1
|
Peng M, Wang G, Zhu S. Cold-stored mulberry leaves affect antioxidant system and silk proteins of silkworm (Bombyx mori) larva. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7673-7682. [PMID: 37431698 DOI: 10.1002/jsfa.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Cold storage has been widely used to maintain the quality of vegetables, but whether eating cold-stored vegetables affects health remains unknown. RESULTS This study used silkworms as an animal model to evaluate the effects of nutrient changes in cold-stored mulberry leaves (CSML) on health. Compared with fresh mulberry leaves (FML), CSML contained lower vitamin C, soluble sugars and proteins, and higher H2 O2 , suggesting decreased antioxidant ability and nutrition. The CSML did not obviously affect larval survival rate, body weight or dry matter rate, cocoon shape, weight and size, or final rates of cluster and cocooning relative to the FML, suggesting CSML did not alter overall growth and development. However, the CSML increased the initial rates of cluster and cocooning and upregulated BmRpd3, suggesting CSML shortened larval lifespan and enhanced senescence. CSML upregulated BmNOX4, downregulated BmCAT, BmSOD and BmGSH-Px and increased H2 O2 in silkworms, suggesting CSML caused oxidative stress. CSML upregulated ecdysone biosynthesis and inactivation genes and elevated ecdysone concentration in silkworms, suggesting that CSML affected hormone homeostasis. CSML upregulated apoptosis-related genes, downregulated sericin and silk fibroin genes and decreased sericin content rate in silkworms, suggesting oxidative stress and protein deficiency. CONCLUSION Cold storage reduced nutrition and antioxidant capability of mulberry leaves. CSML did not influence growth and development of silkworm larva, but affected health by causing oxidative stress and reducing protein synthesis. The findings show that the ingredient changes in CSML had negative effects on health of silkworms. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaomiao Peng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guang Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Das P, Bhadra MP. Histone deacetylase (Rpd3) regulates Drosophila early brain development via regulation of Tailless. Open Biol 2020; 10:200029. [PMID: 32873153 PMCID: PMC7536075 DOI: 10.1098/rsob.200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022] Open
Abstract
Tailless is a committed transcriptional repressor and principal regulator of the brain and eye development in Drosophila. Rpd3, the histone deacetylase, is an established repressor that interacts with co-repressors like Sin3a, Prospero, Brakeless and Atrophin. This study aims at deciphering the role of Rpd3 in embryonic segmentation and larval brain development in Drosophila. It delineates the mechanism of Tailless regulation by Rpd3, along with its interacting partners. There was a significant reduction in Tailless in Rpd3 heteroallelic mutant embryos, substantiating that Rpd3 is indispensable for the normal Tailless expression. The expression of the primary readout, Tailless was correlative to the expression of the neural cell adhesion molecule homologue, Fascilin2 (Fas2). Rpd3 also aids in the proper development of the mushroom body. Both Tailless and Fas2 expression are reported to be antagonistic to the epidermal growth factor receptor (EGFR) expression. The decrease in Tailless and Fas2 expression highlights that EGFR is upregulated in the larval mutants, hindering brain development. This study outlines the axis comprising Rpd3, dEGFR, Tailless and Fas2, which interact to fine-tune the early segmentation and larval brain development. Therefore, Rpd3 along with Tailless has immense significance in early embryogenesis and development of the larval brain.
