1
|
Roumbo L, Ossareh-Nazari B, Vigneron S, Stefani I, Van Hove L, Legros V, Chevreux G, Lacroix B, Castro A, Joly N, Lorca T, Pintard L. The MAST kinase KIN-4 carries out mitotic entry functions of Greatwall in C. elegans. EMBO J 2025; 44:1943-1974. [PMID: 39962268 PMCID: PMC11961639 DOI: 10.1038/s44318-025-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 04/03/2025] Open
Abstract
MAST-like, or Greatwall (Gwl), an atypical protein kinase related to the evolutionarily conserved MAST kinase family, is crucial for cell cycle control during mitotic entry. Mechanistically, Greatwall is activated by Cyclin B-Cdk1 phosphorylation of a 550 amino acids-long insertion in its atypical activation segment. Subsequently, Gwl phosphorylates Endosulfine and Arpp19 to convert them into inhibitors of PP2A-B55 phosphatase, thereby preventing early dephosphorylation of M-phase targets of Cyclin B-Cdk1. Here, searching for an elusive Gwl-like activity in C. elegans, we show that the single worm MAST kinase, KIN-4, fulfills this function in worms and can functionally replace Greatwall in the heterologous Xenopus system. Compared to Greatwall, the short activation segment of KIN-4 lacks a phosphorylation site, and KIN-4 is active even when produced in E. coli. We also show that a balance between Cyclin B-Cdk1 and PP2A-B55 activity, regulated by KIN-4, is essential to ensure asynchronous cell divisions in the early worm embryo. These findings resolve a long-standing puzzle related to the supposed absence of a Greatwall pathway in C. elegans, and highlight a novel aspect of PP2A-B55 regulation by MAST kinases.
Collapse
Affiliation(s)
- Ludivine Roumbo
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Batool Ossareh-Nazari
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Suzanne Vigneron
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Ioanna Stefani
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
- Institute for Integrative Biology of the Cell, Commissariat à l'Énergie Atomique et Aux Énergies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Lucie Van Hove
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Véronique Legros
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Guillaume Chevreux
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Benjamin Lacroix
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Anna Castro
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Nicolas Joly
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Thierry Lorca
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Lionel Pintard
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
2
|
Duan S, Liu Q, Shen Y, Zhu L, Yuan H, Yang J. AoRan1 Is Involved in Regulating Conidiation, Stress Resistance, Secondary Metabolism, and Pathogenicity in Arthrobotrys oligospora. Microorganisms 2024; 12:1853. [PMID: 39338527 PMCID: PMC11434409 DOI: 10.3390/microorganisms12091853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Arthrobotrys oligospora is a representative nematode-trapping (NT) fungus that is able to capture, kill, and digest nematodes by producing specialized three-dimensional networks (traps) under nutrient-deprived conditions. Ran1 is a serine/threonine protein kinase that can act as a negative regulator of sexual conjugation and meiosis. However, the specific role of Ran1 remains largely unknown in NT fungi. Here, we identified AoRan1 (AOL_s00004g277) via gene disruption, phenotypic analysis, and metabolomic analysis. Our findings reveal that Aoran1 knockout caused a remarkable increase in conidial production, traps, and nematode feeding efficiency. In addition, the absence of Aoran1 resulted in the accumulation of lipid droplets and increased autophagic levels as well as increased tolerance to cell wall synthesis-disturbing reagents and oxidants. Metabolomic analyses also suggested that AoRan1 is involved in multiple metabolic processes, such as fatty acid biosynthesis. In summary, our results suggest that AoRan1 is crucial in conidiation, pathogenicity, and secondary metabolism. This study's results further our understanding of the molecular mechanisms by which AoRan1 regulates conidiation and trap formation in A. oligospora.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China; (S.D.); (Q.L.); (Y.S.); (L.Z.); (H.Y.)
| |
Collapse
|
3
|
Lacroix B, Vigneron S, Labbé JC, Pintard L, Lionne C, Labesse G, Castro A, Lorca T. Increases in cyclin A/Cdk activity and in PP2A-B55 inhibition by FAM122A are key mitosis-inducing events. EMBO J 2024; 43:993-1014. [PMID: 38378890 PMCID: PMC10943098 DOI: 10.1038/s44318-024-00054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry. Accordingly, depletion of the orthologue of FAM122A in C. elegans prevents entry into mitosis in germline stem cells. Moreover, data from Xenopus egg extracts strongly suggest that FAM122A-dependent inhibition of PP2A-B55 could be the initial event promoting mitotic entry. Inhibition of this phosphatase allows subsequent phosphorylation of early mitotic substrates by cyclin A/Cdk, resulting in full cyclin B/Cdk1 and Greatwall (Gwl) kinase activation. Subsequent to Greatwall activation, Arpp19/ENSA become phosphorylated and now compete with FAM122A, promoting its dissociation from PP2A-B55 and taking over its phosphatase inhibition role until the end of mitosis.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Suzanne Vigneron
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Jean Claude Labbé
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Lionel Pintard
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Institut Jacques Monod, F-75013, Paris, France
| | - Corinne Lionne
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Anna Castro
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France.
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France.
| | - Thierry Lorca
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France.
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
4
|
Lacroix B, Lorca T, Castro A. Structural, enzymatic and spatiotemporal regulation of PP2A-B55 phosphatase in the control of mitosis. Front Cell Dev Biol 2022; 10:967909. [PMID: 36105360 PMCID: PMC9465306 DOI: 10.3389/fcell.2022.967909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases. The role of kinases in the control of mitosis has been largely studied, however, the impact of phosphatases has long been underestimated. Recent data have now established that the regulation of phosphatases is crucial to confer timely and ordered cellular events required for cell division. One major phosphatase involved in this process is the phosphatase holoenzyme PP2A-B55. This review will be focused in the latest structural, biochemical and enzymatic insights provided for PP2A-B55 phosphatase as well as its regulators and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Thierry Lorca
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Anna Castro
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
- *Correspondence: Anna Castro,
| |
Collapse
|
5
|
Sule A, Golding SE, Ahmad SF, Watson J, Ahmed MH, Kellogg GE, Bernas T, Koebley S, Reed JC, Povirk LF, Valerie K. ATM phosphorylates PP2A subunit A resulting in nuclear export and spatiotemporal regulation of the DNA damage response. Cell Mol Life Sci 2022; 79:603. [PMID: 36434396 PMCID: PMC9700600 DOI: 10.1007/s00018-022-04550-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
Ataxia telangiectasia mutated (ATM) is a serine-threonine protein kinase and important regulator of the DNA damage response (DDR). One critical ATM target is the structural subunit A (PR65-S401) of protein phosphatase 2A (PP2A), known to regulate diverse cellular processes such as mitosis and cell growth as well as dephosphorylating many proteins during the recovery from the DDR. We generated mouse embryonic fibroblasts expressing PR65-WT, -S401A (cannot be phosphorylated), and -S401D (phospho-mimetic) transgenes. Significantly, S401 mutants exhibited extensive chromosomal aberrations, impaired DNA double-strand break (DSB) repair and underwent increased mitotic catastrophe after radiation. Both S401A and the S401D cells showed impaired DSB repair (nonhomologous end joining and homologous recombination repair) and exhibited delayed DNA damage recovery, which was reflected in reduced radiation survival. Furthermore, S401D cells displayed increased ERK and AKT signaling resulting in enhanced growth rate further underscoring the multiple roles ATM-PP2A signaling plays in regulating prosurvival responses. Time-lapse video and cellular localization experiments showed that PR65 was exported to the cytoplasm after radiation by CRM1, a nuclear export protein, in line with the very rapid pleiotropic effects observed. A putative nuclear export sequence (NES) close to S401 was identified and when mutated resulted in aberrant PR65 shuttling. Our study demonstrates that the phosphorylation of a single, critical PR65 amino acid (S401) by ATM fundamentally controls the DDR, and balances DSB repair quality, cell survival and growth by spatiotemporal PR65 nuclear-cytoplasmic shuttling mediated by the nuclear export receptor CRM1.
