1
|
Aguiar TKB, Mesquita FP, Neto NAS, Gomes FÍR, Freitas CDT, Carneiro RF, Nagano CS, Alencar LMR, Santos-Oliveira R, Oliveira JTA, Souza PFN. No Chance to Survive: Mo-CBP 3-PepII Synthetic Peptide Acts on Cryptococcus neoformans by Multiple Mechanisms of Action. Antibiotics (Basel) 2023; 12:antibiotics12020378. [PMID: 36830289 PMCID: PMC9952340 DOI: 10.3390/antibiotics12020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Multidrug-resistant Cryptococcus neoformans is an encapsulated yeast causing a high mortality rate in immunocompromised patients. Recently, the synthetic peptide Mo-CBP3-PepII emerged as a potent anticryptococcal molecule with an MIC50 at low concentration. Here, the mechanisms of action of Mo-CBP3-PepII were deeply analyzed to provide new information about how it led C. neoformans cells to death. Light and fluorescence microscopies, analysis of enzymatic activities, and proteomic analysis were employed to understand the effect of Mo-CBP3-PepII on C. neoformans cells. Light and fluorescence microscopies revealed Mo-CBP3-PepII induced the accumulation of anion superoxide and hydrogen peroxide in C. neoformans cells, in addition to a reduction in the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) in the cells treated with Mo-CBP3-PepII. In the presence of ascorbic acid (AsA), no reactive oxygen species (ROS) were detected, and Mo-CBP3-PepII lost the inhibitory activity against C. neoformans. However, Mo-CBP3-PepII inhibited the activity of lactate dehydrogenase (LDH) ergosterol biosynthesis and induced the decoupling of cytochrome c (Cyt c) from the mitochondrial membrane. Proteomic analysis revealed a reduction in the abundance of proteins related to energetic metabolism, DNA and RNA metabolism, pathogenicity, protein metabolism, cytoskeleton, and cell wall organization and division. Our findings indicated that Mo-CBP3-PepII might have multiple mechanisms of action against C. neoformans cells, mitigating the development of resistance and thus being a potent molecule to be employed in the production of new drugs against C. neoformans infections.
Collapse
Affiliation(s)
- Tawanny K. B. Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Felipe P. Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Francisco Í. R. Gomes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Rômulo F. Carneiro
- Department of Fisheries Engineering, Federal University of Ceará (UFC), Fortaleza 60451-970, CE, Brazil
| | - Celso S. Nagano
- Department of Fisheries Engineering, Federal University of Ceará (UFC), Fortaleza 60451-970, CE, Brazil
| | - Luciana M. R. Alencar
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941-906, RJ, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070-200, RJ, Brazil
| | - Jose T. A. Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Correspondence: or
| |
Collapse
|
2
|
Mela A, Momany M. Septins coordinate cell wall integrity and lipid metabolism in a sphingolipid-dependent process. J Cell Sci 2021; 135:256543. [PMID: 33912961 DOI: 10.1242/jcs.258336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.
Collapse
Affiliation(s)
- Alexander Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| |
Collapse
|
3
|
Gohlke S, Heine D, Schmitz HP, Merzendorfer H. Septin-associated protein kinase Gin4 affects localization and phosphorylation of Chs4, the regulatory subunit of the Baker's yeast chitin synthase III complex. Fungal Genet Biol 2018; 117:11-20. [PMID: 29763674 DOI: 10.1016/j.fgb.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/24/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
Chitin is mainly formed by the chitin synthase III complex (CSIII) in yeast cells. This complex is considered to be composed of the catalytic subunit Chs3 and the regulatory subunit Chs4, both of which are phosphoproteins and transported to the plasma membrane by different trafficking routes. During cytokinesis, Chs3 associates with Chs4 and other proteins at the septin ring, which results in an active CSIII complex. In this study, we focused on the role of Chs4 as a regulatory subunit of the CSIII complex. We analyzed the dynamic localization and interaction of Chs3 and Chs4 during cell division, and found that both proteins transiently co-localize and physically interact only during bud formation and later in a period during septum formation and cytokinesis. To identify unknown binding partners of Chs4, we conducted different screening approaches, which yielded several novel candidates of Chs4-binding proteins including the septin-associated kinase Gin4. Our further studies confirmed this interaction and provided first evidence that Chs4 phosphorylation is partially dependent on Gin4, which is required for proper localization of Chs4 at the bud neck.
Collapse
Affiliation(s)
- Simon Gohlke
- Department of Biology and Chemistry, University of Osnabrueck, 49068 Osnabrueck, Germany; Institute of Biology, University of Siegen, 57068 Siegen, Germany
| | - Daniela Heine
- Department of Biology and Chemistry, University of Osnabrueck, 49068 Osnabrueck, Germany
| | - Hans-Peter Schmitz
- Department of Biology and Chemistry, University of Osnabrueck, 49068 Osnabrueck, Germany
| | | |
Collapse
|
4
|
Pérez J, Arcones I, Gómez A, Casquero V, Roncero C. Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis. FEMS Yeast Res 2016; 16:fow060. [DOI: 10.1093/femsyr/fow060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 02/05/2023] Open
|
6
|
Lenardon MD, Munro CA, Gow NAR. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 2010; 13:416-23. [PMID: 20561815 PMCID: PMC2923753 DOI: 10.1016/j.mib.2010.05.002] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/25/2022]
Abstract
Chitin is an essential part of the carbohydrate skeleton of the fungal cell wall and is a molecule that is not represented in humans and other vertebrates. Complex regulatory mechanisms enable chitin to be positioned at specific sites throughout the cell cycle to maintain the overall strength of the wall and enable rapid, life-saving modifications to be made under cell wall stress conditions. Chitin has also recently emerged as a significant player in the activation and attenuation of immune responses to fungi and other chitin-containing parasites. This review summarises latest advances in the analysis of chitin synthesis regulation in the context of fungal pathogenesis.
Collapse
Affiliation(s)
- Megan D Lenardon
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | | | | |
Collapse
|