrate the importance of PKCε-mediated regulation in protection from loss of chromosome integrity in cells failing to resolve catenation in G2.
Collapse
Affiliation(s)
- Nicola Brownlow
- Protein Phosphorylation Laboratory, Cancer Research UK London
Research Institute, 44 Lincolns Inn Fields, London
WC2A 3LY, UK
| | - Tanya Pike
- Protein Phosphorylation Laboratory, Cancer Research UK London
Research Institute, 44 Lincolns Inn Fields, London
WC2A 3LY, UK
| | - Daniel Zicha
- Light Microscopy, Cancer Research UK London Research
Institute, London, WC2A 3LY, UK
| | - Lucy Collinson
- Electron Microscopy, Cancer Research UK London Research
Institute, London
WC2A 3LY, UK
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, Cancer Research UK London
Research Institute, 44 Lincolns Inn Fields, London
WC2A 3LY, UK
- Division of Cancer Studies, King’s College London,
New Hunt’s House, Guy’s Campus, London
SE1 1UL, UK
| |
Collapse
|
18
|
Abstract
The shugoshin/Mei-S332 family are proteins that associate with the chromosomal region surrounding the centromere (the pericentromere) and that play multiple and distinct roles in ensuring the accuracy of chromosome segregation during both mitosis and meiosis. The underlying role of shugoshins appears to be to serve as pericentromeric adaptor proteins that recruit several different effectors to this region of the chromosome to regulate processes critical for chromosome segregation. Crucially, shugoshins undergo changes in their localization in response to the tension that is exerted on sister chromosomes by the forces of the spindle that will pull them apart. This has led to the idea that shugoshins provide a platform for activities required at the pericentromere only when sister chromosomes lack tension. Conversely, disassembly of the shugoshin pericentromeric platform may provide a signal that sister chromosomes are under tension. Here the functions and regulation of these important tension-sensitive pericentromeric proteins are discussed.
Collapse
|
19
|
Moyle MW, Kim T, Hattersley N, Espeut J, Cheerambathur DK, Oegema K, Desai A. A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint. ACTA ACUST UNITED AC 2014; 204:647-57. [PMID: 24567362 PMCID: PMC3941058 DOI: 10.1083/jcb.201311015] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A Bub1–Mad1 interaction targets the Mad1–Mad2 complex to unattached kinetochores to initiate the spindle checkpoint. Recruitment of Mad1–Mad2 complexes to unattached kinetochores is a central event in spindle checkpoint signaling. Despite its importance, the mechanism that recruits Mad1–Mad2 to kinetochores is unclear. In this paper, we show that MAD-1 interacts with BUB-1 in Caenorhabditis elegans. Mutagenesis identified specific residues in a segment of the MAD-1 coiled coil that mediate the BUB-1 interaction. In addition to unattached kinetochores, MAD-1 localized between separating meiotic chromosomes and to the nuclear periphery. Mutations in the MAD-1 coiled coil that selectively disrupt interaction with BUB-1 eliminated MAD-1 localization to unattached kinetochores and between meiotic chromosomes, both of which require BUB-1, and abrogated checkpoint signaling. The identified MAD-1 coiled-coil segment interacted with a C-terminal region of BUB-1 that contains its kinase domain, and mutations in this region prevented MAD-1 kinetochore targeting independently of kinase activity. These results delineate an interaction between BUB-1 and MAD-1 that targets MAD-1–MAD-2 complexes to kinetochores and is essential for spindle checkpoint signaling.