Collapse
Affiliation(s)
- Amrita Sule
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sarah E Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
| | - Syed F Ahmad
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - James Watson
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tytus Bernas
- Department of Anatomy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sean Koebley
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jason C Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
The study of the determinants controlling Arpp19 phosphatase-inhibitory activity reveals an Arpp19/PP2A-B55 feedback loop. Nat Commun 2021; 12:3565. [PMID: 34117214 PMCID: PMC8196004 DOI: 10.1038/s41467-021-23657-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Arpp19 is a potent PP2A-B55 inhibitor that regulates this phosphatase to ensure the stable phosphorylation of mitotic/meiotic substrates. At G2-M, Arpp19 is phosphorylated by the Greatwall kinase on S67. This phosphorylated Arpp19 form displays a high affinity to PP2A-B55 and a slow dephosphorylation rate, acting as a competitor of PP2A-B55 substrates. The molecular determinants conferring slow dephosphorylation kinetics to S67 are unknown. PKA also phosphorylates Arpp19. This phosphorylation performed on S109 is essential to maintain prophase I-arrest in Xenopus oocytes although the underlying signalling mechanism is elusive. Here, we characterize the molecular determinants conferring high affinity and slow dephosphorylation to S67 and controlling PP2A-B55 inhibitory activity of Arpp19. Moreover, we show that phospho-S109 restricts S67 phosphorylation by increasing its catalysis by PP2A-B55. Finally, we discover a double feed-back loop between these two phospho-sites essential to coordinate the temporal pattern of Arpp19-dependent PP2A-B55 inhibition and Cyclin B/Cdk1 activation during cell division. Progression of the cell division cycle requires feedback loops including those of phosphorylation and dephosphorylation; however the precise regulation of phosphorylation kinetics of Arpp19, an inhibitor of protein phosphatase 2A, is unclear. Here, the authors report that feedback between phosphorylation states of Ser67 and Ser109 of Arpp19 coordinates Arpp19-dependent inhibition of PP2A-B55 and Cyclin B activation during cell cycle progression.
Collapse
|
7
|
Larouche M, Kachaner D, Wang P, Normandin K, Garrido D, Yao C, Cormier M, Johansen KM, Johansen J, Archambault V. Spatiotemporal coordination of Greatwall-Endos-PP2A promotes mitotic progression. J Cell Biol 2021; 220:211965. [PMID: 33836042 PMCID: PMC8042607 DOI: 10.1083/jcb.202008145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Mitotic entry involves inhibition of protein phosphatase 2A bound to its B55/Tws regulatory subunit (PP2A-B55/Tws), which dephosphorylates substrates of mitotic kinases. This inhibition is induced when Greatwall phosphorylates Endos, turning it into an inhibitor of PP2A-Tws. How this mechanism operates spatiotemporally in the cell is incompletely understood. We previously reported that the nuclear export of Greatwall in prophase promotes mitotic progression. Here, we examine the importance of the localized activities of PP2A-Tws and Endos for mitotic regulation. We find that Tws shuttles through the nucleus via a conserved nuclear localization signal (NLS), but expression of Tws in the cytoplasm and not in the nucleus rescues the development of tws mutants. Moreover, we show that Endos must be in the cytoplasm before nuclear envelope breakdown (NEBD) to be efficiently phosphorylated by Greatwall and to bind and inhibit PP2A-Tws. Disrupting the cytoplasmic function of Endos before NEBD results in subsequent mitotic defects. Evidence suggests that this spatiotemporal regulation is conserved in humans.
Collapse
Affiliation(s)
- Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Peng Wang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Maxime Cormier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Vagnarelli P. Back to the new beginning: Mitotic exit in space and time. Semin Cell Dev Biol 2021; 117:140-148. [PMID: 33810980 DOI: 10.1016/j.semcdb.2021.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
The ultimate goal of cell division is to generate two identical daughter cells that resemble the mother cell from which they derived. Once all the proper attachments to the spindle have occurred, the chromosomes have aligned at the metaphase plate and the spindle assembly checkpoint (a surveillance mechanism that halts cells form progressing in the cell cycle in case of spindle - microtubule attachment errors) has been satisfied, mitotic exit will occur. Mitotic exit has the purpose of completing the separation of the genomic material but also to rebuild the cellular structures necessary for the new cell cycle. This stage of mitosis received little attention until a decade ago, therefore our knowledge is much patchier than the molecular details we now have for the early stages of mitosis. However, it is emerging that mitotic exit is not just the simple reverse of mitotic entry and it is highly regulated in space and time. In this review I will discuss the main advances in the field that provided us with a better understanding on the key role of protein phosphorylation/de-phosphorylation in this transition together with the concept of their spatial regulation. As this field is much younger, I will highlight general consensus, contrasting views together with the outstanding questions awaiting for answers.
Collapse
Affiliation(s)
- Paola Vagnarelli
- College of Medicine, Health and Life Science, Centre for Genomic Engineering and Maintenance (CenGEM), Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
9
|
Tavernier N, Thomas Y, Vigneron S, Maisonneuve P, Orlicky S, Mader P, Regmi SG, Van Hove L, Levinson NM, Gasmi-Seabrook G, Joly N, Poteau M, Velez-Aguilera G, Gavet O, Castro A, Dasso M, Lorca T, Sicheri F, Pintard L. Bora phosphorylation substitutes in trans for T-loop phosphorylation in Aurora A to promote mitotic entry. Nat Commun 2021; 12:1899. [PMID: 33771996 PMCID: PMC7997955 DOI: 10.1038/s41467-021-21922-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is instrumental for mitotic entry and progression. Plk1 is activated by phosphorylation on a conserved residue Thr210 in its activation segment by the Aurora A kinase (AURKA), a reaction that critically requires the co-factor Bora phosphorylated by a CyclinA/B-Cdk1 kinase. Here we show that phospho-Bora is a direct activator of AURKA kinase activity. We localize the key determinants of phospho-Bora function to a 100 amino acid region encompassing two short Tpx2-like motifs and a phosphoSerine-Proline motif at Serine 112, through which Bora binds AURKA. The latter substitutes in trans for the Thr288 phospho-regulatory site of AURKA, which is essential for an active conformation of the kinase domain. We demonstrate the importance of these determinants for Bora function in mitotic entry both in Xenopus egg extracts and in human cells. Our findings unveil the activation mechanism of AURKA that is critical for mitotic entry.
Collapse
Affiliation(s)
- N Tavernier
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - Y Thomas
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - S Vigneron
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - P Maisonneuve
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S Orlicky
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - P Mader
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S G Regmi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - L Van Hove
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - N M Levinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - G Gasmi-Seabrook
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - N Joly
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - M Poteau
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - G Velez-Aguilera
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - O Gavet
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - A Castro
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - M Dasso
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - T Lorca
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - F Sicheri
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - L Pintard
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France.
| |
Collapse
|
10
|
Lemonnier T, Daldello EM, Poulhe R, Le T, Miot M, Lignières L, Jessus C, Dupré A. The M-phase regulatory phosphatase PP2A-B55δ opposes protein kinase A on Arpp19 to initiate meiotic division. Nat Commun 2021; 12:1837. [PMID: 33758202 PMCID: PMC7988065 DOI: 10.1038/s41467-021-22124-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Oocytes are held in meiotic prophase for prolonged periods until hormonal signals trigger meiotic divisions. Key players of M-phase entry are the opposing Cdk1 kinase and PP2A-B55δ phosphatase. In Xenopus, the protein Arpp19, phosphorylated at serine 67 by Greatwall, plays an essential role in inhibiting PP2A-B55δ, promoting Cdk1 activation. Furthermore, Arpp19 has an earlier role in maintaining the prophase arrest through a second serine (S109) phosphorylated by PKA. Prophase release, induced by progesterone, relies on Arpp19 dephosphorylation at S109, owing to an unknown phosphatase. Here, we identified this phosphatase as PP2A-B55δ. In prophase, PKA and PP2A-B55δ are simultaneously active, suggesting the presence of other important targets for both enzymes. The drop in PKA activity induced by progesterone enables PP2A-B55δ to dephosphorylate S109, unlocking the prophase block. Hence, PP2A-B55δ acts critically on Arpp19 on two distinct sites, opposing PKA and Greatwall to orchestrate the prophase release and M-phase entry.