Collapse
Affiliation(s)
- Paromita Das
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR) Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600 113, India
| | - Manika Pal Bhadra
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR) Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600 113, India
| |
Collapse
|
3
|
Sanna S, Esposito S, Masala A, Sini P, Nieddu G, Galioto M, Fais M, Iaccarino C, Cestra G, Crosio C. HDAC1 inhibition ameliorates TDP-43-induced cell death in vitro and in vivo. Cell Death Dis 2020; 11:369. [PMID: 32409664 PMCID: PMC7224392 DOI: 10.1038/s41419-020-2580-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
TDP-43 pathology is a disease hallmark that characterizes both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). TDP-43 undergoes several posttranslational modifications that can change its biological activities and its aggregative propensity, which is a common hallmark of different neurodegenerative conditions. New evidence is provided by the current study pointing at TDP-43 acetylation in ALS cellular models. Using both in vitro and in vivo approaches, we demonstrate that TDP-43 interacts with histone deacetylase 1 (HDAC1) via RRM1 and RRM2 domains, that are known to contain the two major TDP-43 acetylation sites, K142 and K192. Moreover, we show that TDP-43 is a direct transcriptional activator of CHOP promoter and this activity is regulated by acetylation. Finally and most importantly, we observe both in cell culture and in Drosophila that a HDCA1 reduced level (genomic inactivation or siRNA) or treatment with pan-HDAC inhibitors exert a protective role against WT or pathological mutant TDP-43 toxicity, suggesting TDP-43 acetylation as a new potential therapeutic target. HDAC inhibition efficacy in neurodegeneration has long been debated, but future investigations are warranted in this area. Selection of more specific HDAC inhibitors is still a promising option for neuronal protection especially as HDAC1 appears as a downstream target of both TDP- 43 and FUS, another ALS-related gene.
Collapse
Affiliation(s)
- Simona Sanna
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Sonia Esposito
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Alessandra Masala
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Paola Sini
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Milena Fais
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Gianluca Cestra
- Istitute of Molecular Biology and Pathology-National Research Council at Department of Biology and Biotechnology-Charles Darwin, Sapienza University of Rome, P.Le A.Moro 5, I-00185, Rome, Italy
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy.
| |
Collapse
|
4
|
Kopp Z, Park Y. Longer lifespan in the Rpd3 and Loco signaling results from the reduced catabolism in young age with noncoding RNA. Aging (Albany NY) 2019; 11:230-239. [PMID: 30620723 PMCID: PMC6339784 DOI: 10.18632/aging.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/22/2018] [Indexed: 11/25/2022]
Abstract
Downregulation of Rpd3 (histone deacetylase) or Loco (regulator of G-protein signaling protein) extends Drosophila lifespan with higher stress resistance. We found rpd3-downregulated long-lived flies genetically interact with loco-upregulated short-lived flies in stress resistance and lifespan. Gene expression profiles between those flies revealed that they regulate common target genes in metabolic enzymes and signaling pathways, showing an opposite expression pattern in their contrasting lifespans. Functional analyses of more significantly changed genes indicated that the activities of catabolic enzymes and uptake/storage proteins are reduced in long-lived flies with Rpd3 downregulation. This reduced catabolism exhibited from a young age is considered to be necessary for the resultant longer lifespan of the Rpd3- and Loco-downregulated old flies, which mimics the dietary restriction (DR) effect that extends lifespan in the several species. Inversely, those catabolic activities that break down carbohydrates, lipids, and peptides were high in the short lifespan of Loco-upregulated flies. Long noncoding gene, dntRL (CR45923), was also found as a putative target modulated by Rpd3 and Loco for the longevity. Interestingly, this dntRL could affect stress resistance and lifespan, suggesting that the dntRL lncRNA may be involved in the metabolic mechanism of Rpd3 and Loco signaling.
Collapse
Affiliation(s)
- Zachary Kopp
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Yongkyu Park
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Lee YCG, Leek C, Levine MT. Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila. Mol Biol Evol 2017; 34:467-482. [PMID: 27836984 PMCID: PMC6307840 DOI: 10.1093/molbev/msw248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Courtney Leek
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Burgio G, Corona DFV, Nicotra CMA, Carruba G, Taibi G. P/CAF-mediated spermidine acetylation regulates histone acetyltransferase activity. J Enzyme Inhib Med Chem 2016; 31:75-82. [PMID: 27389534 DOI: 10.1080/14756366.2016.1205045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Histones and polyamines are important determinants of the chromatin structure. Histones form the core of nucleosome particles and their modification by acetylation of N-terminal tails is involved in chromatin structural changes and transcriptional regulation. Polyamines, including spermidine, are also targets of both cytoplasmic and nuclear acetylation, which in turn alters their affinity for DNA and nucleosomes. Previous studies report the interplay between polyamines metabolism and levels of histone acetylation, but the molecular basis of this effect is still unclear. In this work, we have analyzed the in vitro effect of spermidine on histone H3 acetylation catalyzed by P/CAF, a highly conserved histone acetyltransferase (HAT) (E.C. 2.3.1.48). We have observed that spermidine at very low concentrations activates P/CAF, while it has an inhibitory effect at concentrations higher than 4 μM. In addition, the in vitro bimodal effect of spermidine on histone H3 acetylation was also distinctly observed in vivo on polytene chromosomes of Drosophila melanogaster. We also performed kinetic studies indicating that the activating effect of low spermidine concentrations on P/CAF-HAT activity is based on its involvement as a substrate for P/CAF to produce N8-acetylspermidine that is able in turn to increase the enzyme activity up to four fold.