Collapse
Affiliation(s)
- Mark W Moyle
- Ludwig Institute for Cancer Research and 2 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | | | | | | | | | | | | |
Collapse
|
20
|
Rakkaa T, Escudé C, Giet R, Magnaghi-Jaulin L, Jaulin C. CDK11(p58) kinase activity is required to protect sister chromatid cohesion at centromeres in mitosis. Chromosome Res 2014; 22:267-76. [PMID: 24436071 DOI: 10.1007/s10577-013-9400-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 11/29/2022]
Abstract
The cyclin-dependent kinase CDK11(p58) is specifically expressed at G2/M phase. CDK11(p58) depletion leads to different cell cycle defects such as mitotic arrest, failure in centriole duplication and centrosome maturation, and premature sister chromatid separation. We report that upon CDK11 depletion, loss of sister chromatid cohesion occurs during mitosis but not during G2 phase. CDK11(p58) depletion prevents Bub1 and Shugoshin 1 recruitment but has no effect on the dimethylation of histone H3 lysine 4 at centromeres. We also report that a construct expressing a kinase dead version of CDK11(p58) fails to prevent CDK11 depletion-induced sister chromatid separation, showing that CDK11(p58) kinase activity is required for protection of sister chromatid cohesion at centromeres during mitosis. Thus, CDK11(p58) kinase activity appears to be involved in early events in the establishment of the centromere protection machinery.
Collapse
Affiliation(s)
- Tarik Rakkaa
- Institut de Génétique et Développement de Rennes, Equipe Epigénétique et Cancer UMR 6290 CNRS, Université Rennes 1, 35043, Rennes Cedex, France
| | | | | | | | | |
Collapse
|
21
|
Abstract
Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression.
Collapse
Affiliation(s)
- Yixin Yao
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, 10987, USA
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, 10987, USA. ; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo, New York, 10987, USA
| |
Collapse
|
22
|
Abstract
To ensure accurate chromosome segregation, cohesion between sister chromatids must be released in a controlled manner during mitosis. A new study reveals how distinct centromere populations of the cohesin protector Sgo1 are regulated by microtubule attachments, cyclin-dependent kinases, and the kinetochore kinase Bub1.
Collapse
Affiliation(s)
- Jonathan M G Higgins
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Smith Building Room 538A, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Zamariola L, De Storme N, Tiang CL, Armstrong SJ, Franklin FCH, Geelen D. SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis. PLANT REPRODUCTION 2013; 26:197-208. [PMID: 23884434 DOI: 10.1007/s00497-013-0231-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 05/23/2023]
Abstract
Shugoshin is a protein conserved in eukaryotes and protects sister chromatid cohesion at centromeres in meiosis. In our study, we identified the homologs of SGO1 and SGO2 in Arabidopsis thaliana. We show that AtSGO1 is necessary for the maintenance of centromere cohesion in meiosis I since atsgo1 mutants display premature separation of sister chromatids starting from anaphase I. Furthermore, we show that the localization of the specific centromeric cohesin AtSYN1 is not affected in atsgo1, suggesting that SGO1 centromere cohesion maintenance is not mediated by protection of SYN1 from cleavage. Finally, we show that AtSGO2 is dispensable for both meiotic and mitotic cell progression in Arabidopsis.