Collapse
Affiliation(s)
- Tom Lemonnier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Robert Poulhe
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Tran Le
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Marika Miot
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | | | - Catherine Jessus
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Aude Dupré
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France.
| |
Collapse
|
11
|
Nasa I, Cressey LE, Kruse T, Hertz EPT, Gui J, Graves LM, Nilsson J, Kettenbach AN. Quantitative kinase and phosphatase profiling reveal that CDK1 phosphorylates PP2Ac to promote mitotic entry. Sci Signal 2020; 13:13/648/eaba7823. [PMID: 32900880 DOI: 10.1126/scisignal.aba7823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reciprocal regulation of phosphoprotein phosphatases (PPPs) by protein kinases is essential to cell cycle progression and control, particularly during mitosis for which the role of kinases has been extensively studied. PPPs perform much of the serine/threonine dephosphorylation in eukaryotic cells and achieve substrate selectivity and specificity through the interaction of distinct regulatory subunits with conserved catalytic subunits in holoenzyme complexes. Using a mass spectrometry-based chemical proteomics approach to enrich, identify, and quantify endogenous PPP holoenzyme complexes combined with kinase profiling, we investigated the phosphorylation-dependent regulation of PPP holoenzymes in mitotic cells. We found that cyclin-dependent kinase 1 (CDK1) phosphorylated a threonine residue on the catalytic subunit of the phosphatase PP2A, which disrupted its holoenzyme formation with the regulatory subunit B55. The consequent decrease in the dephosphorylation of PP2A-B55 substrates promoted mitotic entry. This direct phosphorylation by CDK1 was in addition to a previously reported indirect mechanism, thus adding a layer to the interaction between CDK1 and PP2A in regulating mitotic entry.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH 03766, USA
| | - Lauren E Cressey
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Emil P T Hertz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA. .,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH 03766, USA
| |
Collapse
|
12
|
Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div 2020; 15:9. [PMID: 32508972 PMCID: PMC7249327 DOI: 10.1186/s13008-020-00065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.
Collapse
Affiliation(s)
- Tom Lemonnier
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Aude Dupré
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
13
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
14
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
15
|
Kim SY, Hyun SY, Jang YJ. Dephosphorylation of Plk1 occurs through PP2A-B55/ENSA/Greatwall pathway during mitotic DNA damage recovery. Cell Cycle 2019; 18:1154-1167. [PMID: 31072185 PMCID: PMC6592230 DOI: 10.1080/15384101.2019.1617003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Recovery from DNA damage is critical for cell survival. However, serious damage cannot be repaired, leading to cell death for prevention of abnormal cell growth. Previously, we demonstrated that 4N-DNA accumulates via the initiation of an abnormal interphase without cytokinesis and that re-replication occurs during a prolonged recovery period in the presence of severe DNA damage in mitotic cells. Mitotic phosphorylated Plk1 is typically degraded during mitotic exit. However, Plk1 has unusually found to be dephosphorylated in mitotic slippage without cytokinesis during recovery from mitotic DNA damage. Here, we investigated how Plk1 dephosphorylation is established during recovery from mitotic DNA damage. Mitotic DNA damage activated ATM and Chk1/2 and repressed Cdk1 and Greatwall protein kinase, followed by PP2A activation through the dissociation of ENSA and PP2A-B55. Interaction between Plk1 and PP2A-B55α or PP2A-B55δ was strongly induced during recovery from mitotic DNA damage. Moreover, the depletion of PP2A-B55α and/or PP2A-B55δ by siRNA transfection led to the recovery of Plk1 phosphorylation and progression of the cell cycle into the G1 phase. Therefore, to adapt to severe DNA damage, the activated Greatwall/ENSA signaling pathway was repressed by ATM/Chk1/2, even in mitotic cells. Activation of the PP2A-B55 holoenzyme complex induced the dephosphorylation of Plk1 and Cdk1, and finally, mitotic slippage occurred without normal chromosome segregation and cytokinesis.
Collapse
Affiliation(s)
- Shin-Young Kim
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Sun-Yi Hyun
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| |
Collapse
|
16
|
Bisht JS, Tomschik M, Gatlin JC. Induction of a Spindle-Assembly-Competent M Phase in Xenopus Egg Extracts. Curr Biol 2019; 29:1273-1285.e5. [PMID: 30930041 DOI: 10.1016/j.cub.2019.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/12/2019] [Accepted: 02/28/2019] [Indexed: 11/25/2022]
Abstract
Normal mitotic spindle assembly is a prerequisite for faithful chromosome segregation and unperturbed cell-cycle progression. Precise functioning of the spindle machinery relies on conserved architectural features, such as focused poles, chromosome alignment at the metaphase plate, and proper spindle length. These morphological requirements can be achieved only within a compositionally distinct cytoplasm that results from cell-cycle-dependent regulation of specific protein levels and specific post-translational modifications. Here, we used cell-free extracts derived from Xenopus laevis eggs to recapitulate different phases of the cell cycle in vitro and to determine which components are required to render interphase cytoplasm spindle-assembly competent in the absence of protein translation. We found that addition of a nondegradable form of the master cell-cycle regulator cyclin B1 can indeed induce some biochemical and phenomenological characteristics of mitosis, but cyclin B1 alone is insufficient and actually deleterious at high levels for normal spindle assembly. In contrast, addition of a phosphomimetic form of the Greatwall-kinase effector Arpp19 with a specific concentration of nondegradable cyclin B1 rescued spindle bipolarity but resulted in larger-than-normal bipolar spindles with a misalignment of chromosomes. Both were corrected by the addition of exogenous Xkid (Xenopus homolog of human Kid/KIF22), indicating a role for this chromokinesin in regulating spindle length. These observations suggest that, of the many components degraded at mitotic exit and then replenished during the subsequent interphase, only a few are required to induce a cell-cycle transition that produces a spindle-assembly-competent cytoplasm.
Collapse
Affiliation(s)
- Jitender S Bisht
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA; Marine Biological Laboratory, Cell Division and Organization Group, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Miroslav Tomschik
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA; Marine Biological Laboratory, Cell Division and Organization Group, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
17
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
18
|
Hached K, Goguet P, Charrasse S, Vigneron S, Sacristan MP, Lorca T, Castro A. ENSA and ARPP19 differentially control cell cycle progression and development. J Cell Biol 2019; 218:541-558. [PMID: 30626720 PMCID: PMC6363464 DOI: 10.1083/jcb.201708105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
The Greatwall kinase substrates ARPP19 and ENSA have been shown to inhibit PP2A-B55 by an identical mechanism. Hached et al. show that, surprisingly, the ARPP19 and ENSA paralogs display specific functions during mouse embryogenesis and differentially control cell cycle progression. Greatwall (GWL) is an essential kinase that indirectly controls PP2A-B55, the phosphatase counterbalancing cyclin B/CDK1 activity during mitosis. In Xenopus laevis egg extracts, GWL-mediated phosphorylation of overexpressed ARPP19 and ENSA turns them into potent PP2A-B55 inhibitors. It has been shown that the GWL/ENSA/PP2A-B55 axis contributes to the control of DNA replication, but little is known about the role of ARPP19 in cell division. By using conditional knockout mouse models, we investigated the specific roles of ARPP19 and ENSA in cell division. We found that Arpp19, but not Ensa, is essential for mouse embryogenesis. Moreover, Arpp19 ablation dramatically decreased mouse embryonic fibroblast (MEF) viability by perturbing the temporal pattern of protein dephosphorylation during mitotic progression, possibly by a drop of PP2A-B55 activity inhibition. We show that these alterations are not prevented by ENSA, which is still expressed in Arpp19Δ/Δ MEFs, suggesting that ARPP19 is essential for mitotic division. Strikingly, we demonstrate that unlike ARPP19, ENSA is not required for early embryonic development. Arpp19 knockout did not perturb the S phase, unlike Ensa gene ablation. We conclude that, during mouse embryogenesis, the Arpp19 and Ensa paralog genes display specific functions by differentially controlling cell cycle progression.