Collapse
Affiliation(s)
- Giosalba Burgio
- a Istituto Telethon Dulbecco , Palermo , Italy.,b Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF) - Sezione Di Biologia Cellulare, Università Degli Studi Di Palermo , Palermo , Italy
| | - Davide F V Corona
- a Istituto Telethon Dulbecco , Palermo , Italy.,b Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF) - Sezione Di Biologia Cellulare, Università Degli Studi Di Palermo , Palermo , Italy
| | | | | | - Gennaro Taibi
- e Dipartimento Di Biomedicina Sperimentale E Neuroscienze Cliniche (BIONEC), Universitá degli Studi di Palermo , Palermo , Italy
| |
Collapse
|
7
|
López-Panadès E, Casacuberta E. NAP-1, Nucleosome assembly protein 1, a histone chaperone involved in Drosophila telomeres. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:111-115. [PMID: 26742602 DOI: 10.1016/j.ibmb.2015.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Telomere elongation is a function that all eukaryote cells must accomplish in order to guarantee, first, the stability of the end of the chromosomes and second, to protect the genetic information from the inevitable terminal erosion. The targeted transposition of the telomere transposons HeT-A, TART and TAHRE perform this function in Drosophila, while the telomerase mechanism elongates the telomeres in most eukaryotes. In order to integrate telomere maintenance together with cell cycle and metabolism, different components of the cell interact, regulate, and control the proteins involved in telomere elongation. Different partners of the telomerase mechanism have already been described, but in contrast, very few proteins have been related with assisting the telomere transposons of Drosophila. Here, we describe for the first time, the implication of NAP-1 (Nucleosome assembly protein 1), a histone chaperone that has been involved in nuclear transport, transcription regulation, and chromatin remodeling, in telomere biology. We find that Nap-1 and HeT-A Gag, one of the major components of the Drosophila telomeres, are part of the same protein complex. We also demonstrate that their close interaction is necessary to guarantee telomere stability in dividing cells. We further show that NAP-1 regulates the transcription of the HeT-A retrotransposon, pointing to a positive regulatory role of NAP-1 in telomere expression. All these results facilitate the understanding of the transposon telomere maintenance mechanism, as well as the integration of telomere biology with the rest of the cell metabolism.
Collapse
Affiliation(s)
- Elisenda López-Panadès
- Institute of Evolutionary Biology, IBE (CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37-49, Barcelona 08003, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology, IBE (CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37-49, Barcelona 08003, Spain.
| |
Collapse
|
8
|
Cipressa F, Di Giorgio ML, Cenci G. A simple approach for multicolor immunofluorescence staining in different Drosophila cell types. J Cell Physiol 2013; 229:683-7. [PMID: 24170430 DOI: 10.1002/jcp.24506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 11/09/2022]
Abstract
Multicolor immunostaining analysis is often a desirable tool in cell biology for most researchers. Nonetheless, this is not an easy task and often not affordable by many laboratories as it might require expensive instrumentation and sophisticated analysis software. Here, we describe a simple protocol for performing sequential immunostainings on two different Drosophila specimens. Our strategy relies on an efficient and reproducible method for removal primary antibodies and/or fluorophore-conjugated secondary antibodies that does not affect antigene integrity. We show that alternation of multiple rounds of antibody incubation and removal on the same slide, followed by registration of the same DAPI-stained image, provides a simple framework for the sequential detection of several antigens in the same cell. Given that the sample fixation procedures used for Drosophila tissues are compatible with most specimen processing protocols, we can envisage that the multicolor immunostaining strategy presented here can be also adapted to different samples including mammalian tissues and/or cells.