Collapse
Affiliation(s)
- L Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
During mitosis and meiosis, the spindle assembly checkpoint acts to maintain genome stability by delaying cell division until accurate chromosome segregation can be guaranteed. Accuracy requires that chromosomes become correctly attached to the microtubule spindle apparatus via their kinetochores. When not correctly attached to the spindle, kinetochores activate the spindle assembly checkpoint network, which in turn blocks cell cycle progression. Once all kinetochores become stably attached to the spindle, the checkpoint is inactivated, which alleviates the cell cycle block and thus allows chromosome segregation and cell division to proceed. Here we review recent progress in our understanding of how the checkpoint signal is generated, how it blocks cell cycle progression and how it is extinguished.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
25
|
Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58. [PMID: 23512483 DOI: 10.1007/s00412-013-0401-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | | |
Collapse
|
26
|
Ricke RM, Jeganathan KB, Malureanu L, Harrison AM, van Deursen JM. Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression. ACTA ACUST UNITED AC 2012; 199:931-49. [PMID: 23209306 PMCID: PMC3518220 DOI: 10.1083/jcb.201205115] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice expressing a version of Bub1 that lacks kinase activity have increased chromosome segregation errors and aneuploidy but not increased susceptibility to tumors. The mitotic checkpoint protein Bub1 is essential for embryogenesis and survival of proliferating cells, and bidirectional deviations from its normal level of expression cause chromosome missegregation, aneuploidy, and cancer predisposition in mice. To provide insight into the physiological significance of this critical mitotic regulator at a modular level, we generated Bub1 mutant mice that lack kinase activity using a knockin gene-targeting approach that preserves normal protein abundance. In this paper, we uncover that Bub1 kinase activity integrates attachment error correction and mitotic checkpoint signaling by controlling the localization and activity of Aurora B kinase through phosphorylation of histone H2A at threonine 121. Strikingly, despite substantial chromosome segregation errors and aneuploidization, mice deficient for Bub1 kinase activity do not exhibit increased susceptibility to spontaneous or carcinogen-induced tumorigenesis. These findings provide a unique example of a modular mitotic activity orchestrating two distinct networks that safeguard against whole chromosome instability and reveal the differential importance of distinct aneuploidy-causing Bub1 defects in tumor suppression.
Collapse
Affiliation(s)
- Robin M Ricke
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
27
|
Ricke RM, van Deursen JM. Sgo1 as a "guardian spirit" for preventing colon tumorigenesis. Cell Cycle 2012; 11:649. [PMID: 22374668 PMCID: PMC3685617 DOI: 10.4161/cc.11.4.19360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Connecting up and clearing out: how kinetochore attachment silences the spindle assembly checkpoint. Chromosoma 2012; 121:509-25. [DOI: 10.1007/s00412-012-0378-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023]
|
29
|
Gutiérrez-Caballero C, Cebollero LR, Pendás AM. Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends Genet 2012; 28:351-60. [PMID: 22542109 DOI: 10.1016/j.tig.2012.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 11/20/2022]
Abstract
Sister chromatids are held together by a protein complex named cohesin. Shugoshin proteins protect cohesin from cleavage by separase during meiosis I in eukaryotes and from phosphorylation-mediated removal during mitosis in vertebrates. This protection is crucial for chromosome segregation during mitosis and meiosis. Mechanistically, shugoshins shield cohesin by forming a complex with the phosphatase PP2A, which dephosphorylates cohesin, leading to its retention at centromeres during the onset of meiotic anaphase and vertebrate mitotic prophase I. In addition to this canonical function, shugoshins have evolved novel, species-specific cellular functions, the mechanisms of which remain a subject of intense debate, but are likely to involve spatio-temporally coordinated interactions with the chromosome passenger complex, the spindle checkpoint and the anaphase promoting complex. Here, we compare and contrast these remarkable features of shugoshins in model organisms and humans.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Caballero
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
30
|
Ricke RM, van Deursen JM. Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle 2011; 10:3645-51. [PMID: 22033440 DOI: 10.4161/cc.10.21.18156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High expression of the mitotic kinase Bub1 is associated with a variety of human cancers and correlates with poor clinical prognosis, but whether Bub1 alone can drive tumorigenesis was unknown. We provided conclusive evidence that Bub1 has oncogenic properties by generating transgenic mice that overexpress Bub1 in a wide variety of tissues, resulting in aneuploidization. Consistently, Bub1 transgenic mice developed various kinds of spontaneous tumors as well as accelerated Myc-induced lymphomagenesis. While the mitotic checkpoint was robust in Bub1 overexpressing cells, misaligned and lagging chromosomes were observed. These defects originated from increased Aurora B activity and could be suppressed by inhibition of Aurora B. Taken together, this indicates that Bub1 has oncogenic properties and imply that aneuploidization and tumorigenesis result from Aurora B-dependent missegregation. Here, we focus on the complex relationship between Bub1 and Aurora B and discuss the broader implications of Bub1-dependent Aurora B activation in mediating error correction.