Collapse
Affiliation(s)
- Khaled Hached
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Perrine Goguet
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Sophie Charrasse
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Suzanne Vigneron
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Maria P Sacristan
- Instituto de Biología Molecular y Celular del Cáncer, Universidad de Salamanca/Consejo Superior de Investigaciones Cientificas, Salamanca, Spain
| | - Thierry Lorca
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Anna Castro
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Montenegro Gouveia S, Zitouni S, Kong D, Duarte P, Ferreira Gomes B, Sousa AL, Tranfield EM, Hyman A, Loncarek J, Bettencourt-Dias M. PLK4 is a microtubule-associated protein that self-assembles promoting de novo MTOC formation. J Cell Sci 2018; 132:jcs.219501. [PMID: 30237222 PMCID: PMC6398482 DOI: 10.1242/jcs.219501] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
The centrosome is an important microtubule-organising centre (MTOC) in animal cells. It consists of two barrel-shaped structures, the centrioles, surrounded by the pericentriolar material (PCM), which nucleates microtubules. Centrosomes can form close to an existing structure (canonical duplication) or de novo. How centrosomes form de novo is not known. The master driver of centrosome biogenesis, PLK4, is critical for the recruitment of several centriole components. Here, we investigate the beginning of centrosome biogenesis, taking advantage of Xenopus egg extracts, where PLK4 can induce de novo MTOC formation (
Eckerdt et al., 2011; Zitouni et al., 2016). Surprisingly, we observe that in vitro, PLK4 can self-assemble into condensates that recruit α- and β-tubulins. In Xenopus extracts, PLK4 assemblies additionally recruit STIL, a substrate of PLK4, and the microtubule nucleator γ-tubulin, forming acentriolar MTOCs de novo. The assembly of these robust microtubule asters is independent of dynein, similar to what is found for centrosomes. We suggest a new mechanism of action for PLK4, where it forms a self-organising catalytic scaffold that recruits centriole components, PCM factors and α- and β-tubulins, leading to MTOC formation. This article has an associated First Person interview with the first author of the paper. Summary: PLK4 binds to microtubules and self-assembles into condensates that recruit tubulin and trigger de novo microtubule-organising centre formation in vitro.
Collapse
Affiliation(s)
- Susana Montenegro Gouveia
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Sihem Zitouni
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Dong Kong
- Laboratory of Protein Dynamics and Signalling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD 21702, USA
| | - Paulo Duarte
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Beatriz Ferreira Gomes
- Max Planck Institute of Molecular Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ana Laura Sousa
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Erin M Tranfield
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Anthony Hyman
- Max Planck Institute of Molecular Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signalling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD 21702, USA
| | - Monica Bettencourt-Dias
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| |
Collapse
|
20
|
Vigneron S, Sundermann L, Labbé JC, Pintard L, Radulescu O, Castro A, Lorca T. Cyclin A-cdk1-Dependent Phosphorylation of Bora Is the Triggering Factor Promoting Mitotic Entry. Dev Cell 2018; 45:637-650.e7. [PMID: 29870721 DOI: 10.1016/j.devcel.2018.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/04/2018] [Accepted: 05/02/2018] [Indexed: 10/14/2022]
Abstract
Mitosis is induced by the activation of the cyclin B/cdk1 feedback loop that creates a bistable state. The triggering factor promoting active cyclin B/cdk1 switch has been assigned to cyclin B/cdk1 accumulation during G2. However, this complex is rapidly inactivated by Wee1/Myt1-dependent phosphorylation of cdk1 making unlikely a triggering role of this kinase in mitotic commitment. Here we show that cyclin A/cdk1 kinase is the factor triggering mitosis. Cyclin A/cdk1 phosphorylates Bora to promote Aurora A-dependent Plk1 phosphorylation and activation and mitotic entry. We demonstrate that Bora phosphorylation by cyclin A/cdk1 is both necessary and sufficient for mitotic commitment. Finally, we identify a site in Bora whose phosphorylation by cyclin A/cdk1 is required for mitotic entry. We constructed a mathematical model confirming the essential role of this kinase in mitotic commitment. Overall, our results uncover the molecular mechanism by which cyclin A/cdk1 triggers mitotic entry.
Collapse
Affiliation(s)
- Suzanne Vigneron
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Lena Sundermann
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jean-Claude Labbé
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Lionel Pintard
- Equipe Labelisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université Paris-Diderot, Sorbonne Paris Cité, CNRS, Paris, France
| | - Ovidiu Radulescu
- Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), CNRS UMR5235, Université de Montpellier, Place E Bataillon, 34095 Montpellier, France
| | - Anna Castro
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| | - Thierry Lorca
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
21
|
Abstract
Background Monosomy of the X chromosome is the most frequent genetic abnormality in human as it is present in approximately 2% of all conceptions, although 99% of these embryos are spontaneously miscarried. In postnatal life, clinical features of Turner syndrome may include typical dysmorphic stigmata, short stature, sexual infantilism, and renal, cardiac, skeletal, endocrine and metabolic abnormalities. Main text Turner syndrome is due to a partial or total loss of the second sexual chromosome, resulting in the development of highly variable clinical features. This phenotype may not merely be due to genomic imbalance from deleted genes but may also result from additive influences on associated genes within a given gene network, with an altered regulation of gene expression triggered by the absence of the second sex chromosome. Current studies in human and mouse models have demonstrated that this chromosomal abnormality leads to epigenetic changes, including differential DNA methylation in specific groups of downstream target genes in pathways associated with several clinical and metabolic features, mostly on autosomal chromosomes. In this article, we begin exploring the potential involvement of both genetic and epigenetic factors in the origin of X chromosome monosomy. We review the dispute between the meiotic and post-zygotic origins of 45,X monosomy, by mainly analyzing the findings from several studies that compare gene expression of the 45,X monosomy to their euploid and/or 47,XXX trisomic cell counterparts on peripheral blood mononuclear cells, amniotic fluid, human fibroblast cells, and induced pluripotent human cell lines. From these studies, a profile of epigenetic changes seems to emerge in response to chromosomal imbalance. An interesting finding of all these studies is that methylation-based and expression-based pathway analyses are complementary, rather than overlapping, and are correlated with the clinical picture displayed by TS subjects. Conclusions The clarification of these possible causal pathways may have future implications in increasing the life expectancy of these patients and may provide informative targets for early pharmaceutical intervention.
Collapse
Affiliation(s)
- Francisco Álvarez-Nava
- Biological Sciences School, Faculty of Biological Sciences, Central University of Ecuador, Quito, Ecuador
| | - Roberto Lanes
- Pediatric Endocrine Unit, Hospital de Clínicas Caracas, Caracas, Venezuela
| |
Collapse
|
22
|
Nasa I, Kettenbach AN. Coordination of Protein Kinase and Phosphoprotein Phosphatase Activities in Mitosis. Front Cell Dev Biol 2018; 6:30. [PMID: 29623276 PMCID: PMC5874294 DOI: 10.3389/fcell.2018.00030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Dynamic changes in protein phosphorylation govern the transitions between different phases of the cell division cycle. A "tug of war" between highly conserved protein kinases and the family of phosphoprotein phosphatases (PPP) establishes the phosphorylation state of proteins, which controls their function. More than three-quarters of all proteins are phosphorylated at one or more sites in human cells, with the highest occupancy of phosphorylation sites seen in mitosis. Spatial and temporal regulation of opposing kinase and PPP activities is crucial for accurate execution of the mitotic program. The role of mitotic kinases has been the focus of many studies, while the contribution of PPPs was for a long time underappreciated and is just emerging. Misconceptions regarding the specificity and activity of protein phosphatases led to the belief that protein kinases are the primary determinants of mitotic regulation, leaving PPPs out of the limelight. Recent studies have shown that protein phosphatases are specific and selective enzymes, and that their activity is tightly regulated. In this review, we discuss the emerging roles of PPPs in mitosis and their regulation of and by mitotic kinases, as well as mechanisms that determine PPP substrate recognition and specificity.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
23
|
Dupré AI, Haccard O, Jessus C. The greatwall kinase is dominant over PKA in controlling the antagonistic function of ARPP19 in Xenopus oocytes. Cell Cycle 2017; 16:1440-1452. [PMID: 28722544 DOI: 10.1080/15384101.2017.1338985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The small protein ARPP19 plays a dual role during oocyte meiosis resumption. In Xenopus, ARPP19 phosphorylation at S109 by PKA is necessary for maintaining oocytes arrested in prophase of the first meiotic division. Progesterone downregulates PKA, leading to the dephosphorylation of ARPP19 at S109. This initiates a transduction pathway ending with the activation of the universal inducer of M-phase, the kinase Cdk1. This last step depends on ARPP19 phosphorylation at S67 by the kinase Greatwall. Hence, phosphorylated by PKA at S109, ARPP19 restrains Cdk1 activation while when phosphorylated by Greatwall at S67, ARPP19 becomes an inducer of Cdk1 activation. Here, we investigate the functional interplay between S109 and S67-phosphorylations of ARPP19. We show that both PKA and Gwl phosphorylate ARPP19 independently of each other and that Cdk1 is not directly involved in regulating the biological activity of ARPP19. We also show that the phosphorylation of ARPP19 at S67 that activates Cdk1, is dominant over the inhibitory S109 phosphorylation. Therefore our results highlight the importance of timely synchronizing ARPP19 phosphorylations at S109 and S67 to fully activate Cdk1.