Collapse
Affiliation(s)
- Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie "C. Darwin", SAPIENZA Università di Roma, Roma, Italy
| | | | | |
Collapse
|
9
|
Effete, a Drosophila chromatin-associated ubiquitin-conjugating enzyme that affects telomeric and heterochromatic position effect variegation. Genetics 2013; 195:147-58. [PMID: 23821599 DOI: 10.1534/genetics.113.153320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drosophila telomeres are elongated by the transposition of telomere-specific retrotransposons rather than telomerase activity. Proximal to the terminal transposon array, Drosophila chromosomes contain several kilobases of a complex satellite DNA termed telomere-associated sequences (TASs). Reporter genes inserted into or next to the TAS are silenced through a mechanism called telomere position effect (TPE). TPE is reminiscent of the position effect variegation (PEV) induced by Drosophila constitutive heterochromatin. However, most genes that modulate PEV have no effect on TPE, and systematic searches for TPE modifiers have so far identified only a few dominant suppressors. Surprisingly, only a few of the genes required to prevent telomere fusion have been tested for their effect on TPE. Here, we show that with the exception of the effete (eff; also called UbcD1) mutant alleles, none of the tested mutations at the other telomere fusion genes affects TPE. We also found that mutations in eff, which encodes a class I ubiquitin-conjugating enzyme, act as suppressors of PEV. Thus, eff is one of the rare genes that can modulate both TPE and PEV. Immunolocalization experiments showed that Eff is a major constituent of polytene chromosomes. Eff is enriched at several euchromatic bands and interbands, the TAS regions, and the chromocenter. Our results suggest that Eff associates with different types of chromatin affecting their abilities to regulate gene expression.
Collapse
|
10
|
Novo CL, Polese C, Matheus N, Decottignies A, Londono-Vallejo A, Castronovo V, Mottet D. A new role for histone deacetylase 5 in the maintenance of long telomeres. FASEB J 2013; 27:3632-42. [PMID: 23729589 DOI: 10.1096/fj.12-224204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin remodeling is probably the least studied; thus, we intended to explore the role of a specific histone deacetylase on telomere maintenance. We uncovered a new role for histone deacetylase 5 (HDAC5) in telomere biology. We report that HDAC5 is recruited to the long telomeres of osteosarcoma- and fibrosarcoma-derived cell lines, where it ensures proper maintenance of these repetitive regions. Indeed, depletion of HDAC5 by RNAi resulted in the shortening of longer telomeres and homogenization of telomere length in cells that use either telomerase or an alternative mechanism of telomere maintenance. Furthermore, we present evidence for the activation of telomere recombination on depletion of HDAC5 in fibrosarcoma telomerase-positive cancer cells. Of potential importance, we also found that depletion of HDAC5 sensitizes cancer cells with long telomeres to chemotherapeutic drugs. Cells with shorter telomeres were used to control the specificity of HDAC5 role in the maintenance of long telomeres. HDAC5 is essential for the length maintenance of long telomeres and its depletion is required for sensitization of cancer cells with long telomeres to chemotherapy.
Collapse
Affiliation(s)
- Clara Lopes Novo
- University of Liege Sart-Tilman, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Cancer, Metastasis Research Laboratory, Pathology Institute B23, Liege, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Silva-Sousa R, López-Panadès E, Piñeyro D, Casacuberta E. The chromosomal proteins JIL-1 and Z4/Putzig regulate the telomeric chromatin in Drosophila melanogaster. PLoS Genet 2012; 8:e1003153. [PMID: 23271984 PMCID: PMC3521665 DOI: 10.1371/journal.pgen.1003153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 10/24/2012] [Indexed: 12/28/2022] Open
Abstract
Drosophila telomere maintenance depends on the transposition of the specialized retrotransposons HeT-A, TART, and TAHRE. Controlling the activation and silencing of these elements is crucial for a precise telomere function without compromising genomic integrity. Here we describe two chromosomal proteins, JIL-1 and Z4 (also known as Putzig), which are necessary for establishing a fine-tuned regulation of the transcription of the major component of Drosophila telomeres, the HeT-A retrotransposon, thus guaranteeing genome stability. We found that mutant alleles of JIL-1 have decreased HeT-A transcription, putting forward this kinase as the first positive regulator of telomere transcription in Drosophila described to date. We describe how the decrease in HeT-A transcription in JIL-1 alleles correlates with an increase in silencing chromatin marks such as H3K9me3 and HP1a at the HeT-A promoter. Moreover, we have detected that Z4 mutant alleles show moderate telomere instability, suggesting an important role of the JIL-1-Z4 complex in establishing and maintaining an appropriate chromatin environment at Drosophila telomeres. Interestingly, we have detected a biochemical interaction between Z4 and the HeT-A Gag protein, which could explain how the Z4-JIL-1 complex is targeted to the telomeres. Accordingly, we demonstrate that a phenotype of telomere instability similar to that observed for Z4 mutant alleles is found when the gene that encodes the HeT-A Gag protein is knocked down. We propose a model to explain the observed transcriptional and stability changes in relation to other heterochromatin components characteristic of Drosophila telomeres, such as HP1a.
Collapse
Affiliation(s)
- Rute Silva-Sousa
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elisenda López-Panadès
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - David Piñeyro
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
12
|
Poschke H, Dees M, Chang M, Amberkar S, Kaderali L, Rothstein R, Luke B. Rif2 promotes a telomere fold-back structure through Rpd3L recruitment in budding yeast. PLoS Genet 2012; 8:e1002960. [PMID: 23028367 PMCID: PMC3447961 DOI: 10.1371/journal.pgen.1002960] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/06/2012] [Indexed: 01/05/2023] Open
Abstract
Using a genome-wide screening approach, we have established the genetic requirements for proper telomere structure in Saccharomyces cerevisiae. We uncovered 112 genes, many of which have not previously been implicated in telomere function, that are required to form a fold-back structure at chromosome ends. Among other biological processes, lysine deacetylation, through the Rpd3L, Rpd3S, and Hda1 complexes, emerged as being a critical regulator of telomere structure. The telomeric-bound protein, Rif2, was also found to promote a telomere fold-back through the recruitment of Rpd3L to telomeres. In the absence of Rpd3 function, telomeres have an increased susceptibility to nucleolytic degradation, telomere loss, and the initiation of premature senescence, suggesting that an Rpd3-mediated structure may have protective functions. Together these data reveal that multiple genetic pathways may directly or indirectly impinge on telomere structure, thus broadening the potential targets available to manipulate telomere function.
Collapse
Affiliation(s)
- Heiko Poschke
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Cesarini E, D'Alfonso A, Camilloni G. H4K16 acetylation affects recombination and ncRNA transcription at rDNA in Saccharomyces cerevisiae. Mol Biol Cell 2012; 23:2770-81. [PMID: 22621897 PMCID: PMC3395664 DOI: 10.1091/mbc.e12-02-0095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transcription-associated recombination (TAR) is crucial for stability among repeated units of rDNA. Several histone deacetylases and a chromatin architectural component control the synthesis of ncRNA and rDNA recombination. The only acetylation state of histone H4 at Lys-16 is sufficient to regulate TAR at rDNA. Transcription-associated recombination is an important process involved in several aspects of cell physiology. In the ribosomal DNA (rDNA) of Saccharomyces cerevisiae, RNA polymerase II transcription–dependent recombination has been demonstrated among the repeated units. In this study, we investigate the mechanisms controlling this process at the chromatin level. On the basis of a small biased screening, we found that mutants of histone deacetylases and chromatin architectural proteins alter both the amount of Pol II–dependent noncoding transcripts and recombination products at rDNA in a coordinated manner. Of interest, chromatin immunoprecipitation analyses in these mutants revealed a corresponding variation of the histone H4 acetylation along the rDNA repeat, particularly at Lys-16. Here we provide evidence that a single, rapid, and reversible posttranslational modification—the acetylation of the H4K16 residue—is involved in the coordination of transcription and recombination at rDNA.
Collapse
Affiliation(s)
- Elisa Cesarini
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | |
Collapse
|