Collapse
Affiliation(s)
- Robin M Ricke
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
31
|
Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 2011; 31:3085-93. [PMID: 21628528 DOI: 10.1128/mcb.05326-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle checkpoint ensures genome fidelity by temporarily halting chromosome segregation and the ensuing mitotic exit until the last kinetochore is productively attached to the mitotic spindle. At the interface between proper chromosome attachment and the metaphase-to-anaphase transition are the mammalian spindle checkpoint kinases. Compelling evidence indicates that the checkpoint kinases Bub1 and BubR1 have the added task of regulating kinetochore-microtubule attachments. However, the debate on the requirement of kinase activity is in full swing. This minireview summarizes recent advances in our understanding of the core spindle checkpoint kinases Bub1 and BubR1 and considers evidence that supports and opposes the role of kinase activity in regulating their functions during mitosis.
Collapse
|
32
|
Kang J, Chaudhary J, Dong H, Kim S, Brautigam CA, Yu H. Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells. Mol Biol Cell 2011; 22:1181-90. [PMID: 21346195 PMCID: PMC3078076 DOI: 10.1091/mbc.e11-01-0009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during mitosis. Heterochromatin protein 1 (HP1) has been proposed to recruit Sgo1 to mitotic centromeres. We show that the molecular interaction targeting HP1 to mitotic centromeres is incompatible with HP1 further recruiting Sgo1. Our results clarify the role of centromeric HP1 in chromosome segregation. Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passenger complex (CPC). Biochemical and structural studies show that both HP1–INCENP and HP1–Sgo1 interactions require the binding of the HP1 chromo shadow domain to PXVXL/I motifs in INCENP or Sgo1, suggesting that the INCENP-bound, centromeric HP1α is incapable of recruiting Sgo1. Consistently, a Sgo1 mutant deficient in HP1 binding is functional in centromeric cohesion protection and localizes normally to centromeres in mitosis. By contrast, INCENP or Sgo1 mutants deficient in HP1 binding fail to localize to centromeres in interphase. Therefore, our results suggest that HP1 binding by INCENP or Sgo1 is dispensable for centromeric cohesion protection during mitosis of human cells, but might regulate yet uncharacterized interphase functions of CPC or Sgo1 at the centromeres.
Collapse
Affiliation(s)
- Jungseog Kang
- Department of Pharmacology, Howard Hughes Medical Institute, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
During meiosis, DNA replication is followed by 2 successive chromosome segregation events, resulting in the production of gametes with a haploid number of chromosomes from a diploid precursor cell. Faithful chromosome segregation in meiosis requires that sister chromatid cohesion is lost from chromosome arms during meiosis I, but retained at centromeric regions until meiosis II. Recent studies have begun to uncover the mechanisms underlying this stepwise loss of cohesion in meiosis and the role of a conserved protein, shugoshin, in regulating this process.
Collapse
Affiliation(s)
| | - A.L. Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Bolanos-Garcia VM, Blundell TL. BUB1 and BUBR1: multifaceted kinases of the cell cycle. Trends Biochem Sci 2010; 36:141-50. [PMID: 20888775 PMCID: PMC3061984 DOI: 10.1016/j.tibs.2010.08.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 11/21/2022]
Abstract
The multidomain protein kinases BUB1 and BUBR1 (Mad3 in yeast, worms and plants) are central components of the mitotic checkpoint for spindle assembly (SAC). This evolutionarily conserved and essential self-monitoring system of the eukaryotic cell cycle ensures the high fidelity of chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bi-oriented on the mitotic spindle. Despite their amino acid sequence conservation and similar domain organization, BUB1 and BUBR1 perform different functions in the SAC. Recent structural information provides crucial molecular insights into the regulation and recognition of BUB1 and BUBR1, and a solid foundation to dissect the roles of these proteins in the control of chromosome segregation in normal and oncogenic cells.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA. Cambridge, England.
| | | |
Collapse
|