Collapse
Affiliation(s)
- Aude-Isabelle Dupré
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| | - Olivier Haccard
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| | - Catherine Jessus
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| |
Collapse
|
24
|
Gheghiani L, Loew D, Lombard B, Mansfeld J, Gavet O. PLK1 Activation in Late G2 Sets Up Commitment to Mitosis. Cell Rep 2017; 19:2060-2073. [PMID: 28591578 DOI: 10.1016/j.celrep.2017.05.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/08/2017] [Accepted: 05/09/2017] [Indexed: 11/15/2022] Open
Abstract
Commitment to mitosis must be tightly coordinated with DNA replication to preserve genome integrity. While we have previously established that the timely activation of CyclinB1-Cdk1 in late G2 triggers mitotic entry, the upstream regulatory mechanisms remain unclear. Here, we report that Polo-like kinase 1 (Plk1) is required for entry into mitosis during an unperturbed cell cycle and is rapidly activated shortly before CyclinB1-Cdk1. We determine that Plk1 associates with the Cdc25C1 phosphatase and induces its phosphorylation before mitotic entry. Plk1-dependent Cdc25C1 phosphosites are sufficient to promote mitotic entry, even when Plk1 activity is inhibited. Furthermore, we find that activation of Plk1 during G2 relies on CyclinA2-Cdk activity levels. Our findings thus elucidate a critical role for Plk1 in CyclinB1-Cdk1 activation and mitotic entry and outline how CyclinA2-Cdk, an S-promoting factor, poises cells for commitment to mitosis.
Collapse
Affiliation(s)
- Lilia Gheghiani
- Sorbonne Universités, UPMC University Paris 06, UFR927, 75005 Paris, France; CNRS UMR 8200, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Damarys Loew
- Institut Curie, PSL Research University, LSMP, 75248 Paris, France
| | | | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Olivier Gavet
- Sorbonne Universités, UPMC University Paris 06, UFR927, 75005 Paris, France; CNRS UMR 8200, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France.
| |
Collapse
|
25
|
Cellular Dynamics Controlled by Phosphatases. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Hégarat N, Rata S, Hochegger H. Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. Bioessays 2016; 38:627-43. [PMID: 27231150 DOI: 10.1002/bies.201600057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Scott Rata
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
27
|
Zitouni S, Francia ME, Leal F, Montenegro Gouveia S, Nabais C, Duarte P, Gilberto S, Brito D, Moyer T, Kandels-Lewis S, Ohta M, Kitagawa D, Holland AJ, Karsenti E, Lorca T, Lince-Faria M, Bettencourt-Dias M. CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis. Curr Biol 2016; 26:1127-37. [PMID: 27112295 DOI: 10.1016/j.cub.2016.03.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 12/24/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal.
| | - Maria E Francia
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal.
| | - Filipe Leal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | | | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Samuel Gilberto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Daniela Brito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Tyler Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Steffi Kandels-Lewis
- Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Midori Ohta
- Center for Frontier Research, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Daiju Kitagawa
- Center for Frontier Research, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Eric Karsenti
- Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany; Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, and CNRS UMR 8197, 46 Rue d'Ulm, Paris 75005, France
| | - Thierry Lorca
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 Route de Mende, Montpellier 34293, France
| | - Mariana Lince-Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | | |
Collapse
|
28
|
Ma S, Vigneron S, Robert P, Strub JM, Cianferani S, Castro A, Lorca T. Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1. J Cell Sci 2016; 129:1329-39. [PMID: 26906418 DOI: 10.1242/jcs.178855] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/12/2016] [Indexed: 01/09/2023] Open
Abstract
Entry into mitosis is induced by the activation of cyclin-B-Cdk1 and Greatwall (Gwl; also known as MASTL in mammals) kinases. Cyclin-B-Cdk1 phosphorylates mitotic substrates, whereas Gwl activation promotes the phosphorylation of the small proteins Arpp19 and ENSA. Phosphorylated Arpp19 and/or ENSA bind to and inhibit PP2A comprising the B55 subunit (PP2A-B55; B55 is also known as PPP2R2A), the phosphatase responsible for cyclin-B-Cdk1 substrate dephosphorylation, allowing the stable phosphorylation of mitotic proteins. Upon mitotic exit, cyclin-B-Cdk1 and Gwl kinases are inactivated, and mitotic substrates are dephosphorylated. Here, we have identified protein phosphatase-1 (PP1) as the phosphatase involved in the dephosphorylation of the activating site (Ser875) of Gwl. Depletion of PP1 from meioticXenopusegg extracts maintains phosphorylation of Ser875, as well as the full activity of this kinase, resulting in a block of meiotic and mitotic exit. By contrast, preventing the reactivation of PP2A-B55 through the addition of a hyperactive Gwl mutant (GwlK72M) mainly affected Gwl dephosphorylation on Thr194, resulting in partial inactivation of Gwl and in the incomplete exit from mitosis or meiosis. We also show that when PP2A-B55 is fully reactivated by depleting Arpp19, this protein phosphatase is able to dephosphorylate both activating sites, even in the absence of PP1.
Collapse
Affiliation(s)
- Sheng Ma
- Université de Montpellier, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 Route de Mende, Montpellier 34293, Cedex 5, France. Equipe Labellisée 'Ligue Contre le Cancer'
| | - Suzanne Vigneron
- Université de Montpellier, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 Route de Mende, Montpellier 34293, Cedex 5, France. Equipe Labellisée 'Ligue Contre le Cancer'
| | - Perle Robert
- Université de Montpellier, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 Route de Mende, Montpellier 34293, Cedex 5, France. Equipe Labellisée 'Ligue Contre le Cancer'
| | - Jean Marc Strub
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25 rue Becquerel, Strasbourg F67087, Cedex 2, France
| | - Sara Cianferani
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25 rue Becquerel, Strasbourg F67087, Cedex 2, France
| | - Anna Castro
- Université de Montpellier, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 Route de Mende, Montpellier 34293, Cedex 5, France. Equipe Labellisée 'Ligue Contre le Cancer'
| | - Thierry Lorca
- Université de Montpellier, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 Route de Mende, Montpellier 34293, Cedex 5, France. Equipe Labellisée 'Ligue Contre le Cancer'
| |
Collapse
|
29
|
Gabrielli B, Burgess A. Cdc25 Family Phosphatases in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:283-306. [DOI: 10.1007/978-1-4939-3649-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Wang L, Luong VQ, Giannini PJ, Peng A. Mastl kinase, a promising therapeutic target, promotes cancer recurrence. Oncotarget 2015; 5:11479-89. [PMID: 25373736 PMCID: PMC4294390 DOI: 10.18632/oncotarget.2565] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/03/2014] [Indexed: 11/25/2022] Open
Abstract
Mastl kinase promotes mitotic progression and cell cycle reentry after DNA damage. We report here that Mastl is frequently upregulated in various types of cancer. This upregulation was correlated with cancer progression in breast and oral cancer, poor patient survival in breast cancer, and tumor recurrence in head and neck squamous cell carcinoma. We further investigated the role of Mastl in tumor resistance using cell lines derived from the initial and recurrent tumors of the same head and neck squamous cell carcinoma patients. Ectopic expression of Mastl in the initial tumor cells strongly promoted cell proliferation in the presence of cisplatin by attenuating DNA damage signaling and cell death. Mastl knockdown in recurrent tumor cells re-sensitized their response to cancer therapy in vitro and in vivo. Finally, Mastl targeting specifically potentiated cancer cells to cell death in chemotherapy while sparing normal cells. Thus, this study revealed that Mastl upregulation is involved in cancer progression and tumor recurrence after initial cancer therapy, and validated Mastl as a promising target to increase the therapeutic window.
Collapse
Affiliation(s)
- Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Vivian Q Luong
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Peter J Giannini
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| |
Collapse
|
31
|
Song H, Pan J, Liu Y, Wen H, Wang L, Cui J, Liu Y, Hu B, Yao Z, Ji G. Increased ARPP-19 expression is associated with hepatocellular carcinoma. Int J Mol Sci 2014; 16:178-192. [PMID: 25547487 PMCID: PMC4307242 DOI: 10.3390/ijms16010178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
The cAMP-regulated phosphoprotein 19 (ARPP-19) plays a key role in cell mitotic G2/M transition. Expression of ARPP-19 was increased in human hepatocellular carcinoma (HCC) compared to adjacent non-tumorous liver tissues in 36 paired liver samples, and the level of ARPP-19 in HCC tissues was positively correlated with the tumor size. To determine the interrelationship between ARPP-19 expression and HCC, we silenced ARPP-19 expression in the human hepatocarcinoma HepG2 and SMMC-7721 cells using lentivirus encoding ARPP-19 siRNA. HepG2 and SMMC-7721 cells with ARPP-19 knockdown displayed lowered cell growth rate, retarded colony formation and increased arrest at the G2/M phase transition. Silencing ARPP-19 in HCC cells resulted in decreased protein levels of phospho-(Ser) CDKs substrates and increased levels of inactivated cyclin division cycle 2 (Cdc2). Therefore, ARPP-19 may play a role in HCC pathogenesis through regulating cell proliferation.
Collapse
Affiliation(s)
- Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jielu Pan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yang Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hongzhu Wen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Lei Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jiefeng Cui
- Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yinkun Liu
- Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Bing Hu
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
32
|
Costache V, McDougall A, Dumollard R. Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem Biophys Res Commun 2014; 450:1175-81. [DOI: 10.1016/j.bbrc.2014.03.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
|
33
|
Matthews LM, Evans JP. α-endosulfine (ENSA) regulates exit from prophase I arrest in mouse oocytes. Cell Cycle 2014; 13:1639-49. [PMID: 24675883 DOI: 10.4161/cc.28606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian oocytes in ovarian follicles are arrested in meiosis at prophase I. This arrest is maintained until ovulation, upon which the oocyte exits from this arrest, progresses through meiosis I and to metaphase of meiosis II. The progression from prophase I to metaphase II, known as meiotic maturation, is mediated by signals that coordinate these transitions in the life of the oocyte. ENSA (α-endosulfine) and ARPP19 (cAMP-regulated phosphoprotein-19) have emerged as regulators of M-phase, with function in inhibition of protein phosphatase 2A (PP2A) activity. Inhibition of PP2A maintains the phosphorylated state of CDK1 substrates, thus allowing progression into and/or maintenance of an M-phase state. We show here ENSA in mouse oocytes plays a key role in the progression from prophase I arrest into M-phase of meiosis I. The majority of ENSA-deficient oocytes fail to exit from prophase I arrest. This function of ENSA in oocytes is dependent on PP2A, and specifically on the regulatory subunit PPP2R2D (also known as B55δ). Treatment of ENSA-deficient oocytes with Okadaic acid to inhibit PP2A rescues the defect in meiotic progression, with Okadaic acid-treated, ENSA-deficient oocytes being able to exit from prophase I arrest. Similarly, oocytes deficient in both ENSA and PPP2R2D are able to exit from prophase I arrest to an extent similar to wild-type oocytes. These data are evidence of a role for ENSA in regulating meiotic maturation in mammalian oocytes, and also have potential relevance to human oocyte biology, as mouse and human have genes encoding both Arpp19 and Ensa.
Collapse
Affiliation(s)
- Lauren M Matthews
- Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Janice P Evans
- Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| |
Collapse
|
34
|
Williams BC, Filter JJ, Blake-Hodek KA, Wadzinski BE, Fuda NJ, Shalloway D, Goldberg ML. Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers. eLife 2014; 3:e01695. [PMID: 24618897 PMCID: PMC3949306 DOI: 10.7554/elife.01695] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
During M phase, Endosulfine (Endos) family proteins are phosphorylated by Greatwall kinase (Gwl), and the resultant pEndos inhibits the phosphatase PP2A-B55, which would otherwise prematurely reverse many CDK-driven phosphorylations. We show here that PP2A-B55 is the enzyme responsible for dephosphorylating pEndos during M phase exit. The kinetic parameters for PP2A-B55's action on pEndos are orders of magnitude lower than those for CDK-phosphorylated substrates, suggesting a simple model for PP2A-B55 regulation that we call inhibition by unfair competition. As the name suggests, during M phase PP2A-B55's attention is diverted to pEndos, which binds much more avidly and is dephosphorylated more slowly than other substrates. When Gwl is inactivated during the M phase-to-interphase transition, the dynamic balance changes: pEndos dephosphorylated by PP2A-B55 cannot be replaced, so the phosphatase can refocus its attention on CDK-phosphorylated substrates. This mechanism explains simultaneously how PP2A-B55 and Gwl together regulate pEndos, and how pEndos controls PP2A-B55. DOI: http://dx.doi.org/10.7554/eLife.01695.001.
Collapse
Affiliation(s)
- Byron C Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | | | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, United States
| | - Nicholas J Fuda
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
35
|
Okumura E, Morita A, Wakai M, Mochida S, Hara M, Kishimoto T. Cyclin B-Cdk1 inhibits protein phosphatase PP2A-B55 via a Greatwall kinase-independent mechanism. ACTA ACUST UNITED AC 2014; 204:881-9. [PMID: 24616226 PMCID: PMC3998810 DOI: 10.1083/jcb.201307160] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of Greatwall kinase in autoregulatory activation of cyclin B–Cdk1 at M phase onset can be bypassed by cyclin B–Cdk1–mediated direct phosphorylation of Arpp19, leading to PP2A-B55 inhibition. Entry into M phase is governed by cyclin B–Cdk1, which undergoes both an initial activation and subsequent autoregulatory activation. A key part of the autoregulatory activation is the cyclin B–Cdk1–dependent inhibition of the protein phosphatase 2A (PP2A)–B55, which antagonizes cyclin B–Cdk1. Greatwall kinase (Gwl) is believed to be essential for the autoregulatory activation because Gwl is activated downstream of cyclin B–Cdk1 to phosphorylate and activate α-endosulfine (Ensa)/Arpp19, an inhibitor of PP2A-B55. However, cyclin B–Cdk1 becomes fully activated in some conditions lacking Gwl, yet how this is accomplished remains unclear. We show here that cyclin B–Cdk1 can directly phosphorylate Arpp19 on a different conserved site, resulting in inhibition of PP2A-B55. Importantly, this novel bypass is sufficient for cyclin B–Cdk1 autoregulatory activation. Gwl-dependent phosphorylation of Arpp19 is nonetheless necessary for downstream mitotic progression because chromosomes fail to segregate properly in the absence of Gwl. Such a biphasic regulation of Arpp19 results in different levels of PP2A-B55 inhibition and hence might govern its different cellular roles.
Collapse
Affiliation(s)
- Eiichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Global analysis of serine/threonine and tyrosine protein phosphatase catalytic subunit genes in Neurospora crassa reveals interplay between phosphatases and the p38 mitogen-activated protein kinase. G3-GENES GENOMES GENETICS 2014; 4:349-65. [PMID: 24347630 PMCID: PMC3931568 DOI: 10.1534/g3.113.008813] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase catalytic subunit knockout mutants for phenotypes during growth, asexual development, and sexual development. We found that 91% of the mutants had defects in at least one of these traits, whereas 29% possessed phenotypes in all three. Chemical sensitivity screens were conducted to reveal additional phenotypes for the mutants. This resulted in the identification of at least one chemical sensitivity phenotype for 17 phosphatase knockout mutants, including novel chemical sensitivities for two phosphatase mutants lacking a growth or developmental phenotype. Hence, chemical sensitivity or growth/developmental phenotype was observed for all 24 viable mutants. We investigated p38 mitogen-activated protein kinase (MAPK) phosphorylation profiles in the phosphatase mutants and identified nine potential candidates for regulators of the p38 MAPK. We demonstrated that the PP2C class phosphatase pph-8 (NCU04600) is an important regulator of female sexual development in N. crassa. In addition, we showed that the Δcsp-6 (ΔNCU08380) mutant exhibits a phenotype similar to the previously identified conidial separation mutants, Δcsp-1 and Δcsp-2, that lack transcription factors important for regulation of conidiation and the circadian clock.
Collapse
|
37
|
PhosphoTyrosyl phosphatase activator of Plasmodium falciparum: identification of its residues involved in binding to and activation of PP2A. Int J Mol Sci 2014; 15:2431-53. [PMID: 24521882 PMCID: PMC3958860 DOI: 10.3390/ijms15022431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022] Open
Abstract
In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V283, G292 and M296) of PfPTPA are indispensable for the interaction and that the G292 residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity.
Collapse
|
38
|
Li YH, Kang H, Xu YN, Heo YT, Cui XS, Kim NH, Oh JS. Greatwall Kinase Is Required for Meiotic Maturation in Porcine Oocytes1. Biol Reprod 2013; 89:53. [DOI: 10.1095/biolreprod.113.109850] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
39
|
Hörmanseder E, Tischer T, Mayer TU. Modulation of cell cycle control during oocyte-to-embryo transitions. EMBO J 2013; 32:2191-203. [PMID: 23892458 DOI: 10.1038/emboj.2013.164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022] Open
Abstract
Ex ovo omnia--all animals come from eggs--this statement made in 1651 by the English physician William Harvey marks a seminal break with the doctrine that all essential characteristics of offspring are contributed by their fathers, while mothers contribute only a material substrate. More than 360 years later, we now have a comprehensive understanding of how haploid gametes are generated during meiosis to allow the formation of diploid offspring when sperm and egg cells fuse. In most species, immature oocytes are arrested in prophase I and this arrest is maintained for few days (fruit flies) or for decades (humans). After completion of the first meiotic division, most vertebrate eggs arrest again at metaphase of meiosis II. Upon fertilization, this second meiotic arrest point is released and embryos enter highly specialized early embryonic divisions. In this review, we discuss how the standard somatic cell cycle is modulated to meet the specific requirements of different developmental stages. Specifically, we focus on cell cycle regulation in mature vertebrate eggs arrested at metaphase II (MII-arrest), the first mitotic cell cycle, and early embryonic divisions.
Collapse
Affiliation(s)
- Eva Hörmanseder
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
40
|
Juanes MA, Khoueiry R, Kupka T, Castro A, Mudrak I, Ogris E, Lorca T, Piatti S. Budding yeast greatwall and endosulfines control activity and spatial regulation of PP2A(Cdc55) for timely mitotic progression. PLoS Genet 2013; 9:e1003575. [PMID: 23861665 PMCID: PMC3701715 DOI: 10.1371/journal.pgen.1003575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/02/2013] [Indexed: 12/29/2022] Open
Abstract
Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2ACdc55 phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2) bind to PP2ACdc55 in a cell cycle-regulated manner upon Greatwall (Rim15)-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2ACdc55 activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2ACdc55, timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2ACdc55, which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms. In all eukaryotic cells chromosome partition during mitosis requires a number of processes, including the formation of the mitotic spindle, i.e. the machinery that drives chromosome segregation to the daughter cells. Mitotic entry requires a delicate balance between protein phosphorylation, driven by cyclin-dependent kinases (CDKs), and protein dephosphorylation, carried out by specific phosphatases that counteract CDK activity. A critical threshold in CDK activity is indeed required for mitotic entry. In the past few years the Greatwall kinase has also been implicated in mitotic entry through phosphorylation of proteins of the endosulfine family, which in turn inhibit the activity of the PP2A phosphatase that would otherwise dephosphorylate CDK targets. Whether Greatwall and endosulfines have a mitotic function in budding yeast, where PP2A promotes, rather than inhibits, mitotic entry has not been established. Here we show that the Greatwall-endosulfine-PP2A regulatory module is conserved also in budding yeast and that endosulfines from different species are interchangeable for their mitotic function. However, in budding yeast cells endosulfines contribute to full activation and proper localization of PP2A, suggesting that they act as both inhibitors and activators of PP2A. Our data emphasize how the same regulatory module is adapted to meet specific mitotic features in different organisms.
Collapse
Affiliation(s)
| | - Rita Khoueiry
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Thomas Kupka
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Anna Castro
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Ingrid Mudrak
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Egon Ogris
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thierry Lorca
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Simonetta Piatti
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- * E-mail:
| |
Collapse
|
41
|
Zhou L, Le Roux G, Ducrot C, Chédin S, Labarre J, Riva M, Carles C. Repression of class I transcription by cadmium is mediated by the protein phosphatase 2A. Nucleic Acids Res 2013; 41:6087-6097. [PMID: 23640330 PMCID: PMC3695495 DOI: 10.1093/nar/gkt335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 11/24/2022] Open
Abstract
Toxic metals are part of our environment, and undue exposure to them leads to a variety of pathologies. In response, most organisms adapt their metabolism and have evolved systems to limit this toxicity and to acquire tolerance. Ribosome biosynthesis being central for protein synthesis, we analyzed in yeast the effects of a moderate concentration of cadmium (Cd(2+)) on Pol I transcription that represents >60% of the transcriptional activity of the cells. We show that Cd(2+) rapidly and drastically shuts down the expression of the 35S rRNA. Repression does not result from a poisoning of any of the components of the class I transcriptional machinery by Cd(2+), but rather involves a protein phosphatase 2A (PP2A)-dependent cellular signaling pathway that targets the formation/dissociation of the Pol I-Rrn3 complex. We also show that Pol I transcription is repressed by other toxic metals, such as Ag(+) and Hg(2+), which likewise perturb the Pol I-Rrn3 complex, but through PP2A-independent mechanisms. Taken together, our results point to a central role for the Pol I-Rrn3 complex as molecular switch for regulating Pol I transcription in response to toxic metals.
Collapse
Affiliation(s)
- Lei Zhou
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Gwenaëlle Le Roux
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Cécile Ducrot
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Stéphane Chédin
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Jean Labarre
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Michel Riva
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Christophe Carles
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
42
|
Lorca T, Castro A. Deciphering the New Role of the Greatwall/PP2A Pathway in Cell Cycle Control. Genes Cancer 2013; 3:712-20. [PMID: 23634258 DOI: 10.1177/1947601912473478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mitotic division is induced by protein phosphorylation. For a long time the supported hypothesis was that mitotic entry and exit were the exclusive result of cyclin B-Cdk1 kinase activation and inactivation, whereas the phosphatase activity required to dephosphorylate mitotic substrates was thought to be constant during mitosis. Recent data demonstrate that phosphatase activity must also be tightly regulated to promote correct cell division. Here we describe the new pathway involved in phosphatase regulation and the questions that this discovery raises concerning the classic view of cell cycle regulation.
Collapse
Affiliation(s)
- Thierry Lorca
- Universités Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR, Montpellier, France
| | | |
Collapse
|
43
|
Balestrieri ML, Gasparrini B, Neglia G, Vecchio D, Strazzullo M, Giovane A, Servillo L, Zicarelli L, D'Occhio MJ, Campanile G. Proteomic Profiles of the Embryonic Chorioamnion and Uterine Caruncles in Buffaloes (Bubalus bubalis) with Normal and Retarded Embryonic Development1. Biol Reprod 2013; 88:119. [DOI: 10.1095/biolreprod.113.108696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
44
|
Yasutis KM, Kozminski KG. Cell cycle checkpoint regulators reach a zillion. Cell Cycle 2013; 12:1501-9. [PMID: 23598718 DOI: 10.4161/cc.24637] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.
Collapse
|
45
|
Hara M, Abe Y, Tanaka T, Yamamoto T, Okumura E, Kishimoto T. Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor. Nat Commun 2013; 3:1059. [PMID: 22968705 PMCID: PMC3658099 DOI: 10.1038/ncomms2062] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/14/2012] [Indexed: 11/09/2022] Open
Abstract
Maturation/M-phase-promoting factor is the universal inducer of M-phase in eukaryotic cells. It is currently accepted that M-phase-promoting factor is identical to the kinase cyclin B–Cdk1. Here we show that cyclin B–Cdk1 and M-phase-promoting factor are not in fact synonymous. Instead, M-phase-promoting factor contains at least two essential components: cyclin B–Cdk1 and another kinase, Greatwall kinase. In the absence of Greatwall kinase, the M-phase-promoting factor is undetectable in oocyte cytoplasm even though cyclin B–Cdk1 is fully active, whereas M-phase-promoting factor activity is restored when Greatwall kinase is added back. Although the excess amount of cyclin B–Cdk1 alone, but not Greatwall kinase alone, can induce nuclear envelope breakdown, spindle assembly is abortive. Addition of Greatwall kinase greatly reduces the amount of cyclin B–Cdk1 required for nuclear envelope breakdown, resulting in formation of the spindle with aligned chromosomes. M-phase-promoting factor is thus a system consisting of one kinase (cyclin B–Cdk1) that directs mitotic entry and a second kinase (Greatwall kinase) that suppresses the protein phosphatase 2A-B55 which opposes cyclin B–Cdk1. Cyclin B–Cdk1 is thought to be synonymous with the promoting factor that drives entry into M-phase of the cell cycle. Here, Greatwall kinase is shown to be required for the breakdown of the nuclear envelope and the assembly of the spindle on entry into M-phase, suggesting that it too is a part of the M-phase-promoting factor.
Collapse
Affiliation(s)
- Masatoshi Hara
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Oh JS, Susor A, Schindler K, Schultz RM, Conti M. Cdc25A activity is required for the metaphase II arrest in mouse oocytes. J Cell Sci 2013; 126:1081-5. [PMID: 23345398 DOI: 10.1242/jcs.115592] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mammalian oocytes are arrested in metaphase of second meiosis (MII) until fertilization. This arrest is enforced by the cytostatic factor (CSF), which maintains the M-phase promoting factor (MPF) in a highly active state. Although the continuous synthesis and degradation of cyclin B to maintain the CSF-mediated MII arrest is well established, it is unknown whether cyclin-dependent kinase 1 (Cdk1) phosphorylations are involved in this arrest in mouse oocytes. Here, we show that a dynamic equilibrium of Cdk1 phosphorylation is required to maintain MII arrest. When the Cdc25A phosphatase is downregulated, mouse oocytes are released from MII arrest and MPF becomes inactivated. This inactivation occurs in the absence of cyclin B degradation and is dependent on Wee1B-mediated phosphorylation of Cdk1. Thus, our data demonstrate that Cdk1 activity is maintained during MII arrest not only by cyclin turnover but also by steady state phosphorylation.
Collapse
Affiliation(s)
- Jeong Su Oh
- Center for Reproductive Sciences and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology and Reproductive Sciences at the University of California, San Francisco, CA 94143-0556, USA
| | | | | | | | | |
Collapse
|
47
|
Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium 2012; 53:41-54. [PMID: 23266324 DOI: 10.1016/j.ceca.2012.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar
| | | | | | | |
Collapse
|
48
|
Abstract
The water-soluble B vitamins, folate and folic acid, play an important role in reproductive health, but little is known about the effects of folic acid on infertility. The present study tested the hypothesis that folic acid affects oocyte maturation, a possible cause of female infertility. We have studied the in vitro maturation of mouse and Xenopus oocytes. Hypoxanthine (Hx) was used as an inhibitor of mouse oocyte maturation to mimic in vivo conditions by maintaining high levels of cyclic-AMP. The frequency of first polar body (PB1) formation and germinal vesicle breakdown (GVBD) in mouse oocytes was decreased by Hx. This effect was counteracted by folic acid added to the medium. PB1 extrusion and GVBD percentages rose to 27·7 and 40·0% from 12·8 and 19·9%, respectively, by exposure to 500 μM-folic acid. Folic acid also restored the spindle configuration, which had been elongated by Hx, as well as normalising the distribution of cortical granules (CG). In folic acid-treated Xenopus eggs, extracellular signal-regulated kinase 1 was phosphorylated, cyclin B2 and Mos were up-regulated and the frequency of GVBD was accelerated. Taken together, the findings suggest that folic acid facilitates oocyte maturation by altering the expression and phosphorylation of proteins involved in M-phase-promoting factor and mitogen-activated protein kinase pathways, as well as causing changes in spindle configuration and CG migration.
Collapse
|
49
|
Wang L, Fisher LA, Wahl JK, Peng A. Monoclonal antibodies against Xenopus greatwall kinase. Hybridoma (Larchmt) 2012; 30:469-74. [PMID: 22008075 DOI: 10.1089/hyb.2011.0051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitosis is known to be regulated by protein kinases, including MPF, Plk1, Aurora kinases, and so on, which become active in M-phase and phosphorylate a wide range of substrates to control multiple aspects of mitotic entry, progression, and exit. Mechanistic investigations of these kinases not only provide key insights into cell cycle regulation, but also hold great promise for cancer therapy. Recent studies, largely in Xenopus, characterized a new mitotic kinase named Greatwall (Gwl) that plays essential roles in both mitotic entry and maintenance. In this study, we generated a panel of mouse monoclonal antibodies (MAbs) specific for Xenopus Gwl and characterized these antibodies for their utility in immunoblotting, immunoprecipitation, and immunodepletion in Xenopus egg extracts. Importantly, we generated an MAb that is capable of neutralizing endogenous Gwl. The addition of this antibody into M-phase extracts results in loss of mitotic phosphorylation of Gwl, Plk1, and Cdk1 substrates. These results illustrate a new tool to study loss-of-function of Gwl, and support its essential role in mitosis. Finally, we demonstrated the usefulness of the MAb against human Gwl/MASTL.
Collapse
Affiliation(s)
- Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | | | | | | |
Collapse
|
50
|
Abstract
New data have recently established that protein phosphorylation during mitosis is the result of a controlled balance between kinase and phosphatase activities and that, as for mitotic kinases, phosphatases are also regulated during cell division. This regulation is at least in part induced by the activation of the Greatwall (Gwl) kinase at mitotic entry. Activated Gwl phosphorylates its substrates cAMP-regulated phospho protein 19 (Arpp19) and α-endosulfine (ENSA), promoting their binding to and the inhibition of PP2A. Interestingly, besides the role of the Gwl-Arpp19/ENSA in the control of mitotic division, new data in yeast support the involvement of this pathway in mRNA stabilization during G(0) program initiation, although in this case the phosphatase PP2A appears not to be implicated. Finally, Gwl activity has been shown to be required for DNA checkpoint recovery. These new findings support the view that Gwl, Arpp19 and ENSA could function as the core of a new signalization pathway that, by targeting different final substrates, could participate in a variety of physiological functions.
Collapse